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ABSTRACT

A wide range of technological and industrial domains, including heating processors, electrical systems, mechanical
systems, and others, are facing issues as a result of the recent developments in heat transmission. Nanofluids are a
novel type of heat transfer fluid that has the potential to provide solutions that will improve energy transfer. The
current study investigates the effect of a magnetic field on the two-dimensional flow of Williamson nanofluid over
an exponentially inclined stretched sheet. This investigation takes into account the presence of multi-slip effects.
We also consider the influence of viscous dissipation, thermal radiation, chemical reactions, and suction on the
fluid’s velocity. We convert the nonlinear governing partial differential equations (PDEs) of the fluid flow problem
into dimensionless ordinary differential equations (ODEs) through the utilization of similarity variables. We then
use the homotopy analysis method (HAM) to numerically solve the resulting ordinary differential equations
(ODEs). We demonstrate the effects of numerous elements on a variety of profiles through graphical and tabular
representations. We observe a drop in the velocity profile whenever we increase either the magnetic number or the
suction parameter. Higher values of the Williamson parameter lead to an increase in the thermal profile, while the
momentum of the flow displays a trend in the opposite direction. The potential applications of this unique model
include chemical and biomolecule detection, environmental cleansing, and the initiation of radiation-induced
chemical processes like polymerization, sterilization, and chemical synthesis.
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Nomenclature

x,y Cartesian coordinates (m)
u,v Velocity components in x and y directions, respectively

(
m s−1

)
Uw Velocity at the wall

(
m s−1

)
U∞ Ambient fluid velocity

(
m s−1

)
a, b Reference velocities

(
m s−1

)
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B0 Strength of magnetic field (NmA−1)
Vw Wall injection/suction velocity
DB Brownian diffusion coefficient

(
m2 s−1

)
DT Thermophoresis diffusion coefficient

(
m2 s−1

)
Ec Eckert number
Pr Prandtl number
qr Radiative heat flux (J)
R Thermal radiation parameter
M Magnetic field parameter
λ Williamson fluid parameter
α Thermal diffusivity of the fluid (m−2 s−1)(
ρcp

)
p

Heat capacity of the nanoparticles (Jm−3K−1)(
ρcp

)
f

Heat capacity of the base fluid (Jm−3K−1)
υ Kinematic viscosity (m2 s−1)
S Suction parameter
f Dimensionless stream function
θ(η) Dimensionless temperature profile
Sc Schmidt number
Kr Coefficient of chemical reaction (M s−1)
Nt Thermophoresis parameter
Nb Brownian motion parameter

τ =
(
ρcp

)
p(

ρcp

)
f

Ratio of heat capacity of nanofluid to base fluid

ρf Fluid density (kg m−3)
h̄f ,h̄θ ,h̄φ Non-zero auxiliary parameters
χn Characteristic function
MHD Magnetohydrodynamics
A Velocity ratio parameter
T Fluid temperature (K)
Tw Surface temperature (K)
T∞ Ambient temperature (K)
C Concentration of nanoparticles (mol m−3)
Cw Concentration of nanoparticles at the surface (mol m−3)
C∞ Ambient concentration (mol m−3)
Gr Thermal Grashof number
Gc Concentration Grashof number
βT Thermal expansion coefficient
βC Concentration expansion coefficient
γ Dimensionless chemical reaction parameter
σ Electrical conductivity (S m−1)
μ0 Viscosity (Nsm−2)
μ∞ Infinity viscosity (Nsm−2)
Γ Positive time constant
ζ Dimensionless similarity variable
Ω Inclined angle
μ Dynamic viscosity (kg m−1 s−1)
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g Acceleration due to gravity (m s−2)
f ′ (η) Dimensionless velocity profile
φ(η) Dimensionless concentration profile
Rex Local Reynolds number
Cfx Coefficient of skin friction
Nux Local Nusselt number
Shx Local Sherwood number
k Thermal conductivity (W m−1 K−1)
Di (i = 1 to 7) Arbitrary constants
Nf ,Nθ & Nφ Non-linear operators
Lf ,Lθ & Lφ Linear operators
HAM Homotopy analysis method

1 Introduction

When a fluid interacts with a solid surface, it divides and circulates around the surface, creating
a “stagnation point.” This phenomenon displays unique characteristics, including heat transfer, mass
deposition rate, and fluid pressure, which distinguish it from ordinary conventional flow situations
encountered in the stagnation zone. Chiam [1] and Khashi’ie et al. [2] were pioneers in the identification
and analysis of stagnation point flow behavior, concentrating their research on flow over stretching
and shrinking sheets. As technology has gotten better, shapes like discs, cylinders, and wedges are being
used more and more in the study of stagnation point flow in a wide range of situations [3–5].

Nanofluid technology has emerged as a significant area of research in recent years. The fundamen-
tal concept of nanofluids involves suspending nanoparticles in a base fluid to significantly increase its
thermal conductivity, a concept first proposed by Choi et al. [6], thereby improving heat transfer in
various energy systems. Common nanoparticles consist of components like titania, alumina, copper,
copper oxide, and gold, with water and certain organic solvents typically serving as the base fluids.
Lin et al. [7] conducted an experimental investigation on the application of nanofluids in pulsing heat
pipes, utilizing silver nanoparticles. Their results showed that adding silver nanofluid greatly improved
heat transfer performance. This shows that silver nanoparticles are good for improving heat transfer
efficiency in these systems. Kuznetsov et al. [8] utilized Buongiorno’s [9] established nanofluid model
to investigate the nature of Brownian motion and thermophoresis on natural convective nanofluid
flow across a vertical surface, while also integrating critical boundary conditions. Many researchers
have since examined nanofluid flows, accounted for Brownian motion and thermophoretic forces in
boundary layer dynamics. This study incorporates the significance of these effects within the solutal
boundary layer of nanoparticles into its analysis. Wong et al. [10] indicated that nanotechnology
is essential in numerous contemporary scientific and technological developments, encompassing
applications in heat absorption, energy processing, and nuclear reactors.

Because non-Newtonian fluids are so complicated, the Navier-Stokes equations are not enough
to explain flow problems involving them. Non-Newtonian fluids, including Eyring-Powell fluid,
Williamson fluid, Casson fluid, Prandtl fluid, Reiner-Philippoff fluid, micropolar fluid, Carreau
fluid, Prandtl-Eyring fluid, and power law fluid, have attracted considerable attention from
researchers due to their extensive applications in diverse industrial domains. Among these, the
Williamson fluid is especially significant. Sectors such as food processing, adhesive and paint
manufacturing, nuclear power plant cooling systems, and polymer production extensively utilize
this fluid. In 1929, Williamson [11] created a scientific model for materials exhibiting variable
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flow properties under pressure. This model offered an innovative method for comprehending
fluid dynamics through equations instead of conventional analytical techniques. It represented a
notable progression in the examination of materials that modify their viscosity in response to stress.
Taj et al. [12] studied the flow characteristics of a Williamson fluid that can’t be squished and has
viscous dissipation over a rough, non-linear stretching surface, taking into account how heat and mass
move together. Recent research has concentrated on the flow characteristics of Williamson fluid and
its various applications [13–17].

A variety of technical and industrial processes could greatly benefit from research on the fluid
flow over an exponentially stretched sheet. In the fabrication of plastic sheets from a die, stretching
sheet flows are involved in processes such as rubber extrusion, wire drawing, hot rolling, and the
creation of plastic sheets. It is also possible for these flow problems to occur during the production of
polymer sheets, melt spinners, synthetic films, and synthetic fibers. As a consequence of this, specialists
in fluid mechanics have been concentrating more and more on the study of fluid flow during the past
few years. Although earlier researchers have conducted significant studies, they have not effectively
addressed certain critical difficulties. Crane [18] was the first to investigate the boundary layer flow
and heat transfer of an electrically conducting viscous fluid across a stretching sheet. With the purpose
of scientifically and quantitatively resolving the difficulties of this phenomenon, Magyari et al. [19]
carried out an in-depth investigation of the exchange of thermal heat and mass in the dynamic
boundary layer flow. This flow is characterized by an exponentially elongating continuous surface.
Bidin et al. [20] gave an analytical answer for boundary layer transport over an inclined exponentially
stretched sheet in the context of thermal slip conditions. Numerous academics [21–22] have noticed
the multitude of applications of this methodology in the manufacturing sector. These researchers
are particularly interested in examining the dynamics under slip situations because of the extensive
applications of this methodology.

Magnetohydrodynamics (MHD), a branch of fluid mechanics that focuses on electromagnetic
processes and fluids that transmit electricity, has led to significant industrial improvements. The
extensive implementation of MHD across a variety of sectors has led to the development of a wide
variety of applications. Radiation significantly natures many physical processes. Radiation facilitates
the transfer of heat energy through fluid particles. The effect that radiation has on fluid flow plays
a crucial role in engineering and numerous industrial advancements. These developments include
high-temperature applications such as fuel pumps, paper plates, frozen metal shards, and various
electrical chips. As a consequence of this, scientists are obligated to investigate the radiation process
that is generated by considerable temperature differences. Researchers have explored a variety of flow
parameters to study radiation processes. When it comes to research on mass and heat transfer, chemical
reactions play a key role across a wide range of scientific and technical domains. The extensive use of
chemical reactions in industry explains this. There are a variety of applications that need chemical
reactions, including but not limited to the creation of chemical processing equipment, the synthesis
of polymers, cooling towers, pollution control, fog generation and dispersion, temperature regulation,
and fiber insulation.

Ishak [23] did a study on radiation affects the flow of a magnetohydrodynamic (MHD) boundary
layer over a sheet that is stretching exponentially. Nayak et al. [24] did a lot of research on the
effects of a changing magnetic field, a field density distribution that isn’t uniform, and thermal
energy on the flow of fluids caused by a sheet that is stretching exponentially. Megahed [25] used
a nonlinearly exponentially stretched sheet to study viscous dissipation and thermal radiation in the
flow of Williamson fluid. Ahmed et al. [26] performed a numerical analysis of magnetohydrodynamic
Williamson nanofluid flow over an exponentially stretched surface. Khan et al. [27] studied the
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boundary layer flow of Williamson fluid with the help of the homotopy analysis method (HAM).
Nadeem et al. [28] came up with a mathematical theory to explain how Williamson fluid flows over a
two-dimensional surface that has sheets that stretch in both linear and exponential ways.

Hayat et al. [29] developed a methodology to characterize the uniform magnetohydrodynamic
flow of Williamson fluid across a permeable surface. Akbar et al. [30] looked into the changes
in temperature and chemical reactions that affect the basic ideas of Williamson fluid, specifically
how blood flows in a small vein that ends in a point. Ibrahim et al. [31] conducted an analysis of
the stagnation point in magnetohydrodynamics (MHD), taking into account the effects of thermal
radiation. Ibrahim et al. [32] examined the slip flow characteristics of a nanofluid on an inclined plane.
Nadeem et al. [33] looked into how thermal energy affects the boundary layer flow of a nanofluid in
magnetohydrodynamics. They looked at slip and convective boundary conditions.

Khan et al. [34] investigated the radiative stagnation point flow of a time-dependent Casson fluid
over a permeable stretching/shrinking surface, incorporating mass suction, a magnetic field, and a
non-uniform heat source and sink. Raza et al. [35] examined the impact of chemical reactions on the
dynamics of mono and hybrid nanofluids in the presence of a magnetic field and activation energy.
Koriko et al. [36] examined the gravity-driven flow of a thixotropic fluid with nanoparticles and gyro-
tactic microorganisms along a vertical surface in the presence of chemical reactions. Zhang et al. [37]
investigated the characteristics of convection and Joule heating in the magnetohydrodynamic two-
dimensional stagnation point flow of a nanofluid over a permeable curved stretching or shrinking
surface with mass suction. Rajendar et al. provided additional insights into the MHD stagnation point
flow of Williamson nanofluid over an exponentially stretching sheet with variable parameters [38].

Extensive research and evaluation indicate that advanced investigations are required to compre-
hend the impact of multi-slip effects under suction and injection on Magnetohydrodynamic (MHD)
Williamson nanofluid flow over an exponentially inclined stretching sheet. This study focuses on
non-Fourier and non-Fick laws to identify essential components in heat and mass transfer processes.
This research is expected to address gaps identified in prior studies. The analysis includes the
effects of thermophoresis, Brownian motion, chemical reactions, viscous dissipation, and radiation,
contributing to the resolution of another significant challenge. The issue was addressed numerically
through the HAM method, accompanied by graphical data and a brief discussion. Additionally,
particular cases are analyzed to verify our conclusions.

2 Mathematical Formulation

Study a 2D flow at stagnation point of Williamson nanofluid in the direction of a elongating
sheet, which is inclined at an angle Ω, retained at a perpetual temperature Tw and concentration C∞.
The ambient temperature and concentration are T∞ and C∞, respectively. The flow is subjected to
a constant transverse magnetic field of strength B (x) = B0e

x
2L which is assumed to be applied in the

positive y-direction, normal to the surface where B0 is a constant magnetic field. The induced magnetic
field is considered negligible relative to the applied magnetic field and is therefore disregarded.
Additionally, it is assumed that the base fluid and the suspended nanoparticles are in thermal
equilibrium. We take the coordinate structure such that x-axis is along the elongating sheet with the
velocity U = Uw = b e

x
L , also the ambient fluid velocity is U∞ = a e

x
L , a > 0, b > 0. The schematic

flow diagram and the coordinate system of the problem are both displayed in Fig. 1. Presumptuous
that there is no pressure gradient and the properties of Brownian motion are measured. Here we
considered heat radiation, injection, suction, viscous dissipation, multi slip effects and chemical
changes.
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Figure 1: Geometry of flow problem

The Nadeem et al. [28] study incorporates the Williamson fluid classical. In the current fluid
classical, the Cauchy stress tensor, represented by the symbol S, is demarcated as follows:

S = −pI + τ1

S = −pI +
(

μ∞ + μ0 − μ∞
1 − Γα

)
A1

Here, τ1 is stress tensor of Williamson’s fluid model, μ0 is variable of no viscosity shear rate and
μ∞ is variable viscosity at inestimable shear rate, Γ(positive values only) is referred to as perpetual
time, A1 is the first Rivlin-Erickson tensor and α is demarcated as

α =
√

1
2

π ,

where π = trace
(
A2

1

)

α =
√(

∂u
∂x

)2

+ 1
2

+
(

∂u
∂y

+ ∂v
∂x

)2

+
(

∂v
∂y

)2

Here, we reflected the situation for which μ∞= 0 and Γα < 1.

Then, we achieved τ1 =
(

μ0A1

1 − Γα

)
.

The corresponding partial differential equations (PDEs) leading from the above MHD,
Williamson nanofluid flow model, are written as follows [38]:

∂u
∂x

+ ∂v
∂y

= 0, (1)
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u
∂u
∂x

+ v
∂u
∂y

= υ
∂2u
∂y2

+ √
2υΓ

∂u
∂y

∂2u
∂y2

+ g [βT (T − T∞) + βC (C − C∞)] cos Ω

+ U∞
dU∞
dx

+ σf B0
2

ρf

(U∞ − u) , (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2

+ τ

[
DB

∂C
∂y

∂T
∂y

+ DT

T∞

(
∂T
∂y

)2
]

+ μ(
cp

)
f

(
∂u
∂y

)2

− 1(
ρcp

)
f

∂qr

∂y
, (3)

u
∂C
∂x

+ v
∂C
∂y

= DB

∂2C
∂y2

+ DT

T∞

∂2T
∂y2

− Kr (C − C∞) . (4)

The following boundary conditions (B.Cs) apply to these complex PDEs:

u = Uw (x) + δ∗
1

(
∂u
∂y

)
, v = Vw, T = Tw (x) + δ∗

2

(
∂T
∂y

)
, C=Cw (x) + δ∗

3

(
∂C
∂y

)
at y = 0,

u→U∞, T→T∞ + T0ex/(2L), C→C∞ + C0ex/(2L), as y→∞, (5)

where α = k(
ρcp

)
f

, υ = μ

ρf

, τ =
(
ρcp

)
p(

ρcp

)
f

, Vw(x) = V0ex/(2L).

The Roseland estimate, the radiative thermal flux is

qr = −σ ∗4
κ∗3

∂T 4

∂y
. (6)

Here, σ ∗ represents the Stefan-Boltzmann constant and κ∗ is the mean absorption coefficient.
Assuming an adequately large internal temperature gradient in the flow, T 4 can be approximated as
a linear function of temperature. By performing a Taylor series T 4 expansion around T∞, a reference
temperature and abandoning higher-order terms, we obtain

T 4 ∼= T4T 3
∞ − 3T 4

∞ (7)

Consuming Eqs. (6) and (7), the Eq. (3) adapts into

u
∂Tw

∂x
+ v

∂Tw

∂y
=

(
α + 16σ ∗T 3

∞
3κ∗ (ρc)f

)
∂2Tw

∂y2
+ τ

[
DB

∂Cw

∂y
∂Tw

∂y
+ DT

T∞

(
∂Tw

∂y

)2
]

+ μ

cf

(
∂u
∂y

)2

. (8)

To make the mathematical analysis more straightforward, the similarity transformation that is
presented below is utilized [38]:

ζ =
( a

2νL

)1/2

ex/2Ly, u = a ex/L f ′ (ζ ) , v = −
√

νa
2L

ex/2L (f (ζ ) + ζ f ′(ζ )) ,

T = Tw = T∞ + T0ex/(2L) θ(ζ ), C = Cw = C∞ + C0 ex/(2L) θ(ζ ).

⎫⎪⎬
⎪⎭ . (9)

Here, ζ is the similarity variable.

The controlling PDE’s are turned into an ODE’s by employing transformations (9) and can be
written as

f ′′′ + λf ′′f ′′′ + ff ′′ − 2f ′ 2 + 2A2 + M (A − f ′) + (Grθ + Gcφ) cos Ω = 0, (10)
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(
1 + 4

3
R

)
θ ′′ + Pr f θ ′ − Pr f ′θ + Pr Nb φ ′θ ′ + Pr Nt θ ′ 2 + Pr Ec (f ′′)

2 = 0, (11)

φ ′′ + Sc (f φ ′ − f ′φ − γ φ) + Nt
Nb

θ ′′ = 0. (12)

Dimensionless boundary conditions are

f (0) = S, f ′ (0) = 1 + δ1 f ′′ (0) , θ (0) = (1 + δ2θ
′ (0)) , φ (0) = (1 + δ3φ

′ (0)) .
f ′ (∞) → A, θ (∞) → 0, φ (∞) → 0, (13)

The expressions of embedded physical parameters

λ = Γ

√
a3e3x/L

υL
, M = 2Lσf B2

0

ρf a
, Grx = 2LgβT (Tw − T∞) x2

a2
, Gr = Grx

Re2
x

, Gcx = g2LβC (Cw − C∞) x2

a2
,

Gc = Gcx

Re2
x

, A = b
a

, Pr = υ

α
, Nb = τDB (Cw − C∞)

ν
, Nt = τDT (Tw − T∞)

υT∞
, R = 4σ ∗T 3

∞
k∗k

, Sc = υ

DB

,

γ = 2LKr
a

, δ1 = δ∗
1

√
a

2Lυ
, δ2 = δ∗

2

√
a

2υL
, δ3 = δ∗

3

√
a

2Lυ
, S = V0/

√(aυ

2L

)
, Ec = U 2

cf (Tw − T∞)
.

As a sequel to the above elucidation, the related local quantities of interest are local Sherwood
number Shx, skin friction factor Cfx, local Nusselt number Nux, and, whose reduced forms are given
by

Cfx = 1
ρU 2

w

(
μ

(
∂u
∂y

+ Γ√
2

(
∂u
∂y

)2
))

y=0

,

Nux = −
√

2L

(Tw − T∞) e
x

2L

(
∂T
∂y

)
y=0

,

Shx = −
√

2L

(Cw − C∞) e
x

2L

(
∂C
∂y

)
y=0

.

By applying similarity transformations to Eq. (9), the resulting dimensionless forms are derived
as follows:
√

2 Rex Cfx =
(

f ′′ (0) + λ

2
(f ′′ (0))

2

)
,

Nux√
Rex

= −
(

1 + 4
3

R
)

θ ′ (0) ,

Shx√
Rex

= −φ ′ (0) ,

where Rex = axex/L

v
.
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2.1 HAM
In order to reflect the homotopic illuminations of Eqs. (10) to (13), we have enumerated the key

deductions and linear operators as surveys.

f0 (ζ ) = S + Aζ +
(

1 − A
1 + δ1

)
(1 − e−ζ ) ,

θ0 (ζ ) = e−ζ

1 + δ2

,

φ0 (ζ ) = e−ζ

1 + δ3

,

Lf ( f ) = f ′′′ − f ′,
Lθ (θ) = θ ′′ − θ ,
Lφ (φ) = φ ′′ − φ,

with

Lf (D1 + D2eζ + D3e−ζ ) = 0,
Lθ (D4eζ + D5e−ζ ) = 0,
Lφ (D6eζ + D7e−ζ ) = 0.

Here, Di (i = 1 to 7) will be the random coefficients.

We will hypothesis the zeroth-order distortion calculations

− (p − 1) Lf (f (ζ ; p) − f0 (ζ )) = p �f Nf [f (ζ ; p) , θ (ζ ; p) , φ (ζ ; p)] , (14)

− (p − 1) Lθ (θ (ζ ; p) − θ0 (ζ )) = p �θ Nθ [f (ζ ; p) , θ (ζ ; p) , φ (ζ ; p)] (15)

− (p − 1) Lφ (φ (ζ ; p) − φ0 (ζ )) = p �φ Nφ [f (ζ ; p) , θ (ζ ; p) , φ (ζ ; p)] , (16)

considering the boundary settings

f (0; p) = S, f ′ (0; p) = [1 + δ1f ′′ (0)] , f ′ (∞; p) = 0,
θ (0; p) = [1 + δ2θ

′ (0)] , θ (∞; p) = 0,
φ (0; p) = [1 + δ3φ

′ (0)] , φ (∞; p) = 0.
(17)

Here,

Nf [f (ζ ; p) , θ (ζ ; p) , φ (ζ ; p)] = ∂3f (ζ ; p)

∂ζ 3
+ f (ζ ; p)

∂2f (ζ ; p)

∂ζ 2

+ λ
∂2f (ζ ; p)

∂ζ 2

∂3f (ζ ; p)

∂ζ 3
− 2

(
∂f (ζ ; p)

∂ζ

)2

+ 2A2 + M
(

A − ∂f (ζ ; p)

∂ζ

)

+ (Gr θ (ζ ; p) + Gc φ (ζ ; p)) cos Ω, (18)

Nθ [f (ζ ; p) , θ (ζ ; p) , φ (ζ ; p)] = 1
Pr

(
1 + 4

3
R

)
∂2θ (ζ ; p)

∂ζ 2

+f (ζ ; p)
∂θ (ζ ; p)

∂ζ
+ Nb

∂θ (ζ ; p)

∂ζ

∂φ (ζ ; p)

∂ζ
+ Nt

(
∂θ (ζ ; p)

∂ζ

)2

+ Ec
(

∂2f (ζ ; p)

∂ζ 2

)2

,

(19)
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Nφ [f (ζ ; p) , θ (ζ ; p) , φ (ζ ; p)] = ∂2φ (ζ ; p)

∂ζ 2
+ Sc f (ζ ; p)

∂φ (ζ ; p)

∂ζ

+ Nt
Nb

∂2θ (ζ ; p)

∂ζ 2
− Sc γφ (ζ ; p) ,

(20)

anywhere p ∈ [0, 1] is the indulging constraint, �f , �θ and �φ are non-vanishing assisting limitations
and Nf , Nθ and Nφ are non-linear operatives.

The nth order alteration estimates surveys will be

Lf (fn (ζ ) − χn fn−1 (ζ )) = �f Rf
n (ζ ) , (21)

Lθ (θn (ζ ) − χn θn−1 (ζ )) = �θ Rθ

n (ζ ) , (22)

Lφ (φn (ζ ) − χn φn−1 (ζ )) = �φ Rφ

n (ζ ) , (23)

with the subsequent boundary environs

fn (0) = 0, f ′
n (0) = δ1f

′′
n (0) , f ′

n (∞) → 0,
θn (0) = δ2θ

′
n (0) , θn (∞) → 0,

φn (0) = δ3φ
′
n (0) , φn (∞) → 0.

(24)

Here,

Rf
n (ζ ) = f

′′′
n−1 + λ

n−1∑
i=0

f
′′

n−1−i f
′′′

i + 2
n−1∑
i=0

fn−1−i f
′′

i −
n−1∑
i=0

f
′

n−1−i f
′

i + (1 − χn)
(
2A2 + M

) − M f
′

n−1

+ (Gr θm−1 + Gc φm−1) cos Ω (25)

Rθ

n (ζ ) = 1
Pr

(
1 + 4R

3

)
θ

′′
n−1 +

n−1∑
i=0

fn−1−i θ
′
i + Nb

n−1∑
i=0

θ ′
n−1−i φ

′
i + Nt

n−1∑
i=0

θ ′
n−1−i θ

′
i + Ec

n−1∑
i=0

f
′′

n−i−1 f
′′

i , (26)

Rφ

n (ζ ) = φ
′′
n−1 + Sc

(
n−1∑
i=0

fn−1−i φ
′
i − γφn−1

)
+ Nt

Nb
θ

′′
n−1, (27)

χn =
{

0, n ≤ 1,
1, n > 1.

If we let fn (ζ ) , θn (ζ ) and φn (ζ ) as the unusual solutions of nth order distortion computations,
then the common elucidation is assumed by

fn (ζ ) = f ∗
n (ζ ) + D1 + D2eζ + D3e−ζ ,

θn (ζ ) = θ ∗
n (ζ ) + D4eζ + D5e−ζ ,

φn (ζ ) = φ∗
n (ζ ) + D6eζ + D7e−ζ ,

(28)

Here, the integral constants Di (i = 1 to 7) are found out through the assistance of boundary
situations.

By exhausting MATHEMATICA the above given linear homogeneous equations are solved for
n = 1, 2, . . .
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2.2 Convergence of HAM
To get the suitable standards for the non-zero ancillary constraints, �-curves are described in

Fig. 2. As per this figure, the surmisable intermission of ancillary constraint is [−1.0, 0.0]. The
elucidations are convergent for whole constituency of ζ when �f = �θ = �φ = −0.60. Convergence of
the technique is specified in Table 1.

Figure 2: �-curves for f ′′ (0) , θ ′ (0) and ϕ ′ (0) at 15th order guesstimates

Table 1: Convergence of HAM solution for various orders of estimates when λ = 0.2, M = 0.5,
Ω = 60o, S = R = A = δ1 = δ2 = δ3 = Ec = Gr = Gc = 0.1, Pr = Sc = 1.0, Nb = 0.3, Nt = 0.2,
γ = 0.2

Order −f ′′ (0) −θ ′ (0) −φ ′′ (0)

5 1.254380 0.682221 0.752337
10 1.261785 0.672260 0.754238
15 1.262202 0.671426 0.754862
20 1.262232 0.671350 0.754950
25 1.262234 0.671344 0.754959
30 1.262234 0.671344 0.754959
35 1.262234 0.671344 0.754959
40 1.262234 0.671344 0.754959

3 Results and Discussions

The purpose of this study is to evaluate the effects that fluid motion, electromagnetic fields,
heat conduction, and dynamic conductivity have on the boundaries of velocity, temperature, and
concentration. The governing equations were solved with the help of HAM, and the results were
displayed in a graphic format in order to illustrate how the system behaves. Throughout the study,
various physical parameters were analyzed, including the Williamson parameter λ, magnetic param-
eter M, stretching velocity ratio A, reaction rate parameter γ , and slip conditions δ1, δ2, δ3, along
with thermophoresis index Nt, Brownian motion coefficient Nb, Prandtl number Pr, and Schmidt
number Sc on velocity distribution, temperature, and mass flow. A detailed flow diagram illustrates
mass distribution under various conditions. We explored a diverse array of statistical methodologies,
such as λ = 0.2, M = 0.5, Ω = 60o, S = R = A = δ1 = δ2 = δ3 = Ec = Gr = Gc = 0.1,
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Pr = Sc = 1.0, Nb = 0.3, Nt = 0.2, γ = 0.2. With the exception of the tables and graphs that are
relevant to verifying the variations in parameters, the values of these variables remain consistent for
the entirety of the article, unless otherwise noted.

Table 2 represents the comparison of −θ ′ (0) value with published papers and present results. The
present results obtained numerical results are compared with published research [20,23], and [38] for
−θ ′ (0). This comparison is made for several reduced examples. It may be observed that our findings
and the studies that have been published are in good agreement.

Table 2: Values of −θ ′ (0) with preceding results for various values of R, Ec, Pr, and M in the
nonappearance of enduring parameters

R Ec Pr M Bidin et al. [20] Ishak [23] Rajendar et al. [38] HAM

0.0 0.0 1.0 0.0 0.9547 0.9547 0.9548 0.954783
0.0 0.0 3.0 0.0 1.8691 1.8691 1.8692 1.869067
1.0 0.0 1.0 0.0 0.5315 0.5315 0.5311 0.531503
0.0 0.0 1.0 1.0 0.8611 – 0.8611 0.861427
0.0 0.9 1.0 0.0 – 0.5385 – 0.538541
0.0 0.9 3.0 0.0 – 0.8301 – 0.830137
1.0 0.9 1.0 0.0 – 0.3343 – 0.334521
1.0 0.9 3.0 0.0 – 0.6055 – 0.605519

Comparison table for local Nusselt number skin friction when (We = γ = M = Sc = Kp = 0;
Pr = 0.72); Nt = 0.1; and Nb = 0.2; against a few values of λ.

Fig. 3 illustrates the Williamson nanofluid parameter λ affects the flow distribution. A rise in this
parameter results in a reduction in velocity magnitude. This behavior corresponds with the physical
interpretation of the Williamson fluid parameter λ, which is directly proportional to relaxation time
and inversely proportional to shear rate. As a result, a greater Williamson parameter λ is associated
with an extended relaxation time, leading to a decrease in fluid velocity because of heightened frictional
resistance. On the other hand, as the velocity diminishes, both the temperature and nanoparticle
volume fraction profiles show an increasing trend, as demonstrated in Figs. 4 and 5.

Figure 3: Nature of Williamson parameter on f ′(ζ )
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Figure 4: Nature of Williamson parameter on θ(ζ )

Figure 5: Nature of Williamson parameter on φ(ζ )

Fig. 6 depicts the effect that a strong magnetic field, denoted by M, has on a sheet that is stretched
in an inclined position. As the magnetic field grows, it is found that the velocity component decreases.
This is because the magnetic parameter M induces opposite Lorentz forces, which cause the velocity
component to drop. A large reduction in the thickness of the momentum boundary layer also occurs
when the value of M is increased. It can be seen in Fig. 6 that the magnetic field has a significant impact
on the overall reduction of the fluid flow. As shown in Figs. 7 and 8, respectively, the contours of
temperature and concentration are provided for a variety of values of the magnetic parameter M. There
is a correlation between elevated temperature profiles and an increase in M, and Fig. 8 demonstrates
that the concentration rises as M rises.

Figure 6: Nature of magnetic field parameter on f ′(ζ )
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Figure 7: Nature of magnetic field parameter on θ(ζ )

Figure 8: Nature of magnetic field parameter on φ(ζ )

In Fig. 9, we see a nonlinear velocity profile that is influenced by several values of the velocity
ratio parameter A. When the boundary layer is further away from the wall, the fluid velocity is higher,
whereas it is lower when it is closer to the wall. The velocity of the wall is much higher than the velocity
of the free stream when the value of A is taken into consideration. However, the fluid may undergo
local acceleration at specific distances, which might potentially cause the velocity to dip below the
free-stream value. This occurs as the fluid gradually slows down as it approaches the wall with a high
inertia. Because of this, the fluid that moves more slowly is forced forward by the uninterrupted flow.
At a value of A = 0, the free-stream velocity is extremely close to zero, and there is no free-flow drag.
It is the imposed flow rate that defines the local velocity beyond the boundary layer for all values of
A > 0.

Figure 9: Nature of velocity ratio parameter on f ′(ζ )
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Fig. 10 depicts the temperature distribution as a function of the velocity ratio parameter A. The
thickness of the thermal boundary layer reduces in proportion to the velocity ratio parameter A
increasing value. In addition, a temperature profile that is lowering may be seen when the surface
temperature gets closer to its maximum value, which is increasing with the value of A. Fig. 11 is a
representation of the relationship that exists between concentration and the velocity ratio parameter
represented by A. A decrease in the thickness of the concentration boundary layer occurs whenever
the value of A is increased.

Figure 10: Nature of velocity ratio parameter on θ(ζ )

Figure 11: Nature of velocity ratio parameter on φ(ζ )

It is seen in Fig. 12 that the velocity reduces as the inclination angle Ω increases. The existence
of Lorentz forces close to the solid surface is responsible for the changes in flow pattern that have
occurred, which in turn have led to a decrease in the velocity of the fluid. A representation of the
impact that the suction parameter S has on velocity profiles may be found in Fig. 13. An increase in S
results in an increase in the velocity gradient. The boundary layer is reduced in thickness as a result of
the removal of fluid via suction. The presence of a thinner boundary layer leads to a steeper velocity
gradient, which indicates a quicker transition of velocity from the wall to the free stream. This, in turn,
often results in a reduction in the velocity profile as a whole.

The influence of the local Grashof number (Gr) on velocity profiles is seen in Fig. 14, which
demonstrates that velocity increases as Gr increases. A greater Grashof number suggests a stronger
free convection flow, which ultimately results in higher fluid velocities. Additionally, as can be seen
in Fig. 15, the velocity profiles also increase when the values of the modified Grashof number (Gc)
increase.
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Figure 12: Nature of Inclination angle on f ′(ζ )

Figure 13: Nature of suction on f ′(ζ )

Figure 14: Nature of Grashof number parameter on f ′(ζ )

Figure 15: Nature of modified Grashof number parameter on f ′(ζ )



FHMT, 2024, vol.22, no.6 1855

Fig. 16 depicts the consequence of the flow slip parameter δ1 on the flow distribution. After a
thorough examination, it is clear that the upsurge in the flow slip parameter δ1, which stands for the
swiftness profile, decreases. Increasing the slip parameter clearly results in a diminishing swiftness, as
seen in the Fig. 16. Upon first introduction, the velocity distribution starts to decrease along the edge in
boundary. Fig. 17 shows impact of the temperature profile is affected by the thermal jump parameter
δ2. As the thermal jump parameter increases over the boundary film region, the fluid temperature
drops, as seen in this depiction. The amount of fluid transmitted to the updraft boundary slip increases
as the impact increases. These indications to a decline in the thickness of the thermal boundary layer
and an increase in the rate of heat transmission.

Figure 16: Nature of velocity slip factor on f ′(ζ )

Figure 17: Nature of thermal slip factor θ(ζ )

Concentration changes as a function of the concentration slip parameter δ3 is sown in Fig. 18.
As the concentration slip parameter increases, the concentration profile progressively decreases, as
is readily visible. When the slip parameter is larger, the boundary resistance to particle flow tends to
decrease. As a result, particles may be quickly moved away from the boundary, subsequent in a thinner
boundary layer and a lower overall concentration close the boundary.

An increase in the radiation parameter R leads to an increase in the dimensionless temperature, as
seen in Fig. 19, which illustrates this relationship. Increasing the amount of thermal radiation causes
an increase in the rate at which heat is absorbed by the particles that make up the fluid. In consequence
of this, a greater amount of thermal energy is maintained, which ultimately results in an increase in the
local temperature distribution, also known as the temperature profile, across the fluid. This impact is
especially significant in systems that involve high temperatures, as it is in these systems that radiative
heat transfer becomes the predominant mode of energy transmission.
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Figure 18: Nature of concentration slip factor on φ(ζ )

Figure 19: Nature of radiation parameter on θ(ζ )

In accordance with the results reported in Fig. 20, the temperature drops as the Prandtl number
(Pr) grows. It may be deduced from the fact that the temperature field decays more slowly with higher
Pr values that a larger Prandtl number results in a reduction in thermal diffusivity. When the Prandtl
number is larger, it indicates that the momentum diffusivity can be considered higher than the thermal
diffusivity. It is observed that the thickness of the boundary layer that is caused by updrafts diminishes
as the Prandtl number increases. In general, the Prandtl number establishes a connection between the
momentum diffusivity and the thermal diffusivity of a fluid. This connection demonstrates that the
plate concentration rises as the Pr value increases.

Figure 20: Nature of Prandtl factor on θ(ζ )
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Fig. 21 provides a visual representation of the impact that the Eckert number (Ec) has on the
temperature distribution of heat energy. When there is a significant increase in Ec, it is common
knowledge that the temperature has a tendency to rise. When there is a substantial amount of internal
friction inside the fluid, heat is generated as a result of the strong interaction and competition among
the particles of the fluid. This is the process that causes viscous dissipation. The fluid’s overall thermal
energy is increased as a result of this added heat, which contributes to the overall rise.

Figure 21: Nature of Eckert number on θ(ζ )

The influence of the Brownian motion Nb parameter on the temperature profile is illustrated
in Fig. 22, which has been provided for your reference. Based on the information that is currently
available, it is possible to draw the conclusion that the distance between the boundaries of the thermal
boundary layers grows as the Brownian motion parameter Nb in the system increases. The association
between the concentration distribution and the Brownian motion parameter (Nb) is illustrated in
Fig. 23, which may be found here. Based on the findings, it can be observed that the thickness of
the concentration boundary layer reduces as the value of Nb increases. It is also possible to gain
valuable insights from the graphical representation, which demonstrates that the thickness of the
thermal barrier layer does not change significantly even when the values of Nb increase.

Figure 22: Nature of Brownian motion parameter on θ(ζ )

Both Figs. 24 and 25 are devoted to the objective of examining and revealing the influence that
the thermophoresis Nt has on the data that pertain to the temperature and concentration within the
system. Taking into account the information that is currently available, it is possible to draw the
conclusion that the thermophoresis Nt signification is exhibiting an upward trend, which indicates
that there is an increase in the distance between the boundaries of the thermal and concentration
boundary layers.
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Figure 23: Nature of Brownian motion parameter on φ(ζ )

Figure 24: Nature of thermophoresis parameter on θ(ζ )

Figure 25: Nature of thermophoresis parameter on φ(ζ )

The influence that the Schmidt number Sc has on the concentration distribution is illustrated
graphically in Fig. 26, which may be found here. Additionally, it has been widely seen and reported
that the concentration profile gradually weakens and decreases as the numerical value constantly
increases. This phenomenon has been known for quite some time. When the Schmidt number is larger,
it shows that the mass diffusivity is declination in comparison to the momentum diffusivity during the
experiment. This drop leads to a reduction in scalar diffusivity, which in turn leads to a reduction in
the processes of spreading and more gradual changes in concentration within the fluid medium.

Fig. 27 provides validation of the significant impact that a specific chemical reaction factor has on
the dimensionless concentration profile φ (ζ ). In processes involving mass transfer, such as diffusion
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or convection in fluid flow, a chemical reaction often acts to deplete the concentration of the reacting
species. The reaction reduces the number of molecules of the reactant(s) in the system, resulting in a
lower concentration over time.

Figure 26: Nature of Schmidt number on φ(ζ )

Figure 27: Nature of chemical parameter on φ(ζ )

Fig. 28 displays the coefficient of skin friction as a variant of velocity slip parameter δ1 and
Williamson parameter λ. It is also observed an increase in λ and δ1 reduces the local skin friction
coefficient. Fig. 29 shows that the local Nusselt number has a decreasing values as a function of δ2

and Ec. To increase in either Ec or δ2 decreases the local Nusselt number. Fig. 30 shows that local
Sherwood number varies with Sc and δ3 and it is noted that local Sherwood number is an increasing
function of Sc and decreases with an increases with δ3.

Figure 28: Nature of Williamson parameter and velocity slip factor on Cfx
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Figure 29: Nature of Eckert number and thermal slip factor on Nux

Figure 30: Nature of Schmidt number and concentration slip factor on Shx

4 Conclusions

This study used the HAM technique to analyze the chemically radiative viscous dissipation of
a Williamson nanofluid at its stagnation point on an exponentially inclined stretching sheet. The
following findings were reached:

➢ There is a decrease in the mobility of the fluid as the values of the Williamson nanofluid
parameter increase.

➢ As the Prandtl number decreases, the thickness of the thermal boundary layer decreases. On
the other hand, the radiation parameter generates the opposite outcome.

➢ The concentration profile decreases as the chemical reaction parameter increases, indicating a
decrease in concentration.

➢ Temperature and concentration are both increased when the thermophoresis parameter is
increased. In addition to this, the Brownian motion parameter has the effect of lowering the
concentration while simultaneously raising the temperature.

➢ Examples of engineering coefficients that are depicted include Sherwood number, Nusselt
number and skin friction. These coefficients behave differently depending on the values of
numerous parameters. The skin friction factor can be reduced by increasing the values of the
Williamson and velocity slip parameters. Additionally, the local Nusselt and Sherwood are
functions that decrease as the slip parameters increase.
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5 Future Research Study

The nature of various nanoparticle morphologies, such as spherical, cylindrical, and platelet, as
well as their distribution in various non-Newtonian nanofluids could be the subject of research in the
future. The understanding of the properties of heat and mass transfer in nanofluids under a variety of
magnetic and radiative settings would be improved as a result of this.

Acknowledgement: None.

Funding Statement: The authors received no specific funding for this study.

Author Contributions: P. Saila Kumari, S. Mohammed Ibrahim, and Giulio Lorenzini are the authors
who have confirmed their contributions to the work, which include the following: the conception and
design of the study, the collecting of data, the analysis and interpretation of the results, and the creation
of the draft text. All authors reviewed the results and approved the final version of the manuscript.

Availability of Data and Materials: Requests for data can be made at any time.

Ethics Approval: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest to report regarding the present study.

References
1. Chiam TC. Stagnation-point flow towards a stretching plate. J Phy Soc Jpn. 1994;63(6):2443–4.

doi:10.1143/JPSJ.63.2443.
2. Khashi’ie NS, Arifin NM, Rashidi MM, Hafidzuddin EH, Wahi N. Magnetohydrodynamics (MHD)

stagnation point flow past a shrinking/stretching surface with double stratification effect in a porous
medium. J Therm Anal Calorim. 2020;139:3635–48. doi:10.1007/s10973-019-08713-8.

3. Baig MN, Salamat N, Duraihem FZ, Akhtar S, Nadeem S, Alzabut J, et al. Exact analytical solutions
of stagnation point flow over a heated stretching cylinder: a phase flow nanofluid model. Chin J Phys.
2023;86:1. doi:10.1016/j.cjph.2023.03.017.

4. Najib N, Bachok N, Arifin NM, Ishak A. Stagnation point flow and mass transfer with chemical reaction
past a stretching/shrinking cylinder. Sci Rep. 2014;4(1):1–7. doi:10.1038/srep04178.

5. Bano N, Singh BB, Sayyed SR. MHD stagnation-point flow and heat transfer over an exponen-
tially stretching/shrinking vertical permeable cylinder. Diffus Found. 2020;26:23–38. doi:10.4028/www.
scientific.net/DF.26.23.

6. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne, IL, USA:
Argonne National Lab. (ANL); 1995.

7. Lin YH, Kang SW, Chen HL. Effect of silver nano-fluid on pulsating heat pipe thermal performance. Appl
Therm Eng. 2008;28(11–12):1312–7.

8. Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nanofluid past a vertical plate: a
revised model. Int J Therm Sci. 2014;77:126–9. doi:10.1016/j.ijthermalsci.2013.10.007.

9. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128(3):240–50.
doi:10.1115/1.2150834.

10. Wong KV, De Leon O. Applications of nanofluids: current and future. Adv Mech Eng. 2010;2:519659.
11. Williamson RV. The flow of pseudoplastic materials. Ind Eng Chem. 1929;21(11):1108–11.
12. Taj M, Salahuddin TA. Three dimensional frictional flow study of Williamson fluid with chemical reaction.

Mater Sci Eng B. 2023;291:116305. doi:10.1016/j.mseb.2023.116305.

https://doi.org/10.1143/JPSJ.63.2443
https://doi.org/10.1007/s10973-019-08713-8
https://doi.org/10.1016/j.cjph.2023.03.017
https://doi.org/10.1038/srep04178
https://doi.org/10.4028/www.scientific.net/DF.26.23
https://doi.org/10.1016/j.ijthermalsci.2013.10.007
https://doi.org/10.1115/1.2150834
https://doi.org/10.1016/j.mseb.2023.116305


1862 FHMT, 2024, vol.22, no.6

13. Shaheen S, Arain MB, Nisar KS, Albakri A, Shamshuddin MD, Mallawi FO. A case study of heat
transmission in a Williamson fluid flow through a ciliated porous channel: a semi-numerical approach.
Case Stud Therm Eng. 2023;41:102523. doi:10.1016/j.csite.2022.102523.

14. Kada B, Hussain I, Pasha AA, Khan WA, Tabrez M, Juhany KA, et al. Significance of gyrotactic microor-
ganism and bioconvection analysis for radiative Williamson fluid flow with ferromagnetic nanoparticles.
Therm Sci Eng Prog. 2023;39:101732. doi:10.1016/j.tsep.2023.101732.

15. Ahmed K, McCash LB, Akbar T, Nadeem S. Effective similarity variables for the computations of
MHD flow of Williamson nanofluid over a non-linear stretching surface. Processes. 2022;10(6):1119.
doi:10.3390/pr10061119.

16. Vasudev C, Rao UR, Reddy MS, Rao GP. Peristaltic pumping of Williamson fluid through a porous
medium in a horizontal channel with heat transfer. Am J Sci Ind Res. 2010;1(3):656–66. doi:10.5251/
ajsir.2010.1.3.656.666.

17. Chandel S, Sood S. Numerical analysis of Williamson-micropolar nanofluid flow through porous rota-
tory surface with slip boundary conditions. Int J Appl Comput Math. 2022;8(3):134–42. doi:10.1007/
s40819-022-01337-x.

18. Crane LJ. Flow past a stretching plate. Z Angew Math Phys. 1970;21:645–7. doi:10.1007/BF01587695.
19. Magyari E, Ali ME, Keller B. Heat and mass transfer characteristics of the self-similar boundary-layer flows

induced by continuous surfaces stretched with rapidly decreasing velocities. Heat Mass Transf. 2001;38:65–
74. doi:10.1007/s002310000126.

20. Bidin B, Nazar R. Numerical solution of the boundary layer flow over an exponentially stretching sheet
with thermal radiation. Eur J Sci Res. 2009;33(4):710–7.

21. Kumar KA, Sugunamma V, Sandeep N, Reddy JR. Numerical examination of MHD nonlinear radiative
slip motion of non-newtonian fluid across a stretching sheet in the presence of a porous medium. Heat
Transf Res. 2019;50(12):1–9. doi:10.1615/HeatTransRes.2018026700.

22. Saif RS, Muhammad T, Sadia H, Ellahi R. Boundary layer flow due to a nonlinear stretching curved
surface with convective boundary condition and homogeneous-heterogeneous reactions. Physica A.
2020;551:123996. doi:10.1016/j.physa.2019.123996.

23. Ishak A. MHD boundary layer flow due to an exponentially stretching sheet with radiation effect. Sains
Malays. 2011;40(4):391–5.

24. Nayak MK, Shaw S, Chamkha AJ. 3D MHD free convective stretched flow of a radiative nanofluid inspired
by variable magnetic field. Arab J Sci Eng. 2019;44:1269–82. doi:10.1007/s13369-018-3473-y.

25. Megahed MA. Williamson fluid flow due to a nonlinearly stretching sheet with viscous dissipation and
thermal radiation. J Egypt Math Soc. 2019;27(1):12. doi:10.1186/s42787-019-0016-y.

26. Ahmed K, Akbar T. Numerical investigation of magnetohydrodynamics Williamson nanofluid
flow over an exponentially stretching surface. Adv Mech Eng. 2021;13(5):16878140211019875.
doi:10.1177/16878140211019875.

27. Khan NA, Khan H. A boundary layer flows of non-Newtonian Williamson fluid. Nonlinear Eng.
2014;3(2):107–15. doi:10.1515/nleng-2014-0002.

28. Nadeem S, Hussain ST, Lee C. Flow of a Williamson fluid over a stretching sheet. Braz J Chem Eng.
2013;30:619–25. doi:10.1590/S0104-66322013000300019.

29. Hayat T, Khalid U, Qasim M. Steady flow of a Williamson fluid past a porous plate. Asia-Pac J Chem Eng.
2012;7(2):302–6. doi:10.1002/apj.496.

30. Akbar NS, Hayat T, Nadeem S, Obaidat S. Peristaltic flow of a Williamson fluid in an inclined
asymmetric channel with partial slip and heat transfer. Int J Heat Mass Transf. 2012;55(7–8):1855–62.
doi:10.1016/j.ijheatmasstransfer.2011.11.038.

https://doi.org/10.1016/j.csite.2022.102523
https://doi.org/10.1016/j.tsep.2023.101732
https://doi.org/10.3390/pr10061119
https://doi.org/10.5251/ajsir.2010.1.3.656.666
https://doi.org/10.1007/s40819-022-01337-x
https://doi.org/10.1007/BF01587695
https://doi.org/10.1007/s002310000126
https://doi.org/10.1615/HeatTransRes.2018026700
https://doi.org/10.1016/j.physa.2019.123996
https://doi.org/10.1007/s13369-018-3473-y
https://doi.org/10.1186/s42787-019-0016-y
https://doi.org/10.1177/16878140211019875
https://doi.org/10.1515/nleng-2014-0002
https://doi.org/10.1590/S0104-66322013000300019
https://doi.org/10.1002/apj.496
https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.038


FHMT, 2024, vol.22, no.6 1863

31. Ibrahim W, Shankar B, Nandeppanavar MM. MHD stagnation point flow and heat transfer due to
nanofluid towards a stretching sheet. Int J Heat Mass Transf. 2013;56(1–2):1–9. doi:10.1016/j.ijheatmass
transfer.2012.08.034.

32. Ibrahim W, Shankar B. MHD boundary layer flow and heat transfer of a nanofluid past a permeable
stretching sheet with velocity, thermal and solutal slip boundary conditions. Comput Fluids. 2013;20(75):1–
10. doi:10.1016/j.compfluid.2013.01.014.

33. Nadeem S, Haq RU. Effect of thermal radiation for megnetohydrodynamic boundary layer flow of
a nanofluid past a stretching sheet with convective boundary conditions. J Comput Theor Nanosci.
2014;11(1):32–40. doi:10.1166/jctn.2014.3313.

34. Khan MR, Al-Johani AS, Elsiddieg AM, Saeed T, Abd Allah AM. The computational study of heat transfer
and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface. Int
Commun Heat Mass Transf. 2022;130:105832. doi:10.1016/j.icheatmasstransfer.2021.105832.

35. Raza Q, Qureshi MZ, Khan BA, Kadhim Hussein A, Ali B, Shah NA, et al. Insight into dynamic of mono
and hybrid nanofluids subject to binary chemical reaction, activation energy, and magnetic field through
the porous surfaces. Mathematics. 2022;10(16):3013. doi:10.3390/math10163013.

36. Koriko OK, Shah NA, Saleem S, Chung JD, Omowaye AJ, Oreyeni T. Exploration of bioconvection flow
of MHD thixotropic nanofluid past a vertical surface coexisting with both nanoparticles and gyrotactic
microorganisms. Sci Rep. 2021;11(1):16627. doi:10.1038/s41598-021-96185-y.

37. Zhang XH, Abidi A, Ahmed AE, Khan MR, El-Shorbagy MA, Shutaywi M, et al. MHD stagnation point
flow of nanofluid over a curved stretching/shrinking surface subject to the influence of Joule heating and
convective condition. Case Stud Therm Eng. 2021;26:101184. doi:10.1016/j.csite.2021.101184.

38. Rajendar P, Babu LA. MHD stagnation point flow of Williamson nanofluid over an exponentially
inclined stretching surface with thermal radiation and viscous dissipation. J Nanofluids. 2018;7(4):683–93.
doi:10.1166/jon.2018.1493.

https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.034
https://doi.org/10.1016/j.compfluid.2013.01.014
https://doi.org/10.1166/jctn.2014.3313
https://doi.org/10.1016/j.icheatmasstransfer.2021.105832
https://doi.org/10.3390/math10163013
https://doi.org/10.1038/s41598-021-96185-y
https://doi.org/10.1016/j.csite.2021.101184
https://doi.org/10.1166/jon.2018.1493

	Chemical Reaction on Williamson Nanofluid's Radiative MHD Dissipative Stagnation Point Flow over an Exponentially Inclined Stretching Surface with Multi-Slip Effects
	1 Introduction
	2 Mathematical Formulation
	3 Results and Discussions
	4 Conclusions
	5 Future Research Study
	References


