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ABSTRACT

This study explores the effectiveness of machine learning models in predicting the air-side performance of
microchannel heat exchangers. The data were generated by experimentally validated Computational Fluid Dynam-
ics (CFD) simulations of air-to-water microchannel heat exchangers. A distinctive aspect of this research is the
comparative analysis of four diverse machine learning algorithms: Artificial Neural Networks (ANN), Support
Vector Machines (SVM), Random Forest (RF), and Gaussian Process Regression (GPR). These models are
adeptly applied to predict air-side heat transfer performance with high precision, with ANN and GPR exhibiting
notably superior accuracy. Additionally, this research further delves into the influence of both geometric and
operational parameters—including louvered angle, fin height, fin spacing, air inlet temperature, velocity, and
tube temperature—on model performance. Moreover, it innovatively incorporates dimensionless numbers such
as aspect ratio, fin height-to-spacing ratio, Reynolds number, Nusselt number, normalized air inlet temperature,
temperature difference, and louvered angle into the input variables. This strategic inclusion significantly refines the
predictive capabilities of the models by establishing a robust analytical framework supported by the CFD-generated
database. The results show the enhanced prediction accuracy achieved by integrating dimensionless numbers,
highlighting the effectiveness of data-driven approaches in precisely forecasting heat exchanger performance. This
advancement is pivotal for the geometric optimization of heat exchangers, illustrating the considerable potential of
integrating sophisticated modeling techniques with traditional engineering metrics.
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Nomenclature

A Cross-sectional area
Ar Aspect ratio
Bd Bond number
Bo Boiling number
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Ca Capillary number
Co Convection number
D Depth (m)
f Body force per unit mass (m/s2)
Fr Froude number
Ga Galileo number
H Height (mm)
h Height difference factor or geometric factor
HTC Heat transfer coefficient (W/(m2·K))
Hyd Hydraulic diameter (m)
Ja Jakob number
Ka Kapitza number
L Length (m)
LMTD Logarithmic mean temperature difference (°C)
ṁ Mass flow rate (kg/s)
m Parameter (m)
N Number of channels
Nu Nusselt number
P Pressure (Pa)
P1 Pressure at cold inlet
P2 Pressure at hot inlet
Pcd Cold fluid Pressure drop
Phd Hot fluid Pressure drop
Q Heat transfer rate (W)
R Thermal resistance (K/W)
Rd Phases’ density ratio
Re Reynolds number
S Fin spacing (mm)
Sc Schmidt number
Su Suratman number
t Thickness (m)
T Temperature (°C)
T1 Temperature at inlet of cold fluid
T3 Temperature at inlet of hot fluid
V Velocity (m/s)
We Weber number
ANFIS Adaptive Neuro Fuzzy Interface System
ANN Artificial Neural Network
CoINN Correlated-Informed Neural Networks
FEM Finite Element Method
FVM Finite Volume Method
GBM Gradient Boosting Machine
GPR Gaussian Process Regression
HRBF Hybrid Radial Basis Function
RBF Radial Basis Function
RF Random Forest
SVM Support Vector Machine
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SVR Support Vector Regression

Greek Characters

μ Dynamic viscosity (Pa·s)
ρ Density (kg/m3)
Δ The differences
θ Angle (°)
η Efficiency
τ Viscous stress tensor (Pa)

Subscripts

in Inlet
out Outlet

1 Introduction

In recent decades, the global energy production has shifted from fossil fuels to renewable and low-
carbon sources, notably in nuclear, wind, and solar sectors. This transition highlights the crucial role
of efficient thermal management systems in ensuring the performance and safety of electronic devices,
nuclear reactors, and industrial processes [1]. Heat exchanger finds applications in various industries,
including air-conditioning, refrigeration, power generation, oil refining, petrochemical production,
natural gas processing, chemical manufacturing, and sewage treatment, etc. [2,3]. Microchannel heat
exchangers are pivotal in modern thermal management systems due to their high efficiency and lower
refrigerant charge [4].

For microchannel heat exchangers, key performance indices include pressure drop and heat
transfer rate. Pressure drop indicates the resistance fluids encounter within the exchanger, directly
influencing the system’s energy efficiency and operational costs. Effective optimization of these
parameters necessitates meticulous analysis and forecasting of the heat exchanger’s design. Traditional
approaches primarily focus on experimental measurements and theoretical predictions based on
simplified physical models, with Computational Fluid Dynamics (CFD) increasingly used to simulate
detailed thermal behaviors.

Current approaches in predicting heat exchanger performance include theoretic models, numerical
methods, and experiment methods have been commonly applied. Theoretic models typically simplify
equations through specific assumptions to derive exact solutions. Numerical modeling employs
techniques like the Finite Volume Method (FVM) or Finite Element Method (FEM) to discretize
the refrigerant’s flow field and ensure heat and mass balance [5]. There are experiment methods that
simulate the actual operating conditions and involve constructing prototypes [6]. Common methods to
assess heat transfer include the Logarithmic Mean Enthalpy Difference (LMHD) [7] and Logarithmic
Mean Temperature Difference (LMTD), which rely on assumptions of constant physical properties
and continuous operation [8]. CFD discretizes the calculation domain to allow a generalized approach
in tackling various fluid flow problems, though it requires substantial computational power [9].

Recently, Machine Learning (ML) has shown promise as an effective approach in the analysis of
heat exchangers. Fig. 1 illustrates an increasing number of studies in this area showcasing the growing
significance of ML methodologies applied in the domain of microchannel heat exchanger. Techniques
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like Artificial Neural Networks (ANN) [10], Support Vector Machines (SVM) [11], and Tree models
[12] have proven successful in forecasting the performance of heat exchangers.

Figure 1: The trend in ML application to heat exchanger analysis from 2015 to July 2024 (based on
ScienceDirect data) [13]

As indicated in Table 1, recent machine learning models applied to microchannel heat exchanger
modeling predominantly focus on the performance of the refrigerant side given the large amount of
refrigerant side testing data on heat transfer and pressure drop. Moradkhania et al. [14–16] have
utilized machine learning models to model the tube-side of microchannel heat exchangers based
on various dimensionless parameters and operational conditions. As the tube extraction techniques
became more readily available, researchers can expect further data sets available on refrigerant-side,
therefore allowing further enhancement of ML-based modeling for refrigerant flows. The prototyping
and manufacturing process of a new fin design typically require a set of new set mold, fin mills and
full heat exchanger assembly in order to test air-side performance data. This has resulted in limited
experimental data available on different fin designs. Gupta et al. [17] explored machine learning
modeling of air-side fin structures for plate heat exchanger with 24 data points, not including geometric
information as input variables.

Table 1: The machine learning applications for modeling heat exchanger [13]

Authors Type of
machine
learning

Type of heat
exchangers

Input Output Error
analysis

Moradkhania
et al. [14]

GPR Microchannel
heat exchangers

Prtp, Retp, x,
Pred, Rd, Wego,
Frl, Bo

Nusselt number AMRE
4.50%

RBF AMRE
19.41%

HRBF AMRE
24.53%

(Continued)



FHMT, 2024, vol.22, no.6 1617

Table 1 (continued)

Authors Type of
machine
learning

Type of heat
exchangers

Input Output Error
analysis

Ma et al. [15] GBT Microchannel
heat exchangers

Ar, N, Re and
A

Nu RMSE
2.1974 R2

99.90%
Pumping power RMSE

0.054 R2

99.95%
Hughes
et al. [16]

SVR Microchannel
heat exchangers

Reg, Ref , Bo,
We, ScV , Scl,
PrgPrf , Ja, T

Nusselt number MAE 4.95%
for SVR

RF MAE 8.6%
for RFR

GB MAE 6.2%
for GBANN
MAE 5.3%
for ANN

Reg, Ref , Bo,
We, ScV , Scl

Friction factor MAE 5.0%
for SVR
MAE 8.9%
for RFR
MAE 7.0%
for GB
MAE 5.0%
for ANN

Zhou et al. [18] ANN Microchannel
heat exchangers

Bd, Co, Frf ,
Frfo, Frg, Frgo,
Ga, Ka, Prf ,
Frg, Ref , Refo,
Reg, Rego, Suf ,
Sufo, Sug, Sugo,
Wef , Wefo, Weg,
and Wego

Heat transfer
coefficient

MAE 6.80%
R2 98%

Random forest MAE
18.56% R2

87%
AdaBoost MAE

34.60% R2

75%
XGBoost MAE 9.06%

R2 97%
Montañez-
Barrera
et al. [19]

CoINN Microchannel
heat exchangers

Mixture vapor
quality,
micro-channel
inner diameter,
available
pressure drop
correlation

Pressure drops MRE 6%

(Continued)
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Table 1 (continued)

Authors Type of
machine
learning

Type of heat
exchangers

Input Output Error
analysis

Gupta
et al. [17]

ANN Plate heat
exchangers

Q, P1, P2, Pcd,
Phd, T1, T3

Outlet cold
fluid
temperature

Average
error of
0.25% for
ANN

ANFIS Average
error of
0.896% for
ASNFIS

Outlet hot fluid
temperature

Average
error of
0.19% for
ANN
Average
error of
0.192% for
ASNFIS

Despite the extensive application of CFD and traditional theoretical models in predicting the
performance of microchannel heat exchangers, there is a clear research gap in using CFD to further
extend the data sets, therefore allowing better applicability in the machine learning models to which
it is based on. Furthermore, there is a considerable underutilization of dimensionless numbers within
these ML frameworks without structure parameters.

In the study of physical systems, dimensionless numbers are critical, providing deep insights
into their characteristics [20]. These numbers help compress complex, high-dimensional parameter
spaces into manageable, physically meaningful dimensionless variables. This simplification not only
deepens understanding but also streamlines the complexities of process design and optimization
[21]. In microchannel heat exchangers, dimensionless numbers such as the Reynolds, Prandtl, and
Nusselt numbers establish a framework that normalizes the influences of fluid dynamics and thermal
properties. This framework enables the predictive models in this study to reliably forecast performance
across various design configurations and operating conditions, thus ensuring the models’ broad
applicability and scalability.

This study utilizes advanced machine learning techniques to enhance the prediction of heat
transfer performance in microchannel systems, leveraging a robust dataset derived from CFD sim-
ulations of heat exchangers. This comprehensive simulation data was integrated by critical inlet

parameters such as θ , h, s, Tair,in, Vair,in, Ttube, Ar,
h
s

, Re, Nu,
Tair,in

273.15
,

Tair,in − Ttube

Tair,in

,
θ

90
outputs including

ΔP and Tair,out. This study evaluates the performance of incorporating dimensionless numbers as input
parameters, demonstrating their pivotal role in boosting model accuracy and reliability. This study
assessed the performance of using dimensionless numbers as input parameters, demonstrating their
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key role in enhancing the accuracy and reliability of models. Moreover, the research also proved that
machine learning models can effectively extract useful information from complex data and, due to
their high precision, swiftly optimize the design and operation of heat exchangers. This provides new
perspectives and tools for the future improvement of microchannel heat exchanger performance and
energy efficiency optimization.

2 Modeling and Data Generation

There is a lack of sufficient experimental data for the design of windowed fin parameters. Due to
the high cost associated with prototyping fin samples, which require different molds, it is necessary
to conduct CFD modeling to study the impact of various fin spacings, fin heights, fin depths, and
window angles on the performance of heat exchangers. Extensive database modeling is carried out,
using machine learning models for dimensionless prediction.

2.1 CFD Structure
Fig. 2 presents a schematic diagram of the microchannel heat exchanger. This research is exclu-

sively interested in the impact of different fin structures. The structural parameters mainly studied in
this paper include fin spacing, fin height, fin depth, and fin louvered angle.

Figure 2: (a) The schematic microchannel heat exchangers, (b) The schematic fin of microchannel heat
exchangers

2.2 CFD Model and Mesh Sensitivity Analysis
A minimal repeating unit containing a fin was taken as the computational domain. The air domain

extends upstream by twice and downstream by three times to minimize the effects of the inlet and outlet
boundary conditions. The mesh division and boundary settings are shown in Fig. 3. The air inlet and
outlet are set as velocity inlet and pressure outlet, respectively. The two sides parallel to the fins are set
as periodic boundaries, the central plane of the flat tube as a symmetry boundary, and the inner surface
of the flat tube as a temperature boundary with a condensation temperature. Heat conduction through
the fin into the flat tube is considered, ignoring contact thermal resistance. The inlet air velocity is set
between 1 to 10 m/s, and the fin spacing is taken as the characteristic length. The Reynolds numbers
under these operating conditions are less than 1200, hence a laminar flow model is used.
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Figure 3: The CFD settings of microchannel heat exchanger fin simulation

The governing equations include the continuity equation, momentum equation, energy equation,
and solid heat conduction equation. In ANSYS FLUENT version 2022R2, the flow and heat transfer
module is used, employing the Coupled algorithm. The governing equations are discretized using the
control volume method, and the convection terms are discretized using the power-law scheme. The
error tolerance for the continuity and momentum equations is set at 10−6, and for the energy equation,
it is set at 10−9.

For impressionable fluids, Conservation of Mass (Continuity Equation):

∇ · �V = 0 (1)

This implies that the velocity field of an incompressible flow must be divergence-free, a condition
commonly referred to as the divergence-free constraint. It’s important to note that the continuity
equation lacks a time derivative, even in the case of unsteady flows, which is one of the factors
contributing to the complexity of numerically solving incompressible flows.

Conservation of Momentum:

ρ

[
∂ �V
∂t

+
( �V · ∇

) �V
]

= −∇p + μ∇2 �V + ρ�f (2)

where f is the body force per unit mass. By dividing the equation by density, the following form of the
Navier-Stokes equation can be obtained:

∂ �V
∂t

+
( �V · ∇

) �V = − 1
ρ
∇p2 + ν∇2 �V + �f (3)

where ν is the constant kinematic viscosity. Conservation of Energy is shown as follows:

ρcp

[
∂T
∂t

+
( �V · ∇

)
T

]
= k∇2T + φ (4)
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φ represents the dissipation function, which quantifies the work done against viscous forces that
is irreversibly converted into internal energy. It is defined as follows:

φ = (
τ · ∇) �V = τij

∂Vi

∂xj

(5)

In the above equation, τ denotes the viscous stress tensor.

Fig. 4 illustrates the mesh independence verification performed in this study. The analysis shows
that the deviation in pressure drop between a mesh resolution of 7 million and 20 million cells is
less than 0.1%. Therefore, a mesh size of 7 million cells was chosen for the simulations, as it offers
an optimal balance between accuracy and computational efficiency. This approach ensures reliable
results while significantly reducing computational resource demands.

Figure 4: (a) The grid number sensitivity analysis of pressure drop; (b) The grid number sensitivity
analysis of air outlet temperature

2.3 Database Generation
To develop any machine learning model, establishing a comprehensive database is necessary, As

illustrate in Table 2, which shows the variables and values such as fin height, fin spacing, air inlet
temperature, air inlet velocity, heat source temperature, the parameter ranges for louver angle, fin
height, fin spacing, air inlet temperature, air inlet velocity, and heat source temperature were chosen
based on common industry practices and achievable operational conditions in heat exchanger systems.
These ranges ensure that the results are applicable to real-world scenarios and can be validated in future
experimental setups. Using a full factorial design [22] ensures the completeness of the experimental
database, resulting in a total of 9640 data points (2 ∗ 3 ∗ 4 ∗ 6 ∗ 11 ∗ 6). Full factorial design is an
experimental design method used to systematically investigate and evaluate the impact of multiple
factors on one or more response variables [22]. In full factorial design, each level of every factor is
combined with every level of all other factors, thus forming all possible combinations.
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Table 2: The database generation based on the following parameters

Louver
angle° (θ )

Fin height
(H) (mm)

Fin spacing
(s) (mm)

Air inlet
temperature
Tair,in (°C)

Air inlet
velocity Vair,in

(m/s)

Heat
source
tempera-
ture Twall

(°C)

1
2

20 3 35
Values 20° 8 1.2 22 4 37

30° 9 1.4 24 5 39
10 1.6 26 6 41

1.8 28 7 43
30 8 45

9
10

The selection of input features was strategically designed to optimize the predictive accuracy of
the model, enhance its scalability, and eliminate any redundant variables. To systematically assess
the influence of the impact of different input features on the model’s predictive performance, three
distinct configurations of input features were explored as illustrated in Table 3. In this study, Tair,out

(air outlet temperature) and ΔP (pressure drop) were selected as output parameters based on previous
literature. The Nu and Re was used as an input parameter to validate its relationship with Tair,out, which
is calculated from Tair,out. Both ΔP, Tair,out serve as direct outputs from the CFD simulations, ensuring
consistency with CFD measurements for accurate error validation.

Table 3: Three different combinations of input features

Case no. Data type Machine learning inputs Machine learning
output

Case 1 Experimental data θ , h, s, Tair,in, Vair,in, Ttube ΔP, Tair,out

Case 2 Dimensionless number Ar,
h
s

, Re, Nu,
Tair,in

273.15
,

Tair,in − Ttube

Tair,in

,
θ

90

ΔP, Tair,out

Case 3 Experimental data and
dimensionless numbers

θ , h, s, Tair,in, Vair,in, Ttube, Ar,
h
s

, Re, Nu,
Tair,in

273.15
,

Tair,in − Ttube

Tair,in

,
θ

90

ΔP, Tair,out



FHMT, 2024, vol.22, no.6 1623

2.4 Machine Learning Techniques
2.4.1 Artificial Neural Networks

ANNs are a category of machine learning techniques modeled after the structural and functional
properties of the human brain. These networks consist of multiple processing units known as neurons
[23,24]. Among the different types of ANNs, the feedforward neural network is the most widely used,
particularly in engineering applications. A typical neural network includes an input layer, one or more
hidden layers, and an output layer. Fig. 5 illustrates the architecture of a standard feedforward neural
network.

Figure 5: Schematic views of the ANN model

In the training phase, an ANN increases its prediction accuracy by refining the weights and
biases of its neurons through a process referred to as “learning”. This iterative adjustment uses the
backpropagation algorithm, a standard method for updating weights and biases in the field. Initially,
weights are randomly set and then fine-tuned iteratively to reduce the variance between the actual
outputs and the predicted ones. Neurons within each layer are linked to the subsequent layer via
weights, and each neuron incorporates a bias, enhancing the network’s operational flexibility [25].
The operation of an ANN involves multiplying input features by their respective weights, adding
these products to the biases of the neurons, and then summing these values to compute activation
value [26]. Eq. (6) represents this process as a linear combination of the input features and their
associated weights, complemented by a bias term. This combination forms the input to an activation
function, introducing non-linearity which allows the neural network to effectively model the intricate
relationships between inputs and outputs. The network adjusts these weights and biases to minimize
prediction error [27].

y = f
(

n∑
i=1

wkixi + bk

)
(6)

where wki represents the corresponding weights of the neurons in each layer, and n indicates the total
number of neurons per layer, b is the bias, and f is the activation function.

2.4.2 Support Vector Machine (SVM)

During the training process, an SVM enhances its performance by optimizing the position of the
decision boundary, aiming to maximize the margin between different class labels as indicated in Fig. 6.
This optimization is achieved through an iterative approach that adjusts the parameters controlling
the hyperplane [28]. Initially, parameters are selected based on specific criteria, and then refined to
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minimize errors such as misclassifications. In SVM, each data point contributes to the formation
of the decision boundary based on its relative position to the margin. The computation involves
dot products between input vectors and the vectors that define the hyperplane, adjusted by a bias
term. This configuration ensures that the SVM can effectively separate classes with a hyperplane that
maximizes the distance from the nearest points of all classes, known as support vectors. This strategic
placement of the hyperplane allows the SVM to provide a robust model that is sensitive to the nuances
of the input data distribution, thereby ensuring accurate classification or regression outputs [29].

Figure 6: Schematic views of the SVM model

2.4.3 Random Forest (RF)

RF is a powerful machine learning algorithm primarily used for regression tasks which employs
“bagging” to improve its robustness [25]. It operates by constructing multiple decision trees during the
training phase, each trained on different subsets of data, as shown in Fig. 7. By randomly choosing
features for each tree to split the data, RF ensures diversity among the trees, which helps reduce
overfitting and enhance the model’s accuracy. During the prediction phase, RF consolidates the output
by averaging the predictions from all trees, making the model effective in handling complex and high-
dimensional datasets.

Figure 7: Schematic views of the RF model
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As shown in Eq. (7), the mathematical formulation for RF in regression which averages the
outputs yi (x) of each decision tree i, Therefore, the RF model’s final prediction, represented as ŷn (x)

is calculated by averaging these individual tree predictions [25]. Random Forest is highly valued
for its capacity to provide dependable predictions with minimal tuning requirements, enhancing its
applicability across a broad spectrum of fields, from scientific research to targeted industry modeling.

ŷn (x) = 1
n

n∑
i=1

yi (x) (7)

In this study, the Random Forest algorithm is employed for regression tasks to accurately predict
key performance parameters of microchannel heat exchangers, specifically pressure drop and outlet
air temperature. It is important to clarify that, in the context of regression, the outputs are inherently
continuous rather than discrete. Consequently, the term “classes” used herein does not align with
the conventional understanding as applied in classification tasks, where outputs are categorized into
discrete classes. Instead, within this regression framework, “classes” refer to defined ranges or bands
of continuous output values. Each decision tree within the Random Forest ensemble generates a
continuous prediction for these parameters, and the collective output is computed as the mean of these
individual predictions. This methodology diverges from classification approaches, where decision trees
vote for discrete categories, and the category receiving the majority vote becomes the model’s output.
Therefore, in the context of this research, “classes”are conceptualized as distinct performance intervals
delineated by the continuous nature of the output values, providing a refined analytical framework for
assessing heat exchanger performance.

2.4.4 Gaussian Process Regression (GPR)

GPR is an advanced Bayesian machine learning method that uses the multivariate Gaussian
distribution assumption for regression analysis, independent of specific functional forms. Instead,
it models relationships between data points through covariance functions such as the Radial Basis
Function (RBF), Matérn kernel, and periodic kernels [30]. These kernels define the correlation
between points in the input space and determine the smoothness and flexibility of the model. The
training process of GPR involves maximizing the log-likelihood function to learn the data’s covariance
structure. During the prediction phase, GPR uses the known data points and kernel functions to
predict the output values and their uncertainties for new points, represented by the mean and standard
deviation of the predictions. This prediction process not only provides the expected output for the
predicted points but also accompanies it with measures of uncertainty, typically represented by the
standard deviation [31]. The following diagram Fig. 8 illustrates training points are shown in red,
while the predicted values and their uncertainties for other points are depicted with blue lines and
light blue areas.

3 Results
3.1 CFD Data Deduction

For the selection of dimensionless data, This research chose Ar,
h
s

, Re, Nu,
Tair,in

Twall

, The formulas for

calculating Re and Nu with respect to the Aspect Ratio (Ar) and h/s are as follows: Ar is the ratio of
the fin’s height to the fin’s depth.

Ar = Hfin

Dfin

(8)
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h
s

= Hfin

sfin
(9)

Figure 8: Schematic views of the GPR model

By setting the tube wall as the heat source temperature, the tube wall temperature, airside inlet
velocity, and airside inlet temperature are established. Finally, through the CFD model calculations,
the airside outlet temperature and pressure drop can be obtained. The CFD model regresses the airside
heat transfer coefficient. There are only tube wall thermal resistance and airside thermal resistance in
the CFD model. The total heat transfer rate on the airside in the CFD model is calculated as follows:

The total heat transfer on the airside in the CFD model is calculated as follows:

Qcfd = Cpair · ṁ · (
Tair,outlet − Tair,inlet

)
(10)

Thermal resistance of the tube wall:

Rtube = Htube

ktube · ltube · sfin

(11)

The calculation of the airside thermal resistance is as follows:

m =
√

2 · HTCair

kfin · tfin

(12)

h = 0.5 · (TubeVerticalSpacing − TubeHeight) (13)

ηfin0 = tanh (m · h)

m · h
(14)

Rair = 1
TubeArea · HTCair + FinArea · HTCair · ηfin0

(15)

where m is an intermediate variable, and h is the height difference factor or geometric factor. ηfin0 is the
fin efficiency.

Qcalculation = ΔT
Rwater + Rair

(16)
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ΔT = Twall − Tair,out − Tair,in

2
(17)

The airside heat transfer coefficient can be regressed by minimizing the residual, which is expressed
as the square root of the sum of the squared differences between the calculated heat transfer Qcalculation

and the CFD results Qcfd for each set of experimental points. By minimizing this error, the air side heat
transfer coefficient (HTCair) for each set of CFD results can be obtained.

Error =
√

n∑
i=1

(Qcalculation,i − Qcfd,i)2 (18)

For the calculation of Reynolds number and Nusselt number:

Re = ρ · V · Hyd
μ

(19)

Nu = HTCair · Hyd
k

(20)

3.2 Machine Learning Models and Results
This chapter introduces the setup of four models, including their respective prediction accuracies.

For the error calculation of the four models, various statistical metrics are presented, including
Root Mean Square Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error (MAE),
and the coefficient of determination (R2). These metrics provide a detailed reflection of the models’
performance on testing datasets from different perspectives as illustrated in Table 3. RMSE is sensitive
to large errors and penalizes significant deviations, making it ideal for detecting substantial prediction
discrepancies. MSE, being similar to RMSE but without the square root, provides an average error
measure and is commonly used for model optimization as it emphasizes larger errors. MAE, on
the other hand, treats all errors equally by taking the absolute difference, offering a straightforward
interpretation of the average error without overemphasizing outliers. Finally, R2 indicates how well the
model’s predictions match the actual data, with values closer to 1 showing that the model effectively
explains the variability in the data. These indicators were selected to provide a comprehensive
evaluation of the model’s performance, covering multiple perspectives such as error sensitivity and
overall model fit.

The mathematical equations for each type of error metric used are presented below. The RMSE
is another widely utilized regression metric. It is computed by first squaring the differences between
each observed value and its corresponding predicted value, then averaging these squared differences,
and finally taking the square root. The formula for RMSE is:

RMSE = 1
n

√
n∑

i=1

(Xpredict − Xreal)2 (21)

MSE is a metric used to evaluate the accuracy of an estimator—it is always non-negative, with
lower values indicating better performance, and values closer to zero being ideal. Unlike the RMSE,
MSE does not take the square root. MSE is calculated by taking the squares of the differences between
predicted and observed values, summing them up, and dividing by the number of observations. The
formula for MSE is:
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MSE = 1
n

n∑
i=1

(Xpredict − Xreal)
2 (22)

MAE is another metric used to evaluate the accuracy of an estimator. It is always non-negative,
with values closer to zero indicating higher accuracy. Unlike RMSE, MAE does not square the errors.
Instead, it is calculated by taking the absolute differences between the predicted and observed values,
summing these differences, and then dividing by the number of observations. The formula for MAE
is:

MAE = 1
n

n∑
i=1

∣∣Xpredict − Xreal

∣∣ (23)

R2 also referred to as the coefficient of determination, is used to assess how effectively the model
accounts for the variability in the observed values. It ranges from 0 to 1, with values closer to 1
signifying a better fit. The formula is:

R2 = 1 −
∑n

i=1(Xpredict − Xreal)
2∑n

i=1(Xpredict − Xaverage)2
(24)

3.2.1 ANN Modeling Results

The dataset was randomly partitioned into a training set and a test set, with 80% of the data
used to train the model, and the remaining 20% used to assess the model’s predictive performance.
To address potential issues with input feature scaling, data normalization is conducted, standardizing
all input features to the range [0, 1]. This step is crucial as it helps optimize the training process by
preventing gradient issues that can arise from large differences in feature scales.

The constructed neural network is based on a feedforward architecture, where the core of the
network is a hidden layer containing 10 neurons. The size of this hidden layer was determined based on
the complexity of the problem, and this study tested grid structures with 5, 10, 20, and 30 neurons. The
following formula represents the time complexity calculation model for the neural network structure:

Ctotal =
x∑

i=1

(cmult × mi × ni × ni−1 + cadd × ai × ni × ni−1 + cact × fi × ni) (25)

In this formula, x represents the number of layers, while cmult, cadd, cact represent the computational
cost coefficients for multiplication, addition, and activation functions, respectively. mi, ai, fi denote the
number of multiplications, additions, and activation functions in the i-th layer.

The results show that using 10 layers yields higher predictive accuracy compared to 5 layers, while
significantly reducing computational load compared to using 20 or 30 layers. Additionally, this study
tested network structures with 1, 2, and 3 hidden layers, and the results indicated that computation
time increases exponentially with 2 and 3 layers. Considering both computational cost and accuracy,
a network structure with 1 hidden layer and 10 neurons was selected.

According to Wilson’s research [32], in gradient descent algorithms like error backpropagation,
the learning rate significantly impacts generalization accuracy. Lowering the learning rate below the
level for fastest convergence can improve accuracy, especially for complex problems. A learning rate of
0.01 is considered an appropriate choice, as it strikes a balance that avoids overfitting while maintaining
prediction accuracy during training. The training configuration of the neural network includes 2000
training iterations, and an error target of 10−9 which are configured to prevent the model from training
indefinitely, providing a clear stopping criterion. During training, the network automatically adjusts
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the weights and biases to minimize prediction error. In this process, 80% of the data is used for training,
with 15% of that data reserved for validation to prevent overfitting. After completing the predictions,
denormalization is performed, converting the predicted results back to their original scale, making it
easier to compare them with the actual values.

As shown in Figs. 9–11, which present the prediction accuracy of the ANN model based on
the Case 1, Case 2, Case 3 database, separately: Part (a) illustrates the accuracy of pressure drop
predictions, while Part (b) details the accuracy for air outlet temperature predictions, both derived
from the testing set of the database. In both subfigures, the x-axis represents the actual values, and
the y-axis represents the predicted values. In Case 3, which shows the highest prediction accuracy. The
close alignment of the data points along the ideal prediction line indicates that the model performs
exceptionally well, demonstrating its robustness and precision in forecasting complex phenomena
within the specified parameters.

Figure 9: Case 1: (a) ANN prediction accuracy of heat exchangers pressure drop; (b) ANN prediction
accuracy of heat exchangers air outlet temperature

Figure 10: Case 2: (a) ANN prediction accuracy of heat exchangers pressure drop; (b) ANN prediction
accuracy of heat exchangers air outlet temperature
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Figure 11: Case 3: (a) ANN prediction accuracy of heat exchangers pressure drop; (b) ANN prediction
accuracy of heat exchangers air outlet temperature

3.2.2 SVM Modeling Results

For the SVM model setup, the database was divided in the same way as for the ANN model. As
shown in Figs. 12–14, which present the prediction accuracy of the SVM model based on the Case
1, Case 2, and Case 3 databases, respectively, the prediction accuracy is highest for Case 3 under the
SVM model.

Figure 12: Case 1: (a) SVM prediction accuracy of heat exchangers pressure drop; (b) SVM prediction
accuracy of heat exchangers air outlet temperature
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Figure 13: Case 2: (a) SVM prediction accuracy of heat exchangers pressure drop; (b) SVM prediction
accuracy of heat exchangers air outlet temperature

Figure 14: Case 3: (a) SVM prediction accuracy of heat exchangers pressure drop; (b) SVM prediction
accuracy of heat exchangers air outlet temperature

3.2.3 RF Modeling Results

In the RF model, two separate random forest models were created, with each model predicting
a different output variable. According to Breiman’s research [33], each leaf, or terminal node, of
individual trees typically contains a limited number of observations, generally ranging from 1 to 5.
According to Probst et al. [34], for most of the examined datasets, the biggest performance gain is
achieved when training the 100 trees. The model construction specified the number of trees (100 trees)
and the minimum number of samples per leaf node 5, parameters that influence the model’s complexity
and fitting accuracy.

As shown in Figs. 15–17, which present the prediction accuracy of the RF model based on the
Case 1, Case 2, Case 3 database, separately. For the RF models across the three cases, the prediction
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accuracy was lowest for the Case 1 database, while the best prediction results were obtained for the
Case 3 database.

Figure 15: Case 1: (a) RF prediction accuracy of heat exchangers pressure drop; (b) RF prediction
accuracy of heat exchangers air outlet temperature

Figure 16: Case 2: (a) RF prediction accuracy of heat exchangers pressure drop; (b) RF prediction
accuracy of heat exchangers air outlet temperature

3.2.4 GPR Modeling Results

For the GPR model, the fitrgp function was used, which is a function of MATLAB version R2023b
for fitting Gaussian Process Regression models. Based on the provided input data and target output,
it creates a GPR model for regression tasks. The squared exponential kernel function was used, which
defines similarity based on the Euclidean distance between input points. The formula for this kernel
function is as follows:

k (x, x′) = σ 2
f exp

(
−‖x−x′‖2

2l2

)
(26)
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• σ 2
f : Signal variance, which controls the amplitude of variations in the function values.

• l: Length scale parameter, which controls the range of influence that input variables have on
the output.

Figure 17: Case 3: (a) RF prediction accuracy of heat exchangers pressure drop; (b) RF prediction
accuracy of heat exchangers air outlet temperature

As shown in Figs. 18–20, which present the prediction accuracy of the GPR model based on the
Case 1, Case 2, and Case 3 databases, respectively, the model predictions are highly accurate across all
three cases.

Figure 18: Case 1: (a) GPR prediction accuracy of heat exchangers pressure drop; (b) RF prediction
accuracy of heat exchangers air outlet temperature



1634 FHMT, 2024, vol.22, no.6

Figure 19: Case 2: (a) GPR prediction accuracy of heat exchangers pressure drop; (b) RF prediction
accuracy of heat exchangers air outlet temperature

Figure 20: Case 3: (a) GPR prediction accuracy of heat exchangers pressure drop; (b) RF prediction
accuracy of heat exchangers air outlet temperature

3.3 Parameter Correlations
The following three heatmaps illustrate the correlations between various input parameters and

output parameters. In each heatmap, the color gradient transitions from white to black, where black
indicates strong positive correlations and white indicates strong negative correlations. Orange is used
to represent a zero-correlation coefficient, signifying no correlation between the parameters.

As shown in Fig. 21, this chart presents the correlation between basic parameters in the Case 1
database, such as temperature θ , h, s, Tair,in, Vair,in, Ttube with ΔP, Tair,out. A strong correlation is observed
between ΔP and Vair,in, while Ttube and Tair,out show a high positive correlation. The flow rate has a
significant impact on pressure drop, and the heat source temperature significantly affects the air.
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Figure 21: The database parameters heatmap of Case 1

As shown in Fig. 22, this figure introduces more dimensions, such as Ar,
h
s

, Re, Nu,
Tair,in

273.15
,

Tair,in − Ttube

Tair,in

,
θ

90
, and their correlations with ΔP, Tair,out. A strong correlation is observed between Re

and Nu, both of which have a strong positive correlation with ΔP. For Tair,out,
h
s

,
Tair,in

273.15
,

Tair,in − Ttube

Tair,in

show positive correlations, while Re and Nu exhibit a strong negative correlation with Tair,out. As shown
in Fig. 23, this figure integrates all parameters, providing a comprehensive view that illustrates the
interactions between all input and output variables.

4 Discussion and Future Work
4.1 Discussions

The summarized results from the Table 4 illustrates the comparative performance of various
machine learning models, ANN, SVM, RF and GPR which are applied to predict two critical
parameters of microchannel heat exchangers: pressure drop and air outlet temperature. These metrics
are evaluated across three distinct cases using standard error metrics including RMSE, MSE, MAE,
and R2.

1. ANN demonstrated robust predictive capabilities, achieving nearly perfect R2 values close to
1.00 in all scenarios. This was particularly evident in the pressure drop predictions, where the
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ANN model maintained high accuracy and low error metrics, substantiating its suitability for
complex physical phenomena modeling in heat exchanger systems.

2. SVM exhibited higher errors and lower R2 values, indicating a less favorable performance,
particularly in handling the non-linear complexities associated with the data set for pressure
drop predictions. These results suggest that without additional parameter tuning or kernel
adjustments, SVM may not provide the most reliable predictions in this specific application.

3. RF performed commendably, especially in Case 3, where it achieved low RMSE values for
pressure drop predictions. The consistently high R2 values for outlet temperature predictions
across the cases indicate RF’s effectiveness in capturing the variability in the data, making it a
dependable choice for scenarios where model interpretability and robustness against overfitting
are priorities.

4. GPR showed exceptional accuracy, with RMSE and MSE values considerably lower than
those of other models, coupled with R2 values nearing 1.00 for both pressure drop and outlet
temperature in all cases. This performance underscores GPR’s capability in offering precise
and reliable predictions, making it highly suitable for applications demanding high levels of
predictive fidelity.

Figure 22: The database parameters heatmap of Case 2



FHMT, 2024, vol.22, no.6 1637

Figure 23: The database parameters heatmap of Case 3

Table 4: The RMSE MSE MAE and R2 for different cases and output parameters

Predicted
parameter

RMSE MSE MAE R2

ANN Case 1 ΔP 0.28351 0.08038 0.18423 0.99999
Tair,out 0.02366 0.00056 0.01252 0.99995

Case 2 ΔP 1.70990 2.92377 1.30204 0.99962
Tair,out 0.08981 0.00807 0.06382 0.99922

Case 3 ΔP 0.88578 0.78461 0.64097 0.99990
Tair,out 0.04662 0.00217 0.03390 0.99980

SVM Case 1 ΔP 24.70738 610.454 16.7999 0.92195
Tair,out 0.63376 0.40166 0.47290 0.96322

Case 2 ΔP 26.22765 687.88967 17.75659 0.91276
Tair,out 0.88363 0.78081 0.65653 0.92783

Case 3 ΔP 17.60344 309.88112 12.38401 0.96250
Tair,out 0.58773 0.34543 0.44018 0.96810

RF Case 1 ΔP 13.93277 194.12220 10.22057 0.97740
Tair,out 0.49872 0.24873 0.38939 0.97727

Case 2 ΔP 3.65003 13.32270 1.38922 0.99834

(Continued)
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Table 4 (continued)

Predicted
parameter

RMSE MSE MAE R2

Tair,out 0.48993 0.24003 0.38511 0.97738
Case 3 ΔP 1.26739 1.60627 0.61457 0.99980

Tair,out 0.28129 0.07913 0.21902 0.99261
GPR Case 1 ΔP 0.30624 0.09378 0.21534 0.99999

Tair,out 0.02847 0.00081 0.01802 0.99993
Case 2 ΔP 0.24149 0.05832 0.16131 0.99999

Tair,out 0.01616 0.00026 0.00957 0.99998
Case 3 ΔP 0.33037 0.10915 0.21415 0.99999

Tair,out 0.01858 0.00035 0.00994 0.99997

As shown in Fig. 24, based on the enhanced visual analysis provided by the comparative figures, it
is clearer that the GPR model consistently outperforms other models in terms of predictive accuracy
across all error metrics (RMSE, MAE, MSE, and R2). This is evident in the data for both pressure
drop and air outlet temperature, where GPR exhibits the lowest error values. Following GPR, the next
highest predictive accuracy is observed in the ANN model, followed by the RF model, while the SVM
model demonstrates the lowest performance in comparison.

Furthermore, when comparing performance across different datasets (Case 1, Case 2, and Case 3),
the results indicate that Case 3 yields the best overall predictive accuracy in all models. This suggests
that the underlying data in Case 3 is more conducive to producing accurate predictions, irrespective
of the model applied. The charts clearly show that Case 3 achieves the lowest errors in all metrics,
indicating its superior performance for training and model generalization.

Figure 24: (Continued)
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Figure 24: The RMSE MSE MAE and R2 for different cases and output parameters

Although GPR demonstrates high predictive accuracy, particularly in Case 1 and Case 3, ANN
has a clear advantage in training time, being more computationally efficient than GPR when compare
the training time for each model as shown in Fig. 25.

Figure 25: The training time for different cases and different machine learning model

4.2 Future Work
To further the research in the field of microchannel heat exchangers using machine learning,

several advanced directions are proposed:
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1. Automated Dimensional Analysis: Future research should develop algorithms capable of auto-
matically identifying and incorporating key dimensionless parameters, such as Reynolds and
Nusselt numbers, into predictive models. This includes employing advanced feature selection
and dimensionality reduction techniques to optimize the models’ performance across various
operational settings.

2. Diverse Louver Configurations: Expanding the research to include a variety of louver config-
urations, such as different numbers and spacings of louvers, is crucial. Detailed investigations
into how these variations affect thermal and fluid dynamics can yield valuable insights into
optimizing heat exchanger designs for enhanced efficiency.

3. Comprehensive Data Collection: Enhancing the database with a wider array of experimental
and simulated data covering various fin structures and operational conditions is essential. This
expansion will help in refining the models to better generalize across different systems and
conditions, thus improving their predictive robustness.

To enhance the performance of ANN models, employing Genetic Algorithms (GA) to improve the
network architecture and hyperparameters. This approach allows for the systematic and automated
selection of the best network settings, such as the number of hidden layers, neurons per layer, and
learning rates, which are crucial for balancing model complexity and computational efficiency. By
employing GA, ANN model can achieve higher predictive accuracy while managing computational
resources effectively.

RF benefits significantly from tuning the number and depth of trees, which directly influences
its robustness and ability to generalize. Increasing the number of trees can reduce variance without
increasing bias, albeit at a higher computational cost. Fine-tuning the tree depth helps manage
the model’s complexity, preventing overfitting while capturing sufficient data specifics. Additionally,
implementing advanced feature selection methods can remove irrelevant inputs and improve model
accuracy. Adjusting bootstrap sampling methods, such as using stratified or cluster sampling, can
also optimize performance, especially in diverse datasets.

SVM is particularly sensitive to the choice of kernel and the scale of features. Selecting the
appropriate kernel such as, linear, polynomial, and optimizing its parameters are critical for capturing
the underlying patterns of the data. Regularization parameter tuning is crucial for balancing margin
maximization and classification error minimization. Properly scaling and normalizing features can
dramatically improve SVM’s performance, making it essential for preprocessing steps. Additionally,
adjusting class weights can help the SVM model perform better on imbalanced datasets.

GPR while providing high accuracy and flexibility in handling complex datasets, struggles with
computational demands when scaling to large datasets. Implementing sparse GPR models using tech-
niques such as inducing points can significantly reduce the computation and memory requirements by
approximating the full covariance matrix. Selecting simpler kernel functions or those that exploit data
structure can also lessen computational burdens. Moreover, utilizing parallel computing frameworks
to handle large-scale matrix operations can expedite both training and prediction phases, making GPR
feasible for larger datasets.

5 Conclusion

This study highlights the significant potential of machine learning models in predicting the
performance of microchannel heat exchangers, particularly focusing on critical operational parameters
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such as pressure drop and air outlet temperature. By conducting a detailed comparative analysis of four
advanced algorithms: ANN, SVM, RF, and GPR. The main findings can be summarized as follows:

1. The foundational element of this research is the creation of an extensive database built from
CFD simulations. This database encompasses a detailed range of operational parameters,
providing a robust foundation for applying machine learning algorithms.

2. A comparative analysis among four advanced machine learning models—ANN, SVM, RF,
and GPR—highlights their individual and collective capabilities. The results indicate that
ANN and GPR exhibit superior precision, achieving remarkably high R2 values, demonstrat-
ing their effectiveness in modeling complex thermal interactions.

3. The use of dimensionless numbers improves prediction accuracy. By incorporating parameters
such as Reynolds number, Nusselt number, and aspect ratio, the models can achieve a deeper
insight into the heat transfer mechanisms, thereby enhancing their predictive accuracy and
reliability.

Overall, this research explores the critical need for selecting suitable machine learning techniques
when constructing databases that incorporate dimensionless numbers for modeling microchannel heat
exchangers. It showcases the precise accuracy attainable by leveraging CFD simulations to assess
heat transfer performance. The innovative integration of machine learning with CFD data provides
essential insights for the rapid and iterative optimization of heat exchanger designs. These findings not
only contribute valuable perspectives for swiftly and accurately evaluating heat exchanger performance
but also facilitates a more streamlined design process and leads to advancements in the efficiency and
effectiveness of heat exchanger modeling.
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