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ABSTRACT

The research examines fluid behavior in a porous box-shaped enclosure. The fluid contains nanoscale particles
and swimming microbes and is subject to magnetic forces at an angle. Natural circulation driven by biological
factors is investigated. The analysis combines a traditional numerical approach with machine learning techniques.
Mathematical equations describing the system are transformed into a dimensionless form and then solved using
computational methods. The artificial neural network (ANN) model, trained with the Levenberg-Marquardt
method, accurately predicts (Nu) values, showing high correlation (R = 1), low mean squared error (MSE),
and minimal error clustering. Parametric analysis reveals significant effects of parameters, length and location of
source (B), (D), heat generation/absorption coefficient (Q), and porosity parameter (ε). Increasing the cooling area
length (B) reduces streamline intensity and local Nusselt and Sherwood numbers, while decreasing isotherms, iso-
concentrations, and micro-rotation. The Bejan number (Be+) decreases with increasing (B), whereas (Be+++),
and global entropy (e+++) increase. Variations in (Q) slightly affect streamlines but reduce isotherm intensity
and average Nusselt numbers. Higher (D) significantly impacts isotherms, iso-concentrations, and micro-rotation,
altering streamline contours and local Bejan number distribution. Increased (ε) enhances streamline strength and
local Nusselt number profiles but has mixed effects on average Nusselt numbers. These findings highlight the
complex interactions between cooling area length, fluid flow, and heat transfer properties. By combining finite
volume method (FVM) with machine learning technique, this study provides valuable insights into the complex
interactions between key parameters and heat transfer, contributing to the development of more efficient designs
in applications such as cooling systems, energy storage, and bioengineering.
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Nomenclature

ANN Artificial neural network
B0 Magnetic field strength
C Concentration
Ha Hartmann number, B0H

√
σf /μf

k Thermal conductivity
n Normal vector
Shs Local Sherwood number
Numf Average Nusselt number of heat sink
P Dimensionless pressure, pH/ρnf α

2
f

q Constant heat flux
Sc Schmidt number
u, v Velocity components in x, y directions
U , V Dimensionless velocity components, u/U 0, v/U 0

X,Y Dimensionless coordinates, x/H, y/H
Cp Specific heat at constant pressure, J.kg.K−1

d Cold length, m
H Length of a cavity, m
FVM Finite volume method
MHD Magnetohydrodynamics
g Acceleration due to gravity, m.s−2

kr Modified conductivity ratio
Nus Local Nusselt number
Mhs Local microorganism density number
p Fluid pressure, Pa
Pr Prandtl number, υf /αf

Q0 Heat generation/absorption coefficient
T Temperature
m Microorganism
x, y Cartesian coordinates, m

Greek Symbols

ε Porosity
α Thermal diffusivity, m2.s−1, k/ρcp

φ Solid volume fraction
ϕ Dimensionless concentration
ρ Density, kg.m−3

c Cold
f Pure fluid
h Hot
hnf Hybrid nanofluid
w Wall
	 Magnetic field inclination angle
β Thermal expansion coefficient, K−1

θ Dimensionless temperature
M Dimensionless microorganism
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Subscripts

0 Reference
s Porous
m Average
p Nanoparticle

1 Introduction

Natural bioconvection is the self-organizing patterns generated by the collective movement of
microorganisms in a fluid media, which are primarily driven by density gradients caused by their
own motility and biological activity. Gyrotactic microorganisms, such as certain algae species, have
a particular swimming habit that is influenced by gravitational and viscous torques, resulting in
different bioconvective patterns. When these microorganisms are suspended in a nanofluid (a base
fluid containing nanoparticles), the fluid’s thermal and rheological properties change considerably,
improving heat transmission and stability.

Jamuna et al. [1] investigated the flow of bioconvective nanofluids containing gyrotactic microor-
ganisms within a porous square cavity. Utilizing the Darcy model under the Boussinesq approximation,
they considered the effects of both heat generation and absorption. Obalalu et al. [2] examined
bioconvective nanofluid flow using Oswald–DeWaele power-law models, focusing on the swimming
behavior of gyrotactic microorganisms and the resulting bioconvection patterns. Tanveer et al. [3]
analyzed heat and mass transfer in a copper-water hybrid nanofluid under the influence of ohmic
dissipation, also accounting for the presence of gyrotactic microorganisms.

Introducing a magnetic field into these systems adds complexity due to the interaction between
the magnetic field and the conductive nanofluid, which affects flow and heat transfer through Lorentz
forces. The inclusion of porous materials further complicates the dynamics by adding resistance to
fluid flow and introducing additional heat exchange mechanisms. Kotha et al. [4] studied magne-
tohydrodynamic flow and heat and mass transfer in a water-based nanofluid containing gyrotactic
microorganisms over a vertical plate, considering the impacts of heat generation or absorption.
Abbas et al. [5] explored the effects of reduced gravity and solar radiation on magnetohydrodynamic
fluid flow and heat transfer around a stationary sphere within a porous medium. They developed a
dimensionless model using suitable variables and transformed it into a primitive form for efficient
computation. Jeelani et al. [6] enhanced heat transfer by dispersing cylindrical-shaped alumina and
copper nanoparticles in ethylene glycol, employing a non-Newtonian Maxwell fluid model. Their
study analyzed the effects of solar radiation, plate suction, and magnetohydrodynamics on a Maxwell
hybrid nanofluid.

Yadav et al. [7] investigated heat and mass transfer in the flow of immiscible couple stress
fluids through a curved channel with walls maintained at different temperatures. The fluids are
influenced by an external magnetic field perpendicular to the flow direction, and the channel walls
are considered porous to allow for suction or injection. Yadav et al. [8] examined how factors like
inclination angle, porous media, slip boundary conditions, and magnetic fields affect flow variables
such as velocity, wall shear stress, pressure difference, head loss, and volumetric flow rate in a
channel containing two electrically conducting, immiscible fluids—Newtonian and couple stress
fluids. The inclined channel is divided into two equal sub-regions, each occupied by one type
of fluid. Biswas et al. [9] investigated magnetohydrodynamic (MHD) bioconvection driven by the
movement of oxytactic microorganisms within a linearly heated square cavity containing porous media
and a copper-water nanofluid. They assessed how various multi-physical parameters affect fluid
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flow, temperature distribution, oxygen concentration, and microbial patterns using both local and
global analytical methods. Maheshwari et al. [10] analyzed the effects of an external magnetic field
combined with bottom heating on the bioconvection behavior of a nanofluid containing gyrotactic
microorganisms. Their research employed modified Maxwell’s equations and an extended Buongiorno
model to formulate the governing equations for the nanofluid within a Darcy-Brinkman porous
medium. In a separate study, Biswas et al. [11] explored mixed thermos-bioconvection in a magnetically
responsive fluid that includes copper nanoparticles and oxytactic bacteria within a uniquely shaped
W-configuration porous cavity. The system exhibited buoyant convection due to isothermal heating
at a wavy bottom wall, while mixed convection was induced by the shearing action of a top-cooled
sliding wall.

Rashed et al. [12] examined laminar mixed convection at the stagnation point in an unsteady, elec-
trically conducting hybrid nanofluid composed of Fe3O4 and Cu nanoparticles in water, flowing over
a horizontal porous stretched sheet. Their study focused on the impacts of both external and induced
magnetic fields, as well as the roles of viscous and gyrotactic microorganisms. Entropy generation
analysis in such systems is essential for understanding the irreversibility associated with heat transfer,
fluid friction, and mass transfer. By quantifying entropy production, researchers can pinpoint areas
and conditions where energy dissipation peaks, providing insights for enhancing system efficiency and
optimizing design parameters for engineering applications. This is particularly important in sectors
like biomedical engineering, environmental technology, and renewable energy, where effective thermal
management and energy conservation are crucial. Mandal et al. [13] investigated entropy generation
in a Maxwell nanofluid with gyrotactic microorganisms flowing over a radiatively heated inclined
stretching cylinder.

Meenakshi et al. [14] investigated the influence of Brownian motion and thermophoresis on
entropy generation in the bioconvective flow of a nanofluid containing gyrotactic microorganisms
within a porous cavity. They utilized Darcy’s Boussinesq approximation to address the porosity term
in the momentum equation. Mishra et al. [15] focused on optimizing entropy generation in the flow
of a ternary hybrid Jeffery nanofluid (Ag-Au-TiO2/PVA) through a peristaltic vertical channel that
contains swimming gyrotactic microorganisms. Ramzan et al. [16] examined the two-dimensional flow
behavior of a Carreau-ternary hybrid nanoliquid subjected to a magnetic field over a stretching surface.
Their study explored the heat transfer mechanism, considering the effects of thermal radiation and
heat sources or sinks. Li et al. [17] analyzed the effects of activation energy and chemical reactions
on the magnetohydrodynamic Darcy-Forchheimer flow of a squeezed Casson fluid through a porous
medium within a horizontal channel, where two parallel plates are in motion. For additional research
involving magnetohydrodynamics in fluid flows, readers are referred to References [18–20] and the
citations within those works.

In recent times, ANNs have gained prominence as a promising alternative to traditional Com-
putational Fluid Dynamics (CFD) methods. Inspired by the neural structures of the human brain,
ANNs are computational model’s adept at learning patterns and making data-driven predictions. Their
ability to approximate complex nonlinear functions makes them suitable for various applications in
CFD, including flow prediction, turbulence modeling, and optimization. The application of ANNs in
CFD began gaining traction due to their potential to significantly reduce computational costs while
maintaining accuracy. Early studies, such as those by Milano et al. [21], demonstrated the feasibility
of using neural networks to model turbulent flows, showing that ANNs could effectively capture
the essential dynamics of fluid motion with lower computational overhead compared to traditional
methods. Building upon these findings, later research has broadened the exploration by investigating
various neural network architectures to tackle specific challenges in computational fluid dynamics
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(CFD). These include convolutional neural networks (CNNs) [21] and recurrent neural networks
(RNNs) [22].

One of the notable advantages of using ANNs in CFD is their ability to generalize from training
data, allowing them to predict fluid behavior in new, unseen scenarios. This capability has been
leveraged in data-driven turbulence modeling, where ANNs are trained on high-fidelity simulation
data or experimental measurements to develop models that can accurately predict turbulent stresses
and eddies. Ling et al. [23] presented a groundbreaking study in this area, introducing a deep learning
approach for Reynolds-Averaged Navier-Stokes (RANS) models that improved predictive accuracy
over traditional models. Furthermore, ANNs have been integrated into CFD workflows to enhance
optimization and control processes. For example, Rabault et al. [24] used deep reinforcement learning,
a type of ANN, to optimize active flow control strategies, achieving significant improvements in flow
performance metrics with reduced computational effort. This integration highlights the potential of
ANNs not only to accelerate CFD simulations but also to enable real-time optimization and adaptive
control in complex fluid systems. The incorporation of ANNs into CFD represents a transformative
development in the field. By leveraging the power of machine learning, researchers and engineers can
achieve faster, more efficient, and potentially more accurate simulations, opening new avenues for
innovation in fluid dynamics [25–28]. As technology advances, ANNs are anticipated to significantly
enhance computational fluid dynamics (CFD) techniques and their uses. Aly et al. [25] investigated
the incompressible smoothed particle hydrodynamics (ISPH) with machine learning (ML) to examine
the uses of two different domain shapes where it was discovered that the velocity field decreases
substantially as the Darcy number decreases due to the increased porous resistance at a lower Darcy
number. Recent research on combining numerical methods with ANN models to address heat transfer
in intricate geometries is discussed in the referenced studies [26–30]. Zou et al. [31] provided an
overview of ANN fundamentals. Sun et al. [32] used ANN to predict heat transfer in supercritical
CO2 flow within tubes, showing its effectiveness in thermal systems. Rehman et al. [33] applied ANN
to optimize drag coefficients for obstacles. Fuxi et al. [34] assessed how spring turbulators affect
solar collectors using ANN. Ali et al. [35] explored ANN and fractional calculus in analyzing blood
flow with nanoparticles. Karmakar et al. [36] extended ANN to study bioelectromagnetic in blood
circulation, incorporating hybrid nanoparticles and microbes.

This research presents a novel integration of an ANN with FVM to perform entropy analysis
of MHD natural bioconvection within a porous cavity filled with a nanofluid. This study uniquely
combines ANN with numerical simulation to predict the Nusselt number with high accuracy, which
is unprecedented in similar analyses. Furthermore, unlike prior studies that focused on simpler
systems, this research examines the effects of complex factors such as cooling area length, heat source
location, and porosity on heat and mass transfer processes, providing insights that can optimize
thermal management in engineering applications such as heat exchangers and biomedical systems.
The model demonstrates high predictive accuracy, as shown by the excellent agreement between ANN-
predicted values and simulated results, significantly contributing to the advancement of computational
approaches in thermal systems.

Investigating entropy production in MHD natural bioconvection within a porous cavity contain-
ing a nanofluid with gyrotactic microorganisms enhances our understanding of fundamental fluid
dynamics and thermodynamics. This study also offers practical insights for improving the efficiency
and effectiveness of various technological applications. The proposed model has potential applications
in fields like biomedical engineering, environmental technology, and renewable energy, where efficient
thermal management and energy conservation are crucial. In this research, the applied magnetic field
is angled to simulate a more generalized and realistic physical scenario. In many practical applications,
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magnetic fields are not always aligned with the primary axes (horizontal or vertical); rather, they are
inclined due to the configuration of the magnetic source or external environmental conditions. The
inclination angle of the magnetic field introduces Lorentz forces that interact with the fluid flow and
nanoparticles, influencing heat and mass transfer properties. This interaction between the magnetic
field and the nanofluid is crucial for controlling the flow dynamics in MHD systems. The chosen
angle helps to investigate how such inclinations impact the behavior of bioconvection in a porous
cavity, contributing to the overall entropy generation and heat transfer efficiency. Thus, the specifically
directed magnetic field serves as a model to study real-world situations in engineering applications such
as cooling systems, energy storage, and bioengineering where magnetic fields are applied to control
fluid flow and enhance system performance.

2 Mathematical Modeling

Consider a steady, two-dimensional natural convection flow within a porous square cavity of side
length (H), occupied by a nanofluid containing gyrotactic microorganisms as shown in Fig. 1. The
horizontal and vertical positions are represented by coordinates (x) and (y), respectively. The flow
is laminar, incompressible, and maintains steady-state conditions. The vertical and horizontal walls
are partially cooled over a variable length (B), while the remaining portions are insulated (adiabatic).
The inner surfaces with a wavy profile are maintained at a higher temperature (Th) and concentration
(Ch). Gravity acts uniformly in a single direction throughout the cavity. All walls adhere to no-slip
boundary conditions. Table 1 lists the thermal properties of the constituent materials: water, copper,
and titanium dioxide.

Figure 1: Initial diagram of a physical model

Table 1: Thermal characteristic of water, copper, and titanium dioxide

Physical properties Water Copper (Cu) Titanium dioxide (TiO2)

ρ

(
kg
m3

)
997.1 8933 4250

Cp

(
J

kg.K

)
4179 385 686.2

(Continued)
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Table 1 (continued)

Physical properties Water Copper (Cu) Titanium dioxide (TiO2)

k
(

W
mK

)
0.613 401 8.9538

βT × 10−5

(
1
K

)
21 1.67 0.9

σ (S/m) 0.05 5.96 × 10−7 1 × 10−12

The equations governing the continuity, momentum, energy, and concentration for the hybrid
nanofluid, under the assumptions of incompressible, laminar, single-phase, and steady-state flow, are
formulated as follows [37–40]:

∂u
∂x

+ ∂v
∂y

= 0, (1)

1
ε2

(
u
∂u
∂x

+ v
∂u
∂y

)

= − 1
ρhnf

∂p
∂x

+ 1
ε

(
μhnf

)
ρhnf

.∇2u −
(
μhnf

)
ρhnf

u
K

+ σhnf B2
0

ρhnf

(v sin 	 cos 	 − u sin2
	), (2)

1
ε2

(
u
∂v
∂x

+ v
∂v
∂y

)

= − 1
ρhnf

∂p
∂y

+ 1
ε

(
μhnf

)
ρhnf

∇2v −
(
μhnf

)
ρhnf

v
K

− 1
ρhnf

[γ�ρm

+ (ρβ∗)hnf

ρhnf

g(C − Cmin) − (ρβ)hnf (T − Tc)]g

+ σhnf B2
0

ρhnf

(
u sin 	 cos 	 − vcos2	

)
, (3)

1
ε

(
u
∂T
∂x

+ v
∂T
∂y

)
= αnf ∇2T + Q0

ε(ρcp)nf

, (4)

u
∂C
∂x

+ v
∂C
∂y

= DB∇2C − δm, (5)

∂

∂x

[
um + ũm − Dm

∂m
∂x

]
+ ∂

∂y

[
vm + ṽm − Dm

∂m
∂y

]
= 0. (6)

In these equations, ũ = (
lWC
�C

) ∂C
∂x

and ṽ = (
lWC
�C

) ∂C
∂y

, where x and y are the Cartesian coordinates, u
and v are the velocity components along the x and y-axes, T , C are the temperature and concentration,
K is the permeability of a porous medium, μ is the dynamic viscosity of the suspension, n is the number
density of motile microorganisms, g is the gravity, Q0 is the strength of a heat source, DC is the diffusivity
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of oxygen, Dn is the diffusivity of the microorganisms. Cmin is the minimum oxygen concentration, b is
the chemotaxis constant, WC is the maximum cell swimming speed.

2.1 Dimensionless Forms of Equations
The dimensionless set [37–40] is:

X = x
H

, Y = y
H

, U = uH
αf

, V = vH
αf

, P = pH2

ρf α
2
f

, θ = T − Tc

�T
, ϕ = C0 − Cmin

�C

M = m
m0

, �T = (Th − Tc), �C = (C0 − CD) = d
H

, B = b
H min

. (7)

Substitute “Eq. (7)” into Eqs. (1)–(6) returns the dimensionless equations [37–41]:

∂U
∂X

+ ∂V
∂Y

= 0, (8)

1
ε2

(
U

∂U
∂X

+ V
∂U
∂Y

)
= − ∂P

∂X
+ Pr

ε
.
(

ρf

ρhnf

)(
μhnf

μf

)
. ∇2U − Pr

Da
.
(

ρf

ρhnf

)(
μhnf

μf

)
.U

+
(

ρf

ρhnf

)(
σhnf

σf

)
.Ha2. Pr .

(
VsinΦcosΦ − U sin2

Φ
)

, (9)

1
ε2

(
U

∂V
∂X

+ V
∂V
∂Y

)
= − ∂P

∂Y
+ Pr

ε
.
(

ρf

ρhnf

)(
μhnf

μf

)
. ∇2V − Pr

Da
.
(

ρf

ρhnf

)(
μhnf

μf

)
.V

+ Pr .Ra.
(ρβ)hnf

ρhnf .βf

. (θ − Rb.M) + Rac.ϕ

+
(

ρf

ρhnf

) (
σhnf

σf

)
.Ha2. Pr .

(
UsinΦcosΦ − V cos2 Φ

)
, (10)

1
ε

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
= αeff .nf

αf

∇2θ + 1
ε

(ρcp)f

(ρcp)nf

Q, (11)

U
∂ϕ

∂X
+ V

∂ϕ

∂Y
= 1

σSc
∇2ϕ, (12)

Scχ
(

U
∂M
∂X

+ V
∂M
∂Y

)
+ Pe Pr

(
M∇2ϕ + ∂M

∂X
∂ϕ

∂X
+ ∂M

∂Y
∂ϕ

∂Y

)
= Pr ∇2M. (13)

With the boundary conditions as follows:

U = V = 0, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1

θ = ϕ = 0,
∂M
∂X

= Pe.M
∂ϕ

∂X
, (D − 0.5B) ≤ Y ≤ (D + 0.5B) ,

∂θ

∂X
= ∂ϕ

∂X
= ∂M

∂X
= 0, othrwise, at walls X = 0, 1



FHMT, 2024, vol.22, no.5 1285

θ = ϕ = 0,
∂M
∂Y

= PeM
∂ϕ

∂Y
, (D − 0.5B) ≤ X ≤ (D + 0.5B) ,

∂θ

∂Y
= ∂ϕ

∂Y
= ∂M

∂Y
= 0, othrwise, at walls Y = 0, 1.

On the obstacles:

θ = ϕ = M = 1.

Ra = gβf (Th−Tc)H3

αf υf
is Rayleigh number, γ = δeαf

H2 is a relaxation parameter, Ha = B0H
√

σf

μf
is the

Hartmann number, and Pr = υf

αf
is Prandtl number, and Da = K

H2 is Darcy parameter.

The local Nusselt number is stated as:

(Nus)X=0,1 = −keff .nf

keff .f

(
∂θ

∂X

)
X=0,1

and (Nus)Y=0,1 = −keff .nf

keff .f

(
∂θ

∂Y

)
Y=0,1

. (14)

The average Nusselt number is stated as:

(
Numf

)
X=0,1

= 1
B

∫ D+0.5B

D−0.5B

(Nus)X=0,1dX ,
(
Numf

)
Y=0,1

= 1
B

∫ D+0.5B

D−0.5B

(Nus)Y=0,1dY , (15)

Numf =
(
Numf

)
X=0,1

+ (
Numf

)
Y=0,1

4
. (16)

The local Sherwood numbers are stated as:

Shs(Y=0,1)
= −

(
∂ϕ

∂Y

)
Y=0,1

, Shs(X=0,1)
= −

(
∂ϕ

∂X

)
X=0,1

. (17)

The local microorganism density numbers are stated as:

Mhs(Y=0,1)
= −

(
∂M
∂Y

)
Y=0,1

, Mhs(X=0,1)
= −

(
∂M
∂X

)
X=0,1

. (18)

2.2 Entropy Generation Analysis
In linear transport theory under local thermodynamic equilibrium, the dimensionless total local

entropy generation for the fluid and solid phases is represented as:

s =
(

keff .hnf

T 2

) [(
∂T
∂x

)2

+
(

∂T
∂y

)2
]

+
(μhnf

T

){
1
K

(u2 + v2) + 2

[(
∂u
∂x

)2

+
(

∂v
∂y

)2
]

+
(

∂u
∂y

+ ∂v
∂x

)2
}

+ RDB

C

⌈(
∂C
∂x

)2

+
(

∂C
∂y

)2
⌉

+ RDB

T

⌈
∂T
∂x

∂C
∂x

+ ∂T
∂y

∂C
∂y

⌉

+ RDm

m

⌈(
∂m
∂x

)2

+
(

∂m
∂y

)2
⌉

+ RDm

T

⌈
∂T
∂x

∂m
∂x

+ ∂T
∂y

∂m
∂y

⌉
+

(σhnf

T

)
B2

0(u sin 	

− v cos 	)2. (19)
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The dimensionless entropy generation, (S), is stated as:

S = s.
(

H2

kf

)
= 1

(θ + CT)2
.
(

keff .hnf

kf

) [(
∂θ

∂X

)2

+
(

∂θ

∂Y

)2
]

+ 1
(θ + CT)

�1.
(

μnf

μf

)
.

{
1

Da
(U 2 + V 2) + 2

[(
∂U
∂X

)2

+
(

∂V
∂Y

)2
]

+
(

∂V
∂X

+ ∂U
∂Y

)2
}

+ 1
(ϕ + CC)

�2.

[(
∂ϕ

∂X

)2

+
(

∂ϕ

∂Y

)2
]

+ 1
(θ + CT)

.�2.
[

∂ϕ

∂X
∂θ

∂X
+ ∂ϕ

∂Y
∂θ

∂Y

]

+ 1

M4

[(
∂M
∂X

)2

+
(

∂M
∂Y

)2
]

1
(θ + CT) 4

[
∂M
∂X

∂θ

∂X
+ ∂M

∂Y
∂θ

∂Y

]

+ 1
(θ + CT)

.�1.
(

σnf

σf

)
.Ha2.(U sin 	 − V cos 	)2

= Sh + Sv + Sϕ + Sϕ.θ + SM + SM.θ

+ Sj. (20)

Here, the irreversibility ratios �1, �2, �3 and �4 are stated as:

�1 = μf

�T .kf

(αf

H

)2

, �2 = RDB.
(

�C
kf

)
, �3 = keff .s

ks

, kfs = kf

ks

, �4 = RDm.
(

m0

kf

)
. (21)

The Bejan number is stated as:

Be = Sh

S
. (22)

To describe the influence of nanoparticles, magnetic fields, and temperature differences on
the average Nusselt number, total entropy generation, and Bejan number, we define the following
dimensionless ratios: Nusselt ratio, entropy generation ratio, and Bejan number ratio.

Numf
+ = Numf

(Numf )φ=0

, Numf
++ = Numf

(Numf )Ha=0

, Numf
+++ = Numf

(Numf )	=0

, (23)

S+ = S
(S)φ=0

, S++ = S
(S)Ha=0

, S+++ = S
(S)	=0

, (24)

Be+ = Be
(Be)φ=0

, Be++ = Be
(Be)Ha=0

, Be+++ = Be
(Be)	=0

,

e+ = s+

Numf
+ , e++ = s++

Numf
++ .e+++ = s+++

Numf
+++ . (25)
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In the above equations αeff ,hnf and αeff ,f are equal to:

αeff ,hnf = keff ,hnf(
ρcp

)
hnf

,

αeff ,f = keff ,f(
ρcp

)
f

,

where

keff ,hnf = εkhnf + (1 − ε) ks,

keff ,f = εkf + (1 − ε) ks.

The expressions for the thermal diffusivity, effective density, thermal expansion coefficient, and
thermal conductivity of the hybrid nanofluid are as follows:

αhnf

αf

=
khnf

kf(
ρCp

)
hnf(

ρCp

)
f

,

ρhnf

ρf

= (1 − φCu)

(
1 − φTiO2

+ φTiO2

ρTiO2

ρf

)
+ φCu

ρCu

ρf

,

βhnf

βf

= (1 − φCu)

(
1 − φTiO2

+ φTiO2

βTiO2

βf

)
+ φCu

βCu

βf

,

khnf

kbf

= kCu + 2kbf − 2φCu

(
kbf − kCu

)
kCu + 2kbf + φCu

(
kbf − kCu

) ,

where
kbf

kf

= kTiO2
+ 2kf − 2φ1

(
kf + kTiO2

)
kTiO2

+ 2kf + φ1

(
kf − kTiO2

) .

The formula for the heat capacity of the hybrid nanofluid is:(
ρCp

)
hnf(

ρCp

)
f

= (1 − φCu)

(
1 − φTiO2

+ φTiO2

(
ρCp

)
TiO2(

ρCp

)
f

)
+ φCu

(
ρCp

)
Cu(

ρCp

)
f

.

The formula for the effective dynamic viscosity of the hybrid nanofluid is:

σhnf

σbf

= σCu + 2σbf − 2φCu

(
σbf − σCu

)
σCu + 2σbf + φCu

(
σbf − σCu

) ,

where
σbf

σf

= σTiO2
+ 2σf − 2φTiO2

(
σf − σTiO2

)
σTiO2

+ 2σf + φTiO2

(
σf − σTiO2

) .

3 ANN Modelling

In this work, the neural network based on the Levenberg-Marquardt training (LMT) method is
applied to predict the values of Nu. The ANN uses the multilayer perceptron (MLP) due to its layered
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structure. Also, MLP has a large learning capacity according to Çolak [42]. To obtain reliable forecasts,
a dimensionless time τ and fin length LFin are utilized as input factors, and there are sufficient data
points with the number 195,230. The values of Nu are included in the output layer. In the hidden layer
of the MLP network model, it was found that a model with 14 neurons was effective [42,43]. The
following transfer functions are used by the MLP network’s hidden and output layers:

f (x) = tansig (x) = −1 + 2
1 + e(−2x)

. (26)

The structure of the generated MLP network is shown in Fig. 2. 195,230 data points make up the
input data; 15% are reserved for testing, 15% are used for validation, and 70% of the data are utilized
to train the model. Selected performance parameters commonly used in the literature to evaluate
the training and prediction performance of the ANN model include the mean squared error (MSE),
coefficient of determination (R), and margin of deviation (MoD). The mathematical equations [44]
used to calculate these metrics are as follows:

MSE = 1
N

N∑
i=1

(Xtarg(i) − Xpred(i))
2, (27)

R =

√√√√√√√1 −

N∑
i=1

(
Xtarg(i) − Xpred(i)

)2

N∑
i=1

(
Xtarg(i)

)2
, (28)

MoD =
[

Xtarg − Xpred

Xtarg

]
. (29)

Figure 2: A structure of the created MLP network
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Fig. 3 showcases the MSE performance of the proposed MLP model during the training phase.
The graph illustrates how the MSE values progressively decreased with each epoch, starting from a high
initial value. The training process concluded when all three datasets achieved the optimal validation
value. Fig. 4 presents the error histogram derived from the training data. A close examination of
this histogram reveals that the error values are predominantly clustered around the zero-error line,
indicating minimal deviations. Additionally, the numerical values of the errors were found to be
relatively low. Fig. 5 introduces the regression profile for the MLP model. In this context, regression
refers to the linear relationship (R) between inputs and targets. In our model, all training, validation,
and testing datasets exhibited an R value of 1, signifying a perfect linear correlation. Fig. 6 depicts
the gradient state of the MLP model. The graphical results demonstrate that the proposed MLP
model converged at a small gradient value of 6.0033e-6 and step size Mu = 1e-07, indicating effective
training convergence. Fig. 7 displays both the target values for each data point and the average
Nusselt number Nu values predicted by the ANN model. Upon scrutinizing the graph, it is evident
that the Nu values obtained from the ANN model are in excellent agreement with the target values.
This near-perfect alignment demonstrates that the constructed ANN model can predict the Nu
values with high accuracy. A significant finding from our study is that the ANN model, utilizing
the Levenberg-Marquardt training algorithm and a multilayer perceptron architecture, exhibited
exceptional predictive accuracy for the average Nusselt number Nu. The near-perfect correlation
between the predicted and target values highlights the robustness of the ANN model in capturing
the complex thermal behaviors within the MHD natural bioconvection system.

Figure 3: MSE performances for the functioning of the suggested MLP model during training
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Figure 4: Errors histogram for the MLP model

Figure 5: Regression profile for the MLP model
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Figure 6: Gradient state of the MLP model

Figure 7: The values of Nu and Sh calculated by the ANN model

The limitations of the AI-driven FVM-ANN model, including reliance on the quality of training
data, sensitivity to hyperparameters, difficulties in addressing complex nonlinear dynamics, and issues
with interpretability, underscore the importance of a deeper exploration of these constraints to improve
the model’s effectiveness and accuracy in analyzing entropy in MHD natural bioconvection within
nanofluid-filled porous cavities.
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4 Results and Discussion

This section presents the numerical simulation outcomes, analyzing system behavior, key findings,
and their implications within the broader research context. Table 2 represents the parameters, symbols,
numerical ranges, and references.

Table 2: Parameters, symbols, numerical ranges, and references

Parameter name Symbol Numerical range References

Variable length of the vertical and horizontal walls
being partially cooled over

B 0.1, 0.3, 0.5 [45–47]

Location of low temperature/concentration D 0.3, 0.4, 0.7
Heat generation Q −4, 0, 4
Porosity parameter ε 0.1, 0.3, 0.5, 0.7, 0.9
Inclination angle of a magnetic field φ 0◦−180◦

Fig. 8 represents the streamlines, isotherms, iso-concentrations, isolines of micro-rotation and
local Bejan number under variation of low temperature/concentration length B = 0.1, 0.3, 0.5. The
intensity of maximum streamlines boosts as the length of cooling area increases. The isotherms are
shrinking across the cavity due to expanded cooling area B. Similar trends of reduction on the iso-
concentrations are occurring at expanded B. The micro-rotation is reducing along the cavity when B
increases. The local Bejan number decreases by an increment in B. Figs. 9 and 10 show the profiles
of the local Nusselt number/Sherwood number along the heat sink for a hybrid suspension under
variation of B = 0.1, 0.3, and 0.5. These profiles are higher at lower B due to low temperatures
and concentration distribution. Fig. 11 presents the profiles of local microorganism density along
the heat sink for a hybrid suspension, with variations of B = 0.1, 0.3, 0.5. The local microorganism
density number along the heat sink has higher values at small B due to low microorganism density.
Fig. 12 represents the profiles of the average Nusselt number Numf and Numf

+++ along φ and Φ under
variation of B = 0.1, 0.3, 0.5. Increasing B declines the profiles of Numf and Numf

+++. Fig. 13 shows the
variation of global entropy e+, e++, and e+++ under variation of B = 0.1, 0.3, 0.5 along φ, Ha, and Φ. An
expanded B reduces e+ and e++, whilst e+++ enhances by an expanded B. Fig. 14 presents the variation
of the Bejan number Be+ and Be+++ under variation of B = 0.1, 0.3, 0.5. The Bejan number Be+ declines
by an increase in B and Be+++ enhanced by an increased in B. Fig. 15 presents the streamlines, and
isotherms under the variations of Q = −4, 0, 4. There are minor changes on the streamlines under
the variation of Q. The intensity of isotherms decreases across a cavity when Q increases from −4
to 4. Fig. 16 shows the profiles of average Nusselt number Numf and Numf

+++ along φ and Φ for hybrid
suspension of Q. An increase in Q declines the profiles of average Nusselt numbers. Fig. 17 shows the
streamlines, isotherms, iso-concentrations, isolines of micro-rotation and local Bejan number under
variation of D = 0.3, 0.4, 0.7. An increment in D affects on the contours of streamlines, whilst it has
slight changes on the intensity of streamlines. The isotherms, iso-concentrations, isolines of micro-
rotation are influenced clearly by changes of D. The distribution of local Bejan number changes its
lines due to an increase in D. Figs. 18–20 show the profiles of the local Nusselt number, Sherwood
number, and local microorganism density number along the heat sink for a hybrid suspension under
variation of D. The locations and strengths of local Nusselt number, Sherwood number, and local
microorganism density number are mainly affected by an expanded of D. Fig. 21 shows the streamlines
under variation of ε = 0.1, 0.3, 0.9. The strength of streamlines is enhanced by an increment in ε which
represents the amount of a porous struggle of a fluid flow. Figs. 22 and 23 represent the profiles of
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the local Nusselt number along the heat sink and average Nusselt number along φ, and Φ for hybrid
suspension under variation of ε. An increase in ε enhances the profiles of local Nusselt number. The
average Nusselt number Numf enhances by an increment in in ε, whilst Nu+++

mf declines by an increment
in in ε.

(a)

(b)

(c)

(d)

(e)

Figure 8: Streamlines, isotherms, iso-concentrations, isolines of micro-rotation and local Bejan number
under variation of B = 0.1, 0.3, 0.5 at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe =
1, σ = 1, Q = 1, and D = 0.5
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Figure 9: Profiles of the local Nusselt number along the heat sink for hybrid suspension under variation
of B = 0.1, 0.3, 0.5 at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q = 1,
and D = 0.5

Figure 10: Profiles of the local Sherwood number along the heat sink for hybrid suspension under
variation of B = 0.1, 0.3, 0.5 at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ =
1, Q = 1, and D = 0.5
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Figure 11: Profiles of the local microorganism density number along the heat sink for a hybrid
suspension under variation of B = 0.1, 0.3, 0.5 at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr =
6.2, Pe = 1, σ = 1, Q = 1, and D = 0.5

Figure 12: (Continued)
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Figure 12: Profiles of the average Nusselt numbers Numf and Numf
+++ along φ and Φ under variation

of B = 0.1, 0.3, 0.5 at Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q = 1, and D = 0.5

Figure 13: Variation of global entropy e+, e++, and e+++under variation of B = 0.1, 0.3, 0.5 along φ,
Ha, and Φ at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q = 1, and
D = 0.5
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Figure 14: Variation of the Bejan number Be+ and Be+++ under variation of B = 0.1, 0.3, 0.5 at 	 =
600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q = 1, and D = 0.5
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(a)

(b)

Figure 15: Streamlines, and isotherms under the variations of Q = −4, 0, 4 at 	 = 600, Ra = 103, Rb =
10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, D = 0.5, and B = 0.5

Figure 16: (Continued)
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Figure 16: Variation of the average Nusselt number Numf and Numf
+++ along φ and Φ under the

influence of Q at Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, D = 0.5, and
B = 0.5

(a)

(b)

(c)

Figure 17: (Continued)
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(d)

(e)

Figure 17: Streamlines, isotherms, iso-concentrations, isolines of micro-rotation and local Bejan
number under variation of D = 0.3, 0.4, 0.7 at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr =
6.2, Pe = 1, σ = 1, Q = 1, B = 0.5

Figure 18: Profiles of the local Nusselt number along the heat sink for a hybrid suspension under
variation of D at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q = 1, B = 0.5
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Figure 19: Profiles of the local Sherwood number along the heat sink for hybrid suspension under
variation of D at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q = 1, B = 0.5

Figure 20: Profiles of the local microorganism density number along the heat sink for a hybrid
suspension under variation of D at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe =
1, σ = 1, Q = 1, D = 0.5, B = 0.5
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Figure 21: Streamlines under variation of ε = 0.1, 0.3, 0.9 at 	 = 600, Ra = 104, Rb = 10, Sc = 1, χ =
1, Pr = 6.2, Pe = 1, σ = 1, Q = 1, D = 0.5, B = 0.5

Figure 22: Profiles of the local Nusselt number along the heat sink for hybrid suspension under
variation of ε at 	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q =
1, D = 0.5, B = 0.5
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Figure 23: Variation of the average Nusselt number for a hybrid suspension under variation of ε at
	 = 600, Ra = 103, Rb = 10, Sc = 1, χ = 1, Pr = 6.2, Pe = 1, σ = 1, Q = 1, D = 0.5, B = 0.5

5 Conclusion

This study investigated inclined magneto-hydrodynamic natural convection in a nanofluid-filled
porous cavity with gyrotactic microorganisms using a hybrid FVM and ANN model. The ANN model,
trained via the Levenberg-Marquardt method, demonstrated excellent predictive accuracy for average
Nusselt number Nu, with high correlation (R = 1) and low mean squared error, validating its reliability.
The finding results are showed that:

• Increasing cooling area length B reduces the intensity of streamlines, local Nusselt, and
Sherwood numbers, while decreasing the Bejan number (Be+) and increasing global entropy
(e+++).

• Variations in heat generation Q slightly affect streamlines but reduce isotherm intensity and
average Nusselt numbers.
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• Increasing location of heat source D significantly alters streamlines, isotherms, and local Bejan
number distribution.

• Higher porosity parameter (ε) enhances streamlines and local Nusselt numbers, with mixed
effects on average Nusselt numbers. These results can be practically applied to optimize heat
transfer efficiency in systems such as heat exchangers, electronic cooling, and solar collectors,
where precise thermal management is crucial.

Future work could extend the hybrid FVM and ANN model to more complex geometries and
controlled variations in magnetic field orientations. This approach would enhance the understanding
of the model’s behavior in diverse scenarios without overextending the study’s scope.
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