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ABSTRACT

The current study is dedicated to presenting the Casson nanofluid over a stretching surface with activation
energy. In order to make the problem more realistic, we employed magnetic field and slip effects on fluid flow.
The governing partial differential equations (PDEs) were converted to ordinary differential equations (ODEs) by
similarity variables and then solved numerically. The MATLAB built-in command ‘bvp4c’ is utilized to solve the
system of ODEs. Central composite factorial design based response surface methodology (RSM) is also employed
for optimization. For this, quadratic regression is used for data analysis. The results are concluded by means of tables
and pictorial representations. The present study discloses that the temperature profile increases with enhancement
in Ha, Nr, Nb, and Nt and it shows opposite behavior for λ. The included parameters show same trend for heat
transfer rate (Nux). It is also concluded that δ should be maximum for any value of Nb and Nt to maximize the heat
transfer rate.
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Nomenclature

C Concentration of nanoparticles (mol · L−1)

Cw The concentration of the wall (mol · L−1)

a Stretching velocity (s−1)

T∞ Free stream temperature (K)

T Temperature of the nanofluid (K)

Tw Wall temperature distribution (K)

C∞ Free nanoparticle concentration (mol · L−1)

B0 Strength of the uniform magnetic field (T)

g Acceleration due to gravity (m · s−1)

DT Coefficient of thermophoresis
(
m2 · s−1 · K−1

)
DB Brownian diffusion coefficient

(
m2 · s−1

)
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f Dimensionless stream function
k Permeability of porous medium (m2)

k1 Ratio of thermal diffusion
cp Specific heat at constant pressure

(
J · kg−1 · K−1

)
x, y Cartesian coordinates along the sheet and normal to it, respectively
u, v Velocity along x and y axes

(
m · s−1

)
uw Reference velocity

(
m · s−1

)
θ Dimensionless temperature
ν Kinematic viscosity

(
m2 · s−1

)
μ Coefficient of viscosity

(
Kg · m−1 · s−1

)
ρ The density of the fluid (Kg · m−3)

σ Electrical conductivity
(
S · m−1

)
κ Thermal conductivity

(
W · m−1 · K−1

)
φ Dimensionless concentration
τ Ratio of effective heat capacity
η Similarity variable

1 Introduction

Due to the recent advancements in nanotechnology in the last few decades, the interest of
scientists in a special kind of material has developed due to its enhanced thermal transference.
Due to the improved thermal efficiency, the nanofluids bring revolution in the fields of thermal
engineering and computational fluid dynamics (CFD). The nanoparticles are doping of conventional
materials like glycol, ethylene, and mineral oil with extraordinary thermal features. Such kind of
suspension of both materials leads to enhanced thermal conductivity and viscosity. It is observed that
the surface area of nanoparticles is multiple times greater than that of common fluids. Therefore,
the nanoparticles’ structure is suggested as microscopic commonly between 1 and 100 nm. Such
enhanced thermal materials have many practical applications like chemical processes, mechanical
industries, nuclear reactions, cooling processes, solar engineering, extrusion systems, power plants,
energy production, etc. Nowadays, nanoparticles are also employed in the medical field like artificial
hearts, chemotherapy, cancer tissue damage, X-rays, and surgery processes.

Nanofluids were introduced by Choi et al. [1]. Buongiorno [2] claimed that Brownian and
thermophoresis movement is of key importance in the slip transport characteristics. Sheikholeslami
et al. [3] considered the different shapes of nanoparticles and selected the best among them in terms of
heat transfer. They considered the finite element method (FEM) to compute the findings. The results
depicted the increment in the velocity of the nanofluid due to the enhancement in the Darcy and
Reynolds number (Re). Ahmad et al. [4] examined Buongiorno’s model to examine the impact of
thermophoresis and Brownian movement of nanoparticles. They used Von Karman transformations
to alter the governing PDEs into ODEs. They observed from the findings that the azimuthal and
radial velocities show decreasing and increasing trends with an enhancement in the velocity ratio,
respectively. Imtiaz et al. [5] computed the heat transfer rate for single and multi-wall carbon nanotubes
(SWCNTs & MWCNTs). The conclusions depicted that the SWCNTs are more effective as compared
to MWCNTs in the context of heat transfer rate (Nux). Garoosi et al. [6] studied Nux for the two-
dimensional (2D) nanofluid flow for couples of coolers and heaters. Sheikholeslami et al. [7] analyzed
the impact of Brownian motion and thermophoresis parameters for the nanofluid flow among two
parallel plates. They employed the differential transformation method to solve the problem and



FHMT, 2024, vol.22, no.4 1019

concluded that the Nusselt number (Nu) demonstrates a growing behavior with the increment in
Eckert number (Ec), Hartmann number (Ha), and Schmidt number (Sc) and the opposite behavior
for the squeeze number (S). Mustafa [8] incorporated the Buongiorno model for a rotating disk. They
employed the built-in MATLAB collocation routine to solve the problem and the findings depicted
that the thermal boundary layer thickness is strengthened due to the existence of thermophoretic
force. Turkyilmazoglu [9] analytically analyzed the nanofluid flow through a channel and showed
that Nu is highly applicable in cooling systems. The study of magnetic dipole influence on a radiative
ferromagnetic fluid via a porous stretched sheet was conducted by Dharmaiah et al. [10]. Buongiorno
model was employed to study the nanofluid flow over the stretching plate and concluded that the
concentration of nanofluid is improved with an enhancement in the melting parameter [11].

There are two basic kinds of nanofluid flow models. i.e., single-phase and two-phase models.
Tsuji et al. [12] numerically examined the fluid and motion of particles in a channel and determined
empirical parameters related to the collision of particles. Hieu et al. [13] numerically presented the two-
phase flow model for simulating wave proliferation in shallow water including wave breaking, reflec-
tion, shoaling, and air movement. They demonstrated its capability in simulating wave distortion and
breaking. Zeidan et al. [14] described a new solution method for a model of two-phase compressible
flows consisting of multiple equations derived from principles of conservation and additional closure
governing equations. Ljungqvist et al. [15] used a multi-fluid approach to simulate the problem of
two-phase flow in a vessel using CFD code CFX4 and highlighted the importance of slip velocity
and particle velocity. Xue et al. [16] proposed a coupling model of groundwater loss and gas drainage
to examine the influence of thermally improved methane retrieval on groundwater damage and the
ecological risk of coal bed methane growth. Based on the flux equivalent principle, Huang et al. [17]
developed a discrete-fractured model of a single fracture, which explicitly describes macroscopic
fractures as geometry elements and investigated the effect of fractures on water flooding. Riaz et al. [18]
examined the nonlinear development of viscous and gravitational uncertainty in two-phase immiscible
movements using numerical methods and described the physical mechanisms of finger progression and
interface.

Flow on a stretching surface is extensively recognized by researchers due to its enormous industrial
and engineering applications in the manufacturing of food, rubber sheets, hot rolling, glass fiber, paper
production, and many others. Activation energy is the minimal energy to be possessed by the particle
to endure some kind of change or chemical reaction. The activation energy is mainly applicable in food
processing, geothermal engineering, chemical engineering, oil reservoirs, and mechano-chemistry.
In various flow conditions like emulsions, polymer solutions, and foam, the slip effects cannot
be neglected among the nanofluids and solid boundaries. This phenomenon emerges in numerous
applications like nano-channels or micro-channels and in applications where the moving plates are
attached to a thin film of light oil or when the surface is sheathed with a unique coating like a thick
mono-layer of hydrophobic octadecyl trichlorosilane. Rana et al. [19] examined the laminar boundary
layer flow resulting from the nonlinear stretching of a flat surface, taking into account thermophoresis
and Brownian motion impacts using the variational FEM. Mabood et al. [20] analyzed the MHD
laminar boundary layer flow of nanofluid over a stretching sheet with viscous dissipation and explored
the effect of governing parameters on temperature, friction factor, nanoparticle concentration, local
Nu, and Sh. Nadeem et al. [21] numerically examined the two-dimensional boundary layer flow
past a stretching sheet, considering the impacts of MHD elasticity, and showed the effect of various
parameters on temperature and concentration profiles such as skin friction coefficient (Cfx), and Nux.
Pattnaik et al. [22] examined the impact of chemical reaction on MHD flow through an exponential
radiative stretching sheet. They considered the magnetic field and presented its impact on physical
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parameters such as velocity, temperature, and concentration profiles. Narayana et al. [23] investigated
numerically the influence of the heat source and chemical reaction on MHD Jeffrey fluid flow through
stretching sheets with power-law temperature and concentration profiles and examined the effect
of various dimensionless parameters on the velocity, temperature, and concentration distributions.
Hayat et al. [24] numerically analyzed the boundary-layer flow of a viscous fluid over a stretchable
surface, considering the effects of heat absorption/generation and chemical reactions, and investigated
the influence of certain parameters on Cfx, local Nu and Sh. Mebarek-Oudina et al. [25] established
a new Buongiorno model to study magnetized nanofluids flow. Mahanthesh et al. [26] investigated
the water-based nanofluid flow caused by a nonlinear stretching surface, incorporating temperature
jump boundary condition and transverse magnetic effect, and showed the effects of flow param-
eters on velocity and temperature distributions, as well as Cfx and Nu for different nanoparticles.
Ramesh et al. [27] investigated a magnetized Carreau nanofluid with radiation from a flow in a
microchannel. Several other works were used to finalize this work [28–30]. Khan et al. [31] explored the
heat and mass transfer of ternary hybrid nanomaterials. They concluded that the Darcy-Forchheimer
and slip effect were the key parameters in the study. Bejawada et al. [32] studied the MHD micropolar
fluid flow and computed the results based on different inclusive parameters. However, the optimization
of entropy production with hybrid magneto-nanofluid in porous media are well presented by Mebarek-
Oudina et al. [33].

Trusting the literature cited above, we came to know that the problem of Casson nanofluid for
activation energy under the influence of magnetic field and slip effects has never been reported before.
Therefore, our goal for this problem is to compute the approximate solution of the problem in hand
and optimize Cfx, heat transfer rate (Nux), and Sherwood number (Shx) by RSM.

2 Problem Formulation

This portion presents the governing equations for Casson nanofluid based on associated laws.
The influence of the magnetic field is observed by considering it vertical to the sheet. Buongiorno’s
nanofluid model is considered along with thermophoresis and the Brownian impacts. The activation
energy is also considered ascribed to the Arrhenius energy. The velocity components are taken as u and
v along x and y directions, respectively. Let C be the nanofluid concentration and T be the temperature.
The well-known Nield boundary conditions are considered to conduct this study. Furthermore, free
stream concentration (C∞) and the attained free temperature (T∞) are supposed far away from the
sheet [34,35].

∂u
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= 0 (1)

u
∂u
∂x

+ v
∂u
∂y

= ν

(
1 + 1

β

) (
∂2u
∂x2

+ ∂2u
∂y2

)
−

(
σ ∗B2

0

ρf

+ νφ

k∗

)
u

+
[

(1 − C∞)
(
ρf β

∗g
)
(T − T∞) − (C − C∞)

(
ρp − ρf

)
g

ρf

]
(2)

u
(

∂T
∂x

)
+v

(
∂T
∂y

)
= 1(

ρcp

)
f

∂

∂y

(
k (T)

∂T
∂y

)
+ Q0(

ρcp

)
f

(T − T∞)+
(
ρcp

)
p(

ρcp

)
f

{
DB

∂C
∂y

(
∂T
∂y

)
+ DT

T∞

(
∂T
∂y

)2
}

(3)



FHMT, 2024, vol.22, no.4 1021

u
(

∂C
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)
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(
∂C
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)
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(
∂2C
∂y2

)
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(
∂2T
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(
T
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)2

e−Ea/κT (4)

The physical depicters appeared in the above equations are the Casson parameter (β), Stefan-
Boltzmann constant (σ ∗), magnetic field (B0), fluid density (ρf ), permeability of porous medium
(k∗), volume suspension coefficient (B∗), gravity (g), nanoparticles density (ρp), variable thermal
conductivity

(
k (T) = K∞

(
1 + ε T−T∞

ΔT

))
, (Q0), diffusion constant (DB), Coefficient of thermophoresis

(DT), activation energy (Ea), the reaction rate (K1r), and the Boltzmann constant (κ). The term

k1r2 (C − C∞)
(

T
T∞

)2

e−Ea/κT in Eq. (4) represents the modified Arrhenius features.

With

u = uw + uslip, ν = 0, −k
∂T
∂y

= hf

(
Tf − T

)
, DB

∂C
∂y

+ DT

T∞

∂T
∂y

= 0 at y = 0 (5)

u → 0,
∂u
∂y

→ 0, v → 0, T → T∞, C → C∞ at y → ∞ (6)

where k, Tf , and hf represent the thermal conductivity, convective temperature of the fluid, and
coefficient of heat transfer, respectively.

The similarity transformations are:

η =
√

a
ν

y, u = cxf ′ (η) , v = −aνf (η) , θ (η) = T − T∞
Tw − T∞

, φ (η) = C − C∞
Cw − C∞

(7)

The transformed equations and boundary conditions are:(
1 + 1

β

)
f ′′′ − (f ′)

2 + ff ′′ − Haf ′ + λ (θ − Nrφ) = 0 (8)
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[
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]
= 0 (9)
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Nb
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n
φe(−E/1+δθ) = 0 (10)

With

f (0) = 0, f ′ (0) = 1 + αf ′′ (0) , θ ′ (0) = Bi (θ (0) − 1) , Nbθ (0) + Ntφ
′ (0) = 0 (11)

f ′ (∞) → 0, θ (∞) → 0, φ(∞) → 0 (12)

where Ha, λ, Nr, ε, Pr, Nb, Nt, Le, σ ∗∗, Bi, and E represent the magneto porosity parameter, mixed con-
vective parameter, buoyancy ratio constant, variable thermal conductivity, Prandtl number, Brownian
parameter, thermophoresis parameter, Lewis number, reaction constant, Biot number, activation
energy, respectively. The values of Ha, Nr, Pr, Nb, Nt, δ, Le, Bi, and E in the mathematical form are [36]:
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The dimensionless form of physical quantities involved in the study are:

Cfx

√
Rex =

(
1 + 1

β

)
f ′′ (0) ,

Nux√
Rex

= −θ ′ (0) ,
Shx√
Rex

= −φ ′ (0)

3 Numerical Technique

MATLAB command ‘bvp4c’ is utilized to compute the numerical solutions of Eqs. (8)–(10)
concerning the boundary conditions (Eqs. (11)–(12)). This is a finite difference scheme that utilizes
the Lobatto-III-A formulation. It is a collocation technique with an accuracy of order four. To apply
this scheme, the nonlinear ODEs are converted to a system of first-order linear ODEs by introducing
the new variables. The residual of the solution is employed to control the error and mesh selection.
To employ this function, nonlinear ODEs (Eqs. (8)–(10)) are replaced with the system of first-order
ODEs. With the substitutions y1 = f , y2 = f ′, y3 = f ′′, y4 = θ , y5 = θ ′, y6 = φ, y7 = φ ′ and named
this system as ‘bvp4ode’ in MATLAB. Moreover, the boundary conditions are named ‘bvp4bc’. The
interval of integration is taken as 0 to 12 and then discretized into 30 mesh points that construct the
initial guess structure. Ultimately, ‘bvp4c’ is called with the functions ‘bvp4ode’ and ‘bvp4bc’ as follows:

sol = (@bvp4ode, @bvp4bc, solinit, options)

Moreover, to evaluate the solution on specific points, the ‘deval’ command is used in MATLAB.

4 Result on Discussions

This portion is devoted to the demonstration of numerical outcomes of the given problem Eqs. (8)–
(10) in the form of tables and pictorial structures. The given problem Eqs. (8)–(10) is solved with the
help of the three-stage Labotto-III-A formula and the computed values are presented in Table 1.

Table 1: Effect of various parameters on Cfx, Nux, and Shx

Ha λ Nr Nb Nt δ Le σ ∗∗ E Cfx Nux Shx

0.1 −0.89188800
0.4 −1.00038163
0.7 −1.09574022

0.2 −0.97975676
0.5 −0.92362654
0.8 −0.87275168

0 −0.98938475
0.5 −1.04815933
1 −1.11067367

0.1 0.20572378
0.2 0.16836134
0.3 0.08292178

0.3 0.20198532
0.4 0.19710422
0.5 0.19182588

0.1 0.20572378

(Continued)
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Table 1 (continued)

Ha λ Nr Nb Nt δ Le σ ∗∗ E Cfx Nux Shx

0.4 0.38929840
0.7 0.68954957

1 0.57956929
2 0.57387566
3 0.57141549

0.1 0.58855243
0.3 0.58191833
0.5 0.57875564

0.1 0.58855243
0.2 0.58906797
0.3 0.58956639

Fig. 1 presents the effect of Ha on the velocity profile (f ′(η)), temperature profile (θ(η)), and
the concentration profile (φ(η)). From this figure, it is depicted that the velocity profile drops as
the strength of the magnetic parameter enhances. Physically, it is stated that the boundary layer
thickness declines as the magnetic parameter enhances. However, the opposite trend can be seen for the
temperature profile. It is because an increase in the magnetic parameter enhances the Brownian effect
of the fluid particles which enhances the temperature of the fluid gradually. Therefore, the thermal
boundary layer thickness is enhanced as the magnetic parameter increments. A similar trend is seen
for the concentration profile.

Figure 1: (Continued)
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Figure 1: Ha effect. (a) Concentration profile against variation of Ha. (b) Temperature profile for
variations in Ha. (c) Velocity profile against variations in Ha

The effect of the mixed convective parameter (λ) for the case of assisting flow (λ > 0) is presented
in Fig. 2. From this figure, it came to know that there is a linear relationship between velocity and the
values of assisting flow. The boundary layer thickness increases as λ increases. In the case of assisting
flow, the buoyancy forces are more prevailing than the viscous forces. Therefore, the boundary layer
thickness is enhanced, however contrary behavior is seen for temperature and concentration profiles.

Figure 2: (Continued)
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Figure 2: Mixed convective parameter effect (a) Concentration profile for variations in λ. (b) Temper-
ature profile for variations in λ. (c) Velocity profile for variations in λ

The effect of Nr is demonstrated in Fig. 3. It can be witnessed that the velocity slows down with
an improvement in the values of Nr. It can be seen that the temperature of the nanofluid progresses
because of the involvement of the buoyancy ratio forces. The concentration of the nanoparticles in the
nanofluid is enhanced due to the enhancement in the buoyancy forces.

Figure 3: (Continued)
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Figure 3: Nr effect. (a) Concentration profile for variations in Nr. (b) Temperature profile for variations
in Nr. (c) Velocity profile for variations in Nr

Fig. 4 presents the impact of Nb on the flow, temperature, and concentration profiles. The
Brownian parameter tends to increase the thermal boundary layer thickness when the strength of
the Brownian parameter is enhanced. This is because the increment in the Brownian parameter allows
the particles to migrate from one place to another. So, this is the reason why the collateral resistance
between the fluid particles enhances the temperature of the fluid. Therefore, the concentration and the
thermal boundary layer thickness increase rapidly. A similar effect on temperature and concentration
is seen in the case of Nt as presented in Fig. 5.

Figure 4: Nb effect. (a) Effect of Nb on concentration profile. (b) Effect of Nb on the temperature profile
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Figure 5: Nt effect. (a) Impact of Nt on concentration profile. (b) Impact of Nt on the temperature
profile

Fig. 6 is plotted to observe the impact of Le on the concentration of nanoparticles. It is seen that
the concentration distribution curve decreases with an enhancement in Le. Due to the enhancement
in Le, the mass diffusivity becomes smaller which results in the reduction of φ(η). The impact of σ ∗∗

on the concentration profile is presented in Fig. 7. The concentration process slows down due to the
presence of σ ∗∗. The chemical reaction becomes more effective due to the existence of activation energy.
The concentration of nanoparticles is enhanced due to the enhancement in E as presented in Fig. 8.

Figure 6: Effect of Le on concentration profile
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Figure 7: Effect of σ ∗∗ on concentration profile

Figure 8: Effect of E on concentration profile

4.1 Optimization Process
RSM is a powerful tool to describe a broad range of variables, with partial resources, quantitative

data, and the mandatory test design. The stages involved in RSM are as follows:
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1. The investigation of data values is planned and executed to achieve appropriate and credible
requirements for the projected response.

2. The most suitable mathematical models were described for the response surface.

3. It was defined that the mathematical models of the response surface are the most suitable.

4. To inspect the parametric direct and interaction impacts (ANOVA), variance analysis
was done.

4.2 Optimization Analysis by RSM
The relation among the response variable and factor variables was computed by employing a face-

centered central composite design. Tables 2–4 describe the inclusive factors and levels. The model is
described in (13), in which the linear, square, and interactive terms are involved.

Table 2: Parameters with their levels for Cfx

Parameters Symbols Level

−1 0 1

Ha A 0.1 0.4 0.7
λ B 0.2 0.5 0.8
Nr C 0 0.5 1

Table 3: Parameters with their levels for Nux

Parameters Symbols Level

−1 0 1

Nb A 0.1 0.2 0.3
Nt B 0.3 0.4 0.5
δ C 0.1 0.4 0.7

Table 4: Parameters with their levels for Shx

Parameters Symbols Level

−1 0 1

Le A 1 2 3
σ ∗∗ B 0.1 0.3 0.5
E C 0.1 0.2 0.3

Response =
α0 + α1A + α2B + α3C + α11A2 + α22B2 + α33C2 + α12AB + α13AC + α23BC (13)
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4.2.1 Response Surface Regression: Cfx(0) vs. Ha, λ and Nr

This section examined the response of three factors Ha, λ, and Nr. The optimum mode is defined
and the sensitivity analysis of influential factors on Cfx(0) is performed. Table 5 represents the values
of the response function for 20 different points.

Table 5: Experimental design and responses

Runs Coded values Responses

A B C Cfx Nux Shx

1 0 0 0 −0.39684751 0.40782807 0.11948642
2 1 −1 −1 −0.57886420 0.19265987 0.11966147.
3 0 1 0 −0.29209551 0.40365355 0.11921239
4 0 0 0 −0.39684751 0.40782807 0.11948642
5 −1 −1 −1 −0.46387103 0.20867705 0.12113372
6 0 0 −1 −0.38716713 0.20091253 0.11943170
7 1 1 1 −0.27978532 0.68712455 0.11908986
8 0 0 0 −0.39684751 0.40782807 0.11948642
9 −1 −1 1 −0.42894289 0.67801826 0.12130162
10 1 −1 1 −0.58417418 0.69846539 0.11972700
11 0 0 0 −0.39684751 0.40782807 0.11948642
12 1 1 −1 −0.34240632 0.19195249 0.11902415
13 0 0 0 −0.39684751 0.40782807 0.11948642
14 0 0 0 −0.39684751 0.40782807 0.11948642
15 −1 0 0 −0.45421693 0.40410961 0.12014734
16 0 −1 0 −0.56036217 0.41146684 0.12009442
17 0 0 1 −0.34204689 0.68475116 0.11954209
18 1 0 0 −0.48377248 0.40703194 0.11925364
19 −1 1 1 −0.06080642 0.65995862 0.11975680
20 −1 1 −1 −0.23690397 0.20101396 0.11959444

i) Statistical Analysis

Based on the given settings. The statistical analysis executed 20 runs for Cfx(0),. The Tables 6 and 7
show the coded coefficient and statistical analysis influence. This model is appropriate for calculating
the value of Cfx(0) because a better value of R2 for Cfx(0), i.e., 96.25% was attained by the statistical
scheme and statistical study of the model. Further, the R2-Adj amount for Cfx(0) is 92.88% is less than
R2 but the model fits experimental data acceptably.



FHMT, 2024, vol.22, no.4 1031

Table 6: Coded coefficients

Term Coef SE Coef T-value p-value VIF

Constant −0.4105 0.0111 −36.84 0
Ha −0.0624 0.0103 −6.09 0 1.00
λ 0.1404 0.0103 13.70 0.000 1.00
Nr 0.0313 0.0103 3.06 0.012 1.00
Ha ∗ Ha −0.0379 0.0195 −1.94 0.081 1.82
λ ∗ λ 0.0049 0.0195 0.25 0.809 1.82
Nr ∗ Nr 0.0665 0.0195 3.40 0.007 1.82
Ha ∗ λ −0.0068 0.0115 −0.59 0.567 1.00
Ha ∗ Nr −0.0192 0.0115 −1.68 0.125 1.00
λ ∗ Nr 0.0261 0.0115 2.28 0.046 1.00

Table 7: Analysis of variance

Source DF Adj SS Adj MS F-value p-value

Model 9 0.269880 0.029987 28.54 0
Linear 3 0.245978 0.081993 78.03 0
Ha 1 0.038970 0.038970 37.09 0
λ 1 0.197183 0.197183 187.66 0
Nr 1 0.009826 0.009826 9.35 0.012
Square 3 0.015115 0.005038 4.80 0.025
Ha ∗ Ha 1 0.003951 0.003951 3.76 0.081
λ ∗ λ 1 0.000065 0.000065 0.06 0.809
Nr ∗ Nr 1 0.012155 0.012155 11.57 0.007
2-way interaction 3 0.008787 0.002929 2.79 0.096
Ha ∗ λ 1 0.000368 0.000368 0.35 0.567
Ha ∗ Nr 1 0.002954 0.002954 2.81 0.125
λ ∗ Nr 1 0.005465 0.005465 5.20 0.046
Error 10 0.010508 0.001051
Lack-of-fit 5 0.010508 0.002102 ∗ ∗
Pure error 5 0 0
Total 19 0.280388

ii) Analysis of Variance and Model Estimation:

To achieve the projected regression equation, experimental model presented in Table 8 is executed
under altered experimental settings. The residual plot is achieved by analysis of variance and entering
the data into analytical software.
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Table 8: Model summary

S R-sq R-sq (adj) R-sq (pred)

0.0324154 96.25% 92.88% 72.13%

From Table 7, it is noticed that p-value of Ha2, λ2, Ha ∗ λ, Ha ∗ Nr > 0.05. Therefore Ha2, λ2,
Ha ∗ λ, Ha ∗ Nr has an insignificant impact on the Response function Cfx(0).

iii) Regression Equation in Uncoded Units

Cfx (0) = −0.5772 + 0.231Ha + 0.357λ − 0.2391Nr − 0.421Ha2 + 0.054λ2 + 0.2659N2
r

− 0.075Ha ∗ λ − 0.1281Ha ∗ Nr + 0.1743λ ∗ Nr (14)

From Table 8 it is noticed that the p-value of Ha2, λ2, Ha ∗ λ, Ha ∗ Nr > 0.05. Therefore Ha2, λ2,
Ha ∗ λ, Ha ∗ Nr has an insignificant impact on the Response function Cfx(0).

After removing the factors which have a p-value greater than 0.05 the regression equation for
Cfx(0) is reduced to the following equation:

Cfx(0) = −0.5772 + 0.231Ha + 0.357λ − 0.2391Nr + 0.2659N2
r + 0.1743λ ∗ Nr (15)

iv) Residual and Surface Plots

The residual plot is given in Fig. 9a. In the residual plot difference in observed y-value (from the
scattered plot) and predicted y-value is known as residual. According to the figure normal probability
plot is in good condition because all the points near the approximate straight lines which represent
normality. In residual Histogram halves do not appear as a mirror image so is skew symmetrical
distribution. Observed and fitted values display a good correlation if compared to the residual diagram
and fitted value. The greatest residual was observed to be in the proximity of 0.025 for Cfx(0). By
applying RSM we get Eq. (1) which is a common relationship between their effective factors.

Fig. 9b represents Cfx(0) with Nr and λ as variables. Here we observed changes in Reynolds number
and wavelength affect the coefficient of friction at the leading edge. Higher Reynolds numbers tend to
increase Cfx(0) due to increased turbulence and thicker boundary layers, while the impact of wavelength
depends on the relative size compared to relevant length scales in the flow.

Fig. 9c observed the influence of λ and Ha on Cfx(0). The impact of λ on Cfx(0) depends on the
relative size of the wavelength compared to the characteristic length scales of the flow. If the wavelength
is small compared to the boundary layer thickness or other relevant length scales, its effect on Cfx(0)

may be minimal. However, if the wavelength is comparable to or larger than these length scales, it
can significantly influence the flow behavior and, consequently, Cfx(0). The influence of Ha on Cfx(0)

is related to the suppression of flow turbulence by the magnetic field. A higher Hartmann number
(stronger magnetic field) tends to suppress turbulence and stabilize the flow, resulting in a smoother
flow near the leading edge. As a result, Cfx(0) may decrease under the influence of a higher Ha,
indicating reduced friction at the leading edge. The three-dimensional surface plot in Fig. 9d presents
the impact of Nr and Ha on the response function. The maximum value of the response function occurs
when we increase the value of Nr and Ha.
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Figure 9: Influential factors on Cfx(0). (a) Residual plot. (b) Influence of Nr and λ on Cfx(0).
(c) Influence of λ and Ha on Cfx(0). (d) Impact of Nr and Ha on response function

4.2.2 Response Surface Regression: Nux(0) vs. Nb, Nt, δ

In this section, the response of three factors Nb, Nt, δ on Nux(0) is examined. The optimum mode
is defined and the sensitivity analysis of influential factors on to perform Nux(0) is executed

i) Statistical Analysis:

According to the given settings, the statistical analysis executed 20 runs for Nux(0). Tables 9 and
10 show the coded coefficient and statistical analysis effect. This model is appropriate for calculating
the value of Nux(0) because a better value of R2 for Nux, i.e., 100% which is attained by statistical
scheme and statistical analysis of the model. Further, the R2 − Adj amount for Nux is 100%. 100%
of R2 represents a model that enlightens all the variation in the response variable around its mean.
Generally, the greater the R2, The improved regression model fits our observations.
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Table 9: Coded coefficients

Term Coef SE Coef T-value p-value VIF

Constant 0.407911 0.000245 1664.75 0
Nb 0.002546 0.000225 11.29 0 1.00
Nt −0.004558 0.000225 −20.22 0 1.00
σ ∗∗ 0.241310 0.000225 1070.62 0 1.00
Nb ∗ Nb −0.002466 0.000430 −5.74 0 1.82
Nt ∗ Nt −0.000476 0.000430 −1.11 0.294 1.82
σ ∗∗ ∗ σ ∗∗ 0.034795 0.000430 80.96 0 1.82
Nb ∗ Nt 0.001709 0.000252 6.78 0 1.00
Nb ∗ σ ∗∗ 0.009086 0.000252 36.06 0 1.00
Nt ∗ σ ∗∗ −0.002629 0.000252 −10.43 0 1.00

Table 10: Analysis of variance

Source DF Adj SS Adj MS F-value p-value

Model 9 0.588796 0.065422 128777.83 0
Linear 3 0.582579 0.194193 382254.13 0
Nb 1 0.000065 0.000065 127.56 0
Nt 1 0.000208 0.000208 409.02 0
σ ∗∗ 1 0.582306 0.582306 1146225.79 0
Square 3 0.005478 0.001826 3594.36 0
Nb ∗ Nb 1 0.000017 0.000017 32.91 0
Nt ∗ Nt 1 0.000001 0.000001 1.23 0.294
σ ∗∗ ∗ σ ∗∗ 1 0.003329 0.003329 6553.85 0
2-way interaction 3 0.000739 0.000246 485.00 0
Nb ∗ Nt 1 0.000023 0.000023 46.01 0
Nb ∗ σ ∗∗ 1 0.000661 0.000661 1300.17 0
Nt ∗ σ ∗∗ 1 0.000055 0.000055 108.82 0
Error 10 0.000005 0.000001
Lack-of-fit 5 0.000005 0.000001 ∗ ∗
Pure error 5 0 0
Total 19 0.588801

ii) Analysis of Variance and Model Estimation:

To get the approximate regression equation, the experimental model presented in Table 11 is
executed under changed experimental settings. The residual plot is achieved by analysis of variance
and entering the data into analytical software. By applying RSM we get Eq. (16) which is a frequent
relationship between their valuable factors.
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Table 11: Model summary

S R-sq R-sq (adj) R-sq (pred)

0.0007128 100.00% 100.00% 99.99%

From Table 10, it is observed that the p-value of N2
t > 0.05. Therefore N2

t has an inconsequential
influence on Response function Nux.

iii) Regression Equation in Uncoded Units

Nux (0) = 0.16757 − 0.0654Nb − 0.0066Nt + 0.46955σ ∗∗ − 0.2466Nb ∗ Nb − 0.0476Nt ∗ Nt

+ 0.38662σ ∗∗ ∗ σ ∗∗ + 0.1709Nb ∗ Nt + 0.30288Nb ∗ σ ∗∗ − 0.08763Nt ∗ σ ∗∗ (16)

From Table 11, it is observed that the p-value of Nt
2
> 0.05 therefore Nt

2 has an inconsequential
influence on Response function Nux.

After eliminating the factors which have a p-value greater than 0.05 the regression equation for
Nux(0) is reduced to the below equation

Nux (0) = 0.16757 − 0.0654Nb − 0.0066Nt + 0.46955σ ∗∗ − 0.2466Nb ∗ Nb + 0.38662σ ∗∗ ∗ σ ∗∗

+ 0.1709Nb ∗ Nt + 0.30288Nb ∗ σ ∗∗ − 0.08763Nt ∗ σ ∗∗ (17)

iv) Residual and Surface Plots

The residual plot is given in Fig. 10a. In the residual plot difference observed from the scattered
plot and predicted y-value is known as residual. According to the figure normal probability plot is in
good condition because all the points near the approximate straight lines which represent normality.
In residual Histogram halves do not appear as a mirror image so it skews symmetrical distribution.
Observed and fitted values display a good correlation if compared to the residual diagram and fitted
value. The maximum residual was observed to be in the proximity of 0.0015 for Nux(0). In Fig. 10b
displayed the effect of Nb and Nt on response function. The response function showed the largest value
when Nb decreased and for any value of Nt. The impact of δ and Nb is displayed in the Fig. 10c. The
high value of the response function is observed at the high values of δ and Nb. The interaction of δ and
Nt is showen in Fig. 10d. The maximum value of Nux(0) occurs for increased value of δ and any value
of Nt.

4.2.3 Response Surface Regression: Shx(0) vs. Le, σ ∗∗, E

In this section, the response of three factors of Le, σ ∗∗, E on Shx(0). The optimum mode is
described and the sensitivity analysis of influential factors on Shx(0) is performed.

i) Statistical Analysis:

According to specified settings. The statistical analysis executed 20 runs for Shx(0). Tables 12 and
13 demonstrate the coded coefficient and statistical analysis influence. This model is appropriate for
determining the value of Nux because the better value of R2 for Shx(0). i.e., 99.54% which was attained
by the statistical scheme and statistical analysis of the model. Further, the R2 − Adj amount for Shx(0)

is 99.12%, which is lower than R2, but the model fits experimental data suitably.
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Figure 10: Influential factors on Nux(0) (a) Residual plot. (b) Effect of Nb and Nt on Nux(0). (c) Impact
of δ and Nb on Nux(0). (d) Interaction of δ and Nt on Nux(0)

Table 12: Coded coefficients

Term Coef SE Coef T-value p-value VIF

Constant 0.119480 0.000019 6278.16 0
Le −0.000518 0.000018 −29.58 0 1.00
σ ∗∗ −0.000524 0.000018 −29.94 0 1.00
E 0.000057 0.000018 3.27 0.008 1.00
Le ∗ Le 0.000230 0.000033 6.88 0 1.82
σ ∗∗σ ∗∗ 0.000183 0.000033 5.47 0 1.82
E ∗ E 0.000016 0.000033 0.48 0.638 1.82
Le ∗ σ ∗∗ 0.000226 0.000020 11.56 0 1.00
Le ∗ E −0.000025 0.000020 −1.27 0.232 1.00
σ ∗∗ ∗ E −0.000001 0.000020 −0.03 0.973 1.00
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Table 13: Analysis of variance

Source DF Adj SS Adj MS F-value p-value

Model 9 0.000007 0.000001 239.23 0
Linear 3 0.000005 0.000002 593.88 0
Le 1 0.000003 0.000003 874.81 0
σ ∗∗ 1 0.000003 0.000003 896.16 0
E 1 0 0 10.67 0.008
Square 3 0.000001 0 78.75 0
Le ∗ Le 1 0 0 47.38 0
σ ∗∗ ∗ σ ∗∗ 1 0 0 29.95 0
E ∗ E 1 0 0 0.23 0.638
2-Way Interaction 3 0 0 45.06 0
Le ∗ σ ∗∗ 1 0 0 133.57 0
Le ∗ E 1 0 0 1.62 0.232
σ ∗∗ ∗ E 1 0 0 0 0.973
Error 10 0 0
Lack-of-Fit 5 0 0 ∗ ∗
Pure Error 5 0 0
Total 19 0.000007

ii) Analysis of Variance and Model Estimation:

To get the approximate regression equation of the experimental model presented in Table 14 is
executed under transformed experimental settings. The residual plot is achieved by analysis of variance
and entering the data into analytical software. By using RSM we get Eq. (18) which is a numerous
relationship between their helpful factors.

Table 14: Model summary

S R-sq R-sq (adj) R-sq (pred)

0.0000554 99.54% 99.12% 96.45%

From Table 13 it is observed that the p-value of E2, Le ∗ E, σ∗∗ ∗E > 0.05 therefore E2, Le ∗ E, σ∗∗ ∗
E has negligible influence on Response function Shx(0).

iii) Regression Equation in Uncoded Units

Shx (0) = 0.123159 − 0.001726Le − 0.007616σ ∗∗ + 0.00043E + 0.000230Le ∗ Le

+ 0.004567σ ∗∗ ∗ σ ∗∗ + 0.00162E ∗ E + 0.001131Le ∗ σ ∗∗ − 0.000249Le ∗ E

− 0.000033σ ∗∗ ∗ E (18)

From Table 14 it is observed that the p-value of E2, Le ∗ E, σ∗∗ ∗ E > 0.05 therefore E2, Le ∗ E,
σ∗∗ ∗ E has negligible influence on Response function Shx(0).
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After eliminating the factors which have a p-value greater than 0.05 the regression equation for
Shx(0) is reduced to the below equation:

Shx (0) = 0.123159 − 0.001726Le − 0.007616σ ∗∗ + 0.00043E + 0.000230Le ∗ Le

+ 0.004567σ ∗∗ ∗ σ ∗∗ + 0.001131Le ∗ σ ∗∗ (19)

iv) Residual and Surface Plots

The residual plot is given in Fig. 11a. In the residual plot difference observed from the scattered
plot and predicted y-value is known as residual. According to the figure normal probability plot is in
good condition because all the points near the approximate straight lines which represent normality.
In the residual histogram, halves do not appear as a mirror image so there is skew symmetrical
distribution. Observed and fitted values display a good correlation if compared to the residual diagram
and fitted value. The maximum residual was observed to be in the proximity of 0.00008 for Shx(0).
Fig. 11b illustrates the consequence of σ ∗∗ and Le on response function, the response function attained
maximum value for the minimal value of σ ∗∗ and Le. Fig. 11c,d elucidated the impact of E∗∗, Le and
on response function. The highest value of the response function is observed at low value of Le, σ ∗∗

and all values of E∗∗.

Figure 11: Influential factors on Shx(0) (a) Residual plot. (b) Consequence of σ ∗∗ and Le on Shx(0).
(c) Impact of E∗∗ and Le on Shx(0). (d) Impact of E∗∗ and σ ∗∗ on Shx(0)
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5 Conclusion

In this study, the Casson nanofluid was examined, and its thermal analysis and optimizations were
conducted. The following conclusions can be drawn:

• The velocity profile decreases with an increment in Ha and Nr, exhibiting the opposite trend for
an increase in λ. The comprehensive parameters demonstrate a similar trend for Cfx.

• The temperature profile rises with enhancement in Ha, Nr, Nb, and Nt, showing the opposite
behavior for λ. The incorporated parameters reveal a consistent pattern for the heat transfer
rate (Nux).

• The concentration profile increases with rising values of Ha, Nr, Nb, Nt, and E while displaying
an opposing trend for λ, Le, and σ ∗∗. The inclusive parameters show the same trend for Shx.

• Nux maximizes for Nb = 0.1 and Nt = 0.5.

• For higher values of δ, Nux is maximum when Nb = [0.1, 0.3] , Nt = [0.3, 0.5]. So, δ should be
the maximum for any value of Nb and Nt to maximize the heat transfer rate.

• This work can be extended to hybrid and ternary hybrid nanofluids. Furthermore, the applica-
tion of artificial neural networks could further optimize the study.
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