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Abstract: This study offers a framework for a breast cancer computer-aided treat-
ment prediction (CATP) system. The rising death rate among women due to breast
cancer is a worldwide health concern that can only be addressed by early diagno-
sis and frequent screening. Mammography has been the most utilized breast ima-
ging technique to date. Radiologists have begun to use computer-aided detection
and diagnosis (CAD) systems to improve the accuracy of breast cancer diagnosis
by minimizing human errors. Despite the progress of artificial intelligence (AI) in
the medical field, this study indicates that systems that can anticipate a treatment
plan once a patient has been diagnosed with cancer are few and not widely used.
Having such a system will assist clinicians in determining the optimal treatment
plan and avoid exposing a patient to unnecessary hazardous treatment that wastes
a significant amount of money. To develop the prediction model, data from
336,525 patients from the SEER dataset were split into training (80%), and testing
(20%) sets. Decision Trees, Random Forest, XGBoost, and CatBoost are utilized
with feature importance to build the treatment prediction model. The best overall
Area Under the Curve (AUC) achieved was 0.91 using Random Forest on the
SEER dataset.

Keywords: Breast cancer; machine learning; feature importance; feature selection;
treatment prediction; SEER dataset; computer-aided treatment prediction (CATP);
clinical decision support system

1 Introduction

In 2020, 2.3 million women were diagnosed with breast cancer, with 68,500 worldwide fatalities. As of
2020, 7.8 million women have been diagnosed with breast cancer in the past five years, making it the world’s
most prevalent cancer [1]. In clinical terms, malignant tumours are typically classified as positive, whereas
benign tumours are classified as negative. Both cancers have subgroups that must be identified separately
since each might have a different prognosis and treatment plan. Accurate identification of each
subcategory is required for proper diagnosis. Mammography, ultrasound, magnetic resonance imaging
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(MRI), computed tomography (CT), positron-emission tomography (PET), and microwave imaging are now
used in the diagnosis of breast cancer [2–7]. There are two types of breast cancer manifestations in medical
images: masses and calcifications. On appearance, benign tumours are often spherical, smooth, and
transparent. Calcification has a coarser form, a granular shape, a popcorn shape, or a ring shape, and it
has a greater density and a more scattered dispersion. The margins of typical malignant tumours are
uneven and typically fuzzy, and the mass has a needle-like appearance. Calcification has a morphology
that is generally sand-like, linear, or branching, with various forms and sizes. The distribution is usually
dense or clustered in a linear pattern [8–10]. Fig. 1 shows a picture of malignant and benign breast cancer.

Figure 1: (Left) Malignant and (Right) benign breast cancer images

Since the late 1960s, computer-aided diagnosis (CAD) for mammography has progressed. Its primary goal
is to aid radiologists in detecting malignancies that might otherwise go undetected [2]. CAD programs identify
high-density regions and microcalcifications. Computer-aided detection systems (CADe) and computer-aided
diagnostic systems (CADx) are the two types of CAD systems. The localization job (identification of a
suspicious abnormality) is the focus of CADe, which acts as a second reader for radiologists and leaves
patient care decisions to the radiologist. However, CADx classifies an abnormality detected by a radiologist
or a computer, estimating the likelihood of an abnormality and classifying it as benign or malignant. The
radiologist next evaluates if the anomaly deserves additional investigation and the clinical relevance of the
finding [6]. In 1998, the US Food and Drug Administration (FDA) approved the first CAD software for
screening mammography, R2 Image Checker, made by R2 Technologies (now known as Hologic) [11].
Early findings were encouraging [12,13] and by 2016 CAD has become extensively used in clinical
practice, with roughly 92% of all mammography facilities in the United States adopting it [14]. However,
its clinical use is debatable, owing to the high percentage of false-positive results [15].

Image identification, clinical translation of tumour phenotype to genotype, and outcome prediction in
connection to treatment and prognosis strategies are areas where artificial intelligence (AI) can streamline and
integrate radiologist diagnostic skills. For decades, radiologists have relied on AI-assisted CAD systems to
translate visual data to quantitative data [16–18]. Such technologies have the potential to significantly reduce the
amount of time and effort necessary to analyse a lesion in clinical practice, as well as the number of false
positives that result in painful biopsies without compromising BC detection sensitivity [7,19,20]. Predicting the
proper treatment plan is an area that needs improvement in terms of CATP that can be used as a decision
support system in clinical practice. In recent years, the clinical community's increased adoption of health
information technology has opened new opportunities and possibilities for employing sophisticated Clinical
Decision Support (CDS) systems. CDS systems can be defined as ‘‘systems that are designed to be a direct aid
to clinical decision-making in which the characteristics of an individual patient are matched to a computerized
clinical knowledge base, and patient-specific assessments or recommendations are then presented to the clinician
(s) and/or the patient for a decision’’ [21]. Memorial Sloan Kettering (MSK) trained IBM Watson for Oncology
(WFO) is a CDS system that is meant to aid medical oncologists in making expert treatment recommendations
based on crucial disease and patient-specific characteristics. WFO can include complexities not addressed by
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existing recommendations, thanks to medical logic taught byMSK and IBMWatson’s machine learning on genuine
and synthetic MSK cases. Breast surgery, radiotherapy, clinical genetics, and fertility preservation are all factors to
consider while deciding on adjuvant systemic therapy for early-stage breast cancer. [22] Studies, however, have
shown a low level of concordance between WFO and the recommendations done by the Multidisciplinary Team
(MDT) for advanced breast cancer stages [23]. MATE, or Multidisciplinary Team Assistant and Treatments
Elector, is an another CDS system that was created for breast multidisciplinary team meetings and tested in the
London Royal Free Hospital to aid patient-centered, evidence-based decision-making [24]. Even though CDS
systems are becoming increasingly important in improving treatment and cutting costs, there is little evidence to
support their widespread use and effectiveness. Many studies were carried out in academic settings, on a small
number of patients, or specific stages of cancer, with most of them being examined in ambulatory settings. In a
variety of situations and systems, clinical decision support enhanced medication prescribing, the facilitation of
preventative care services, and the ordering of clinical research. Among these studies, very few are related to
breast cancer CDS and thus to stimulate wider use of such systems and increase their therapeutic effectiveness,
more research is needed [23,25].

This paper proposes an opensource framework for a CATP system for breast cancer. Fig. 2 depicts a
diagram of the proposed framework that is composed of two phases: Classification Phase and Prediction
Phase. Classification phase starts with selecting the dataset, cleaning the data, feature engineering and
preparing the training and testing data. After that, four classification models are tested on the training data
and their performance is evaluated, the best performing model will be selected to be used in phase two. The
prediction phase will use the best selected model from phase one to predict the treatment plan using the test
data and new data.

Figure 2: Framework for a computer-aided treatment prediction system (CATP) for breast cancer
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The contents of this paper are organized as follows: Section 2 reviews previous work on breast cancer, its
diagnosis, and treatment. Section 3 contains the experimental setup details, dataset used, classification models,
and the evaluation metrics. In Section 4, we present a series of experimental results to demonstrate the
effectiveness of the proposed framework. Finally, concluding remarks are provided in Section 5.

2 Breast Cancer: Diagnosis and Treatment

2.1 Breast Cancer

Breast cancer is a condition in which the cells of the breast begin to grow out of control. There are
several types of breast cancer. The kind of breast cancer is determined by which cells in the breast
become cancerous. Breast cancer can start in a variety of places in the breast. Lobules (glands that make
milk), ducts (tubes that transport milk from the breast to the nipple), and connective tissue (fibrous and
fatty tissue) are the three major components of a breast. Breast cancer usually starts in the ducts or
lobules, it can also spread to other parts of the body via blood and lymph arteries. In situ or non-invasive
cancer cells remain inside the basement membrane of the components of the terminal duct lobular unit
and the draining duct. Breast cancer that has spread outside the basement membrane of the ducts and
lobules into the surrounding normal tissue is known as invasive breast cancer and is considered to have
metastasized [26–28].

2.2 Breast Cancer Diagnosis

Breast cancer is divided into three categories based on Estrogen receptor (ER), Progesterone receptor
(PR), and human epidermal growth factor 2 (ERBB2) gene amplification, previously known as human
epidermal growth factor receptor 2 (HER2) gene amplification: ER or PR positive (also known as HR+),
ERBB2 positive, or triple negative. HR+ or ERBB2+ subtypes have a five-year average overall survival,
while triple-negative subtypes have a one-year average overall survival [29]. Each of the three subtypes
has its own set of risks and treatment options. The best treatment for each patient is determined by their
tumour subtype, anatomic cancer stage, and personal preferences [30].

There are several cancer staging methods in use right now. One method divides tumours into four stages:
Stage 0, Stage I, Stage II, Stage III, and Stage IV, with further subcategories, where Stage IV denotes a
metastatic distant cancer. TNM (tumour, node, metastasis) is another cancer staging method that assigns
stages based on the tumour, node and metastases status [31]. Stage I breast cancer, defined anatomically
as a breast tumour smaller than 2 cm and no lymph node involvement, have five years survival rate of at
least 99% for HR+, at least 94% for ERBB2+, and at least 85% for triple-negative subtypes [32].

2.3 Breast Cancer Treatment

There are two types of treatment for cancer, depending on the kind and stage of the disease: local and
systemic. Surgery and radiation are considered local treatments as they treat the tumour without harming the
rest of the body. Systemic therapy, on the other hand, employs the use of medicines to combat the disease.
Drugs can reach cancer cells anywhere in the body and be administered directly into the bloodstream or
orally. Systemic treatments include chemotherapy, hormone therapy, targeted medication therapy, and
immunotherapy. Systemic treatment maybe preoperative (neoadjuvant), postoperative (adjuvant), or both
[30,33,34]. Most patients will have a combination of local treatments to control local disease and
systemic treatment for any metastatic disease.

2.3.1 Surgery
Breast conservation surgery (excision of the tumour with surrounding normal breast tissue) or

mastectomy (removal of the entire breast) are two options for surgery (total removal of breast tissue).
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Because of their impact on local recurrence following breast-conserving surgery, some clinical and
pathological variables may affect breast conservation or mastectomy choices. An inadequate initial
excision, young age, the existence of a significant in situ component, lymphatic or vascular invasion, and
histological grade are all factors to consider. Local recurrence is two to three times more probable in
young individuals (under 35) than in older patients. While other risk factors for local recurrence are more
common in young individuals, young age appears to be an independent risk factor [35].

Mastectomy
Mastectomy is a surgical procedure that removes the breast tissue and a portion of the underlying skin,

which generally includes the nipple. A mastectomy should be paired with axillary lymph nodes surgery in
some way. Lymph node ectomy is used for both diagnostic (determining the anatomic extent of breast cancer)
and therapeutic purposes (removal of cancerous cells) [30]. About a third of locally advanced breast cancers
are unsuitable for breast conservation surgery but may be treated with mastectomy. Some patients who are
candidates for breast conservation surgery choose mastectomy instead. Until the demonstration of equivalent
outcomes with mastectomy and breast-conserving surgery plus irradiation against the remaining breast in
patients, mastectomy was the primary surgical treatment employed in the vast majority of patients [26,35].

Breast Conservation Surgery
Breast conservation surgery may consist of excision of the tumour with a 1 cm margin of normal tissue

(broad local excision) or a more extensive excision of a complete quadrant of the breast (breast conservation
surgery) (quadrantectomy). The extent of excision is the most critical factor that determines local recurrence
following breast-conserving. Compared to grade II or III tumours, grade I tumours have a 1.5-fold reduced
recurrence rate. The lower the recurrence rate, but the poorer the aesthetic effect, the larger the excision.
Although there is no size restriction for breast conservation surgery, adequate excision of lesions larger
than 4 cm yields a poor aesthetic outcome. Hence most breast units limit breast-conserving surgery to
lesions less than 4 cm. Breast conservation surgery may be done at any age [26,36,37].

2.3.2 Radiotherapy
Breast cancer patients may get radiation treatment to the entire breast or a breast section (after

lumpectomy), the chest wall (after mastectomy), and the regional lymph nodes. Whole-breast radiation
after a lumpectomy is a standard part of breast-conserving treatment [38]. After breast conservation
surgery, postoperative radiotherapy is strongly advised. Whole breast radiation therapy alone lowers the
10-year risk of any first recurrence (both local and distant) by 15% and the 15-year risk of breast cancer-
related death by 4% [37]. Radiation to the chest wall, occasionally with a boost to the mastectomy scar
and regional nodal radiation, is known as postmastectomy radiation (PMRT). PMRT lowers the 10-year
risk of recurrence (including locoregional and distant) by 10% and the 20-year risk of breast cancer-
related death by 8% in node-positive patients. The advantages of PMRT are unaffected by the number of
implicated axillary lymph nodes or the use of adjuvant systemic therapy [39].

2.3.3 Systemic Treatment
In the United States, 5.8% of breast cancer patients are metastatic, with a 5-year survival rate of 29%

[40]. The best treatment for metastatic breast cancer (MBC) remains a substantial therapeutic problem;
the best medical therapy for each patient must be chosen based on breast cancer risk assessment,
predictive indicators, toxicity risk, and patient preferences [41]. Adjuvant systemic treatment should begin
as soon as possible following surgery, preferably within 2–6 weeks [37]. There are a few broad
guidelines to follow: in metastatic HR+/HER2 breast cancer, early treatment should be centred on
endocrine therapy (ET). Patients are transitioned to chemotherapy (CT) after developing resistance to the
available hormonal therapies [42]. ET is still the most effective treatment for hormone-sensitive, non-life-
threatening MBC. This systemic medication offers the benefits of effectiveness, low toxicity, and high
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quality of life [41]. ET is used in clinical practice when the primary tumour or, if possible, a readily accessible
metastasis ER+, PR+, or HR+. When the danger of rapid disease development is modest, i.e., there is no life-
threatening sickness, this sort of therapy is typically the first choice [30]. CT is presently the sole treatment
option for women with endocrine resistant illnesses who are ER- and HER2- [43].

Neoadjuvant chemotherapy is used to treat localized early-stage triple-negative breast cancer (TNBC) to
preserve the breast or for patients who are temporarily unable to undergo surgery. Chemotherapy in the
neoadjuvant situation allows for a direct clinical examination or imaging evaluation of the response [44].
TNBC has a more significant percentage of pathologic complete response (PCR) after neoadjuvant
chemotherapy than HER2- illness (28%–30% vs. 6.7%) [42].

3 Materials and Methods

3.1 Dataset

The Surveillance, Epidemiology and End Results (SEER) Program of the National Cancer Institute
(NCI) is a trustworthy source of information on cancer incidence and survival in the United States. SEER
now collects and publishes cancer incidence and survival data from community-based cancer registries
covering about 47.9% of the US population. The SEER Program registries routinely gather data on
patient demographics, initial tumour site, tumour shape and stage at diagnosis, the first course of therapy,
and vital status follow-up [45]. The data is publicly available and can be obtained after signing a data use
agreement. Its latest version covers identified cancer incidences from years 1973 through 2018. In
2018 there were an estimated 3,676,262 women living with female breast cancer in the United States, the
rate of new cases of female breast cancer was 129.1 per 100,000 women per year. The death rate was
19.9 per 100,000 women per year [46]. This work utilized the SEER research plus data released in
November 2020, which contains records between 1992 and 2018. The extracted data set, after feature
engineering and data cleaning, includes 336,525 records, with each record having 19 features, see
Table 1, including the patient age category, features related to the tumour and extent of disease, in
addition to 3 features representing the three treatment modalities (Surgery, Radiotherapy, and
Chemotherapy).

Table 1: Features Used in the Model

Feature Description

Age The age of the patient at diagnosis

Laterality describes the side of the breast on which the reportable tumour originated

HISTOLOGY ICD-
O-2

Code that describes the microscopic composition of cells and/or tissue for a
specific primary. The tumour type or histology is a basis for staging and
determination of treatment options. It affects the prognosis and course of the
disease

Breast subtype Created with combined information from ER Status Recode Breast Cancer, PR
Status Recode Breast Cancer, and Derived HER2 Recode

Tumour size Information on tumour size

Lymph nodes Information on involvement of lymph nodes

Regional nodes
evaluated

Records the total number of regional lymph nodes that were removed and
examined by the pathologist

Regional nodes
positive

Records the exact number of regional lymph nodes examined by the pathologist
that were found to contain metastases
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3.2 Treatment Classes Extraction

To prepare the data for the model, and since we are only interested in whether a specific treatment is
recommended or not, the information in the three treatment features (Surgery, Radiotherapy, and
Chemotherapy) was converted into binary (yes/no). After considering the different treatment combinations,
we ended up with eight classes representing the various treatment plans. Table 2 summarizes the plans and
their distribution in the dataset, which shows that the result dataset is imbalanced.

After generating the plans, the three treatment features will be removed from the dataset and thus ending
up with sixteen features that will be used in the proposed models. The newly extracted feature will be used as
the label for our model.

Table 1 (continued)

Feature Description

Mets at distant lymph
nodes

Information on distant metastasis

Stage The stage of cancer

T American Joint Committee on Cancer (AJCC) “T” component: extent (size) of the
tumour

N This is the AJCC “N” component: The spread to nearby lymph nodes

M This is the AJCC “M” component: The spread (metastasis) to distant sites.

ER Indicates whether the cancer has the estrogen receptor protein or not

PR Indicates whether the cancer has the progesterone receptor protein or not

HER2 Indicates whether the cancer has the HER2 protein or not

Surgery Indicates whether a surgery is recommended or not

Radiotherapy Indicates whether radiotherapy is recommended or not

Chemotherapy Indicates whether chemotherapy is recommended or not

Table 2: Treatment Classes distribution

Surgery Radiotherapy Chemotherapy Treatment plan % Of records

0 0 0 A 2.65%

0 0 1 B 1.93%

0 1 0 C 0.6%

0 1 1 D 0.66%

1 0 0 E 26.42%

1 0 1 F 14.34%

1 1 0 G 29.68%

1 1 1 H 23.69%
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3.3 Feature selection

The goal of feature selection is to pick a subset of features from the input that can accurately characterize
the data while limiting the influence of noise and irrelevant variables and still delivering high prediction
results. Feature selection has been shown to be an effective and efficient data preparation approach for
preparing data (particularly high-dimensional data) for machine-learning problems [47–49]. Feature
selection have been used in cancer detection models [50,51] as well as for breast cancer detection models
[52]. In this work, we will be testing different feature selections algorithms. Feature importance is
calculated as the decrease in node impurity weighted by the probability of reaching that node.

Recursive Feature Elimination (RFE): is a recursive process that ranks features according to some
measure of their importance. At each iteration, the importance of each feature is measured, and the least
relevant one is removed [53,54].

Shapley Additive exPlanations (SHAP) method: based upon the Shapley value concept from game
theory [55]. Several approaches to applying the Shapley value to the problem of feature importance have
been presented. Given a model fðx1; x2; . . . ; xd), the features from 1 to d might be regarded participants
in a game where the payoff v is some measure of the relevance or impact of that subset. The Shapley
value [v ið Þ can thus be thought of as impact of i on the result [56].

Shap-hypetune: is a library that integrates hyperparameter tuning with feature selection in a single
pipeline to optimize the optimal number of features while looking for the best parameter configuration.
Hyperparameter tuning and feature selection may also be performed independently [57].

A feature selection criterion that can measure the relevance of each feature with the output class/labels is
necessary to eliminate an irrelevant feature. If a system employs irrelevant variables in machine learning, it
will apply this knowledge for new data, resulting in poor generalization. Other dimension reduction
approaches, such as Principal Component Analysis (PCA), should not be compared to removing
irrelevant variables because good features might be independent of the rest of the data [49].

3.4 Classification Models

After selecting the features, the input samples are classified into one of the treatment classes using a
classifier. In this study we will utilize Decision Trees (DT), Random Forest (RF), XGBoost, and CatBoost
(gradient boosting on decision trees) to predict the treatment plan.

Decision Trees: Decision trees are logically combined sequences of basic tests in which each test
compares a numeric attribute to a threshold value or a nominal attribute to a range of alternative values.
A decision tree identifies a data item as belonging to the most frequent class in a partitioned region when
it falls inside that region [58–60]. Several methods have been developed to assess the degree of
inhomogeneity, or impurity, entropy and the Gini index are the two most frequent measurements for
decision trees. Assume we’re attempting to categorize things into m classes using a set of training items
E. Let pi (i = 1,…,m) be the fraction of the items of E that belong to class i. The entropy of the
probability distribution ðPiÞmi¼1 gives a reasonable measure of the impurity of the set E. The entropy,
�Pm

i¼1 pi log pi , is lowest when a single pi equals 1 and all others are 0, whereas it is maximized when all
the pi are equal. The Gini index [60], another common measure of impurity, is computed by 1�Pm

i¼1 p
2
i .

This is again zero when the set E contains items from only one class. Given a measure of impurity I, we
choose a test that minimizes the weighted average of the impurity of the resulting children nodes. That is,
if a test with k possible answers divides E into subsets E1…, Ek, we choose a test to minimizePk

j¼1 Ej

�� ��= Ej j� �
I Ej

� �
. In many cases, we can choose the best test by enumerating all possibilities. If I is

the entropy function, then the difference between the entropy of the distribution of the classes in the
parent node and this weighted average of the children’s entropy is called the information gain. The
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information gain, which is expressible via the Kullback-Leibler divergence [59], always has a nonnegative
value. Limiting the complexity of the trained trees so that they do not overfit the training instances is an
essential part of using decision trees. Stopping splitting when no test enhances the purity of the
subgroups by more than a bit of amount is one strategy. Alternatively, we can opt to build out the tree
until no more leaves can be subdivided. In this instance, we must prune the tree by eliminating nodes to
avoid overfitting the training data. Other approaches, which rely on concepts like minimal description
length [59,60], remove nodes in an attempt to explicitly balance the complexity of the tree with its fit to
the training data, can also be considered. Cross-validation on left-out training examples should be used to
ensure that the trees generalize beyond the examples used to construct them.

Random Forest: is a classification approach that uses an ensemble of data. It develops hundreds of
different classification trees and combines them into a composite classifier. The majority rule is used to
the votes of the individual classifiers to determine the final classification of a given sample. Each tree is
constructed using only a smaller sample (a bootstrap) of the training data to create uncorrelated and
dissimilar predictions. Furthermore, the method includes randomization in searching for the optimal splits
to boost the variety between them [52,61]. The base learner of RF is a binary tree constructed using
recursive partitioning (RPART) in which binary splits recursively partition the tree into homogeneous or
near homogeneous terminal nodes. A successful binary split sends data from a parent tree-node to its two
daughter nodes, improving the homogeneity of the daughter nodes resulting from the parent node [54].
Given an ensemble of classifiers h1 xð Þ; h2 xð Þ; . . . ; hk xð Þ, and with the training set drawn at random from
the distribution of the random vector X, Y, define the margin function as:

mg X ; Yð Þ ¼ avkI hk Xð Þ ¼ Yð Þ �max
j6¼Y

avkI hk Xð Þ ¼ jð Þ (1)

where I :ð Þ is the indicator function. The margin indicates the average number of votes for the correct class at
X, Youtnumbers the average vote for any other class. The greater the margin of error, the more confident the
categorization is. The generalization error is calculated as follows:

PE� ¼ PX ;Y ðmg X ; Yð Þ < 0Þ (2)

where the subscripts X, Y indicate that the probability is over the X, Y space. The more trees are added, RF
produces a limiting value of the generalization error, and thus, no overfitting occurs [54,61].

eXtreme Gradient Boosting (XGBoost): is an implementation of gradient boosting algorithm [62]. This
algorithm works on an intriguing approach known as “boosting”, which combines the performance of
numerous “weak” classifiers to build a powerful “committee”. XGBoost is available as an open-source
package [63] and have been used widely in research [62,64,65]. The tree ensemble model includes
functions as parameters and cannot be optimized using traditional optimization methods in Euclidean
space. Instead, the model is trained in an additive manner. Formally, let ŷ tð Þ

i be the prediction of the ith

instance at the tth iteration, we will need to add ft to minimize the following objective:

L tð Þ ¼
Xn

i¼1
l yi; ŷ

t�1ð Þ
i þ ft xið Þ

� �
þ � ftð Þ (3)

This means we greedily add the ft that most improves our model. Second-order approximation can be
used to quickly optimize the objective in the general setting:

~Lt ¼
Xn

i¼1
gift xið Þ þ 1

2
hif

2
t xið Þ

� �
þ � ftð Þ (4)

where gi ¼ @ŷ t�1ð Þ lðyi; ŷ t�1ð Þ
i Þ and hi ¼ @2

ŷ t�1ð Þ lðyi; ŷ t�1ð Þ
i Þ are first and second order gradient statistics on the

loss function.
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Define Ij ¼ fijq xið Þ ¼ jg as the instance set of leaf j. We can rewrite the previous equation by expanding
� as follows:

~Lt ¼
XT

j¼1

X
i2Ij gi

� �
xj þ 1

2

X
i2Ij hi þ k

� �
x2

j

� �
þ cT (6)

For a fixed structure q xð Þ, we can compute the optimal weight x�
j of leaf j by:

x�
j ¼ �

P
i2Ij giP

i2Ij hi þ k
(7)

And calculate the corresponding optimal value:

~Lt qð Þ ¼ � 1

2

XT

j¼1

P
i2Ij gi

� �2

P
i2Ij hi þ k

þ cT (8)

This equation can be used as a scoring function to measure the quality of a tree structure q. This score is
like the impurity score for evaluation decision trees, except that it is derived for a wider range of objective
functions.

CatBoost: is an open-source decision tree gradient boosting technique. It was created by Yandex
researchers and engineers and used by Yandex and other organizations such as CERN, Cloudflare, and
Careem taxi for search, recommendation systems, personal assistant, self-driving vehicles, weather
prediction, and many more other activities [66]. This library successfully handles categorical features and
surpasses current publicly available gradient boosting algorithms in terms of quality. CatBoost employs a
more efficient technique that minimizes overfitting and allows the entire dataset to be used for training
[67,68]. Assume you are given a dataset of observations D ¼ f Xi; Yið Þgi¼1::n where Xi ¼ xi;1; . . . ; xi;m

� �
is

a vector of m features, some numerical, some categorical, and Yi 2 R is a label value. Let
r ¼ r1; . . . ; rnð Þ be the permutation, then xrp;k is substituted with:
Pp�1

j¼1 xrj;k ¼ xrp;k
	 


Yrj þ a:PPp�1
j¼1 xrj;k ¼ xrp;k

	 
þ a
(10)

where P is a prior value and a > 0 is a weight of the prior. Each new tree in CatBoost, like all other gradient
boosting implementations, is built to approximate the gradients of the existing model. However, due to the
problem of biased pointwise gradient estimations, all classical boosting methods suffer from overfitting. To
solve this issue, CatBoost uses unbiased estimate of the gradient step. Let Fi be the model constructed after
building first i trees, gi Xk ; Ykð Þ be the gradient value on the kth training sample after building i trees. To make
the gradient gi Xk ;Ykð Þ unbiased with respect to the model Fi, then the model Fi should be trained without the
observation Xk .

3.5 Model Evaluation

Learning algorithm evaluation is not a simple task, as it needs a careful selection of assessment metrics,
error-estimation methodologies, statistical tests, and a realization that the results will never be entirely
conclusive. This is due, in part, to any evaluation tool's inherent bias and the frequent violation of the
assumptions on which it is based. When there are class disparities, as there are in the dataset utilized in
this study, the problem becomes considerably more complex. When data is skewed, the default, relatively
robust techniques employed for un-skewed data may fail catastrophically [69]. Because standard metrics
are intolerant to skewed domains, using them in imbalanced domains might result in sub-optimal
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classification models and sometimes misleading findings [70]. Three families of assessment metrics used in
the context of classification have been identified by several machine learning researchers. The threshold
metrics (e.g., accuracy, sensitivity-specificity metrics, and precision-recall metrics (F-measure)), ranking
techniques and metrics (e.g., Receiver Operating Characteristic (ROC) analysis and AUC), and
probabilistic metrics (e.g., log loss (cross entropy), root-mean-squared error) are all examples of these.
The most commonly used metric in imbalanced learning is the AUC-ROC curve [69–72]. The notion of
ROC analysis might be construed as follows in the context of the problem of class imbalance. Imagine
that instead of training a classifier at a single degree of class imbalance, it is trained at all potential levels
of imbalance. The true positive rate (or sensitivity) and the false positive rate are taken as a pair for each
of these levels (FPR), where:

True Positive Rate TPRð Þ ¼ True Positive

True Positiveþ False Negativeð Þ (11)

False Positive Rate FPRð Þ ¼ False Positive

False Positiveþ True Negativeð Þ (12)

where True Positive and True Negative is the number of samples which are correctly identified as positives or
negatives by the classifier in the test set, respectively, and False Negative and False Positive represent the
numbers of samples corresponding to those cases as they are mistakenly classified as benign or
malignant, respectively. The points represented by all the acquired pairings are shown in what is known
as the ROC space, a graph that depicts the true positive rate as a function of the false positive rate. The
dots are then connected to form a smooth curve that reflects the classifier’s ROC curve. The closer a
curve representing a classifier is from the top left corner of the ROC space (small FPR, large TPR) the
better the performance of that classifier. For example, f1 performs better than f2 in Fig. 3.

Figure 3: ROC curves for two hypothetical classifiers
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4 Results and Discussion

4.1 Feature Importance

In this study, RFE, SHAP, and Shap-Hypetune algorithms were used on the dataset to calculate feature
importance. Using RFE with Decision trees resulted in eliminating five features (N, HER2, Mets at Distant
LN, ICD_O_2 Histology, and Laterality), while using the same algorithm with random forest classifier
resulted in eliminating one feature only (Laterality). Shapely values along with Shap-hypetune were used
on XGBoost model to calculate feature importance, this resulted in excluding one feature only
(ICD_O_2 Histology). Finally, the CatBoost built-in feature importance method was used to calculate
feature importance, M and Laterality were the least important features. Fig. 4 shows an overview of
feature importance for the four models.

Understanding model decisions is essential for evaluating prediction consistency and spotting potential
causes of model bias. SHAP’s objective is to compute the contribution of each feature to the prediction of an
instance x to explain it. Shapley values are calculated using the SHAP explanation technique based on
coalitional game theory. Fig. 5 shows how each feature is contributing to the prediction of each of the
classes in CatBoost model. (Figs. 6–13) show the impact of each feature on the prediction of each class,
values on the right side of the axis support the prediction positively, while values on the left side have a
negative effect on the prediction. This is consistent with research results from the medical field, where
factors like the age, lymph nodes, stage, tumour size, information on ER, PR, and HER2 play an
important role in deciding which treatment(s) is to be considered [35,38,42,43].

4.2 Classification Results

This study applied machine learning algorithms including Decision Trees, Random Forest, XGBoost,
and CatBoost to predict a treatment plan using the SEER dataset, which includes sixteen features. After
cleaning the data, the dataset was split into a training set and a validation set, and the models were fit on
the training dataset containing 16 features. With five folds of stratified sampling inside each class, K-fold
cross-validation was utilized to measure prediction error while maintaining the overall class distribution.
AUC was used to evaluate the performance of the classifier. AUC for each class and the overall model
AUC among different models were compared; Fig. 14 shows an overview of the achieved AUC per
model per class. As can be seen, Random Forest performed better (overall AUC of 0.91) than the other

Figure 4: Feature importance per model
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models, which resulted in AUC of 0.88, 0.89, and 0.89 for Decision Trees, XGBoost, and CatBoost,
respectively. AUC per class for the Random Forest model was superior to all the other models, where the
model achieved an AUC of 0.98, 0.99, 0.99, 0.99, 0.78, 0.85, 0.84, and 0.88 for treatment classes A, B,
C, D, E, F, G, and H respectively.

Figure 5: Mean SHAP values

Figure 6: Class A-impact on model output
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Figure 7: Class B-impact on model output

Figure 8: Class C-impact on model output
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Figure 9: Class D-impact on model output

Figure 10: Class E-impact on model output
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Figure 11: Class F-impact on model output

Figure 12: Class G-impact on model output
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In the second phase, feature selection algorithms were utilized on the classification models, and the least
important features were excluded (as explained in Section 5.1.1). K-fold cross-validation (K = 5) was used to
measure model prediction; Fig. 15 shows an overview of the achieved AUC per model per class. There is no

Figure 13: Class H-impact on model output

Figure 14: AUC ROC before feature selection
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significant improvement for the overall model’s AUC or the AUC for each class. Yet again, Random Forest
was superior to all the other classifiers and has shown excellent performance in predicting a treatment plan;
indeed, it achieved an overall AUC of 0.91.

Considering both phases, we aimed to build a model that can successfully predict a treatment plan; we
chose the best available features to support prediction. As can be seen, the best achieved AUC was 0.91 for
the Random Forest model, which is considered a good result. However, we still have a low AUC for
treatment classes E, F, G, and H. These classes correspond to a treatment plan where surgery and other
treatments are recommended. Having a close look at the shapely summary plot for these classes (Figs.
10–13), one can see that the selected features are not supporting the model prediction for these classes.
The high values of features like Regional Nodes Eval, Regional Nodes positive, and Mets at Distant LN
negatively impact the prediction, especially for class E (AUC 0.78), which is the treatment plan that
recommends surgery only.

5 Conclusion

In this paper, we have investigated the issue of breast cancer treatment plan prediction using four well-
known classifiers, i.e., Decision Trees, Random Forest, XGBoost, and CatBoost. These classifiers were
utilized with the SEER dataset, which contains sixteen features. The best overall AUC achieved was
0.91 for the Random Forest classifier.

Feature importance, especially shapely summary plots, provided informative information on the
contribution of each of the selected features to the model prediction. It gives physicians a valuable hint to
pay greater attention to these critical aspects when diagnosing clinical breast tumours. With the reduced
number of features, Random Forest achieved the best overall AUC (0.91) across the other classifiers.
Feature importance also revealed some possible reasons for the low performance of the selected models

Figure 15: AUC ROC after feature selection
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in predicting classes that include surgery as part of the treatment plan. One could investigate this further and
try to find other features that would improve the performance of these models.

The study suggested a Random Forest model that may be further developed as a potential practical
methodology for a CDS system to propose a breast cancer treatment plan by providing physicians with a
second opinion. Such a CDS system can also help inexperienced physicians to avoid suggesting the
wrong treatment plan.
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