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Abstract: In many problems, to analyze the process/metabolism behavior, a mod-
el of the system is identified. The main gap is the weakness of current methods vs.
noisy environments. The primary objective of this study is to present a more
robust method against uncertainties. This paper proposes a new deep learning
scheme for modeling and identification applications. The suggested approach is
based on non-singleton type-3 fuzzy logic systems (NT3-FLSs) that can support
measurement errors and high-level uncertainties. Besides the rule optimization,
the antecedent parameters and the level of secondary memberships are also
adjusted by the suggested square root cubature Kalman filter (SCKF). In the learn-
ing algorithm, the presented NT3-FLSs are deeply learned, and their nonlinear
structure is preserved. The designed scheme is applied for modeling carbon cap-
ture and sequestration problem using real-world data sets. Through various ana-
lyses and comparisons, the better efficiency of the proposed fuzzy modeling
scheme is verified. The main advantages of the suggested approach include better
resistance against uncertainties, deep learning, and good convergence.

Keywords: Modeling; computational intelligence; fuzzy logic systems; modeling;
identification; deep learning; type-3 fuzzy systems; optimization

1 Introduction

Modeling and identification are essential in various applications. In many cases, it is required that a
mathematical model be obtained for a signal. This model can be used in control systems, forecasting
problems, protection issues, performance assessment, reverse engineering, etc. In most cases, just some
noisy measured data sets are available, and robust modeling systems and learning algorithms are needed
to deal with high-level uncertainties and construct an accurate model.
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Machine learning (ML) techniques are widely used for forecasting and modeling problems. In [1],
radiation forecasting is studied by NNs and SVM techniques. In [2], the forecasting of supply chain
demand is studied by an ML approach based on recurrent NNs. In [3], the forecasting of building energy
is considered, and the presented methods in the literature are reviewed and classified. The COVID-
19 forecasting is investigated in [4], and the superiority of the ML methods is shown. In [5], deep NNs
and SVM methods are used for heat load forecasting, and the better accuracy of ML methods is
investigated [6] suggests an ML method based on the Boltzmann Machine for Alzheimer’s forecasting.
Time series forecasting is studied in [7] by NNs and SVMs. The electrical load forecasting by bagged-
boosted NNs is studied in [8], and the excellent performance of ML methods against conventional
methods is shown. In [9], tunnel settlement forecasting is taken into account, a backpropagation NN
optimized by PSO is presented, and ML techniques’ effectiveness is proved. The ML techniques are
extended for tourist arrivals furcating in [10], and the ability of the ML methods are validated on Beijing
city tourist arrivals. The blood supply prediction is investigated in [11], using NNs, and ML methods.
Literature review shows that ML methods are extensively used for forecasting problems; however, CO,
solubility based on developed ML techniques has been rarely studied. The modeling techniques based on
Bayesian NNs are investigated in [12,13], and the performance of Bayesian NNs is examined in driving
problems.

Recently, the superiority of the type-2 FLS (T2-FLS) has been shown in ML methods and engineering
applications [14]. For example, in [15], the excellent performance of T2-FLS is proved in an energy
controller. T2-FLS models the earthquake hazard in [16], and it is shown that the use of T2FLS improves
the speed of hazard evaluation. In [17], a power allocation system is designed using T2-FLSs, and
network lifetime improvement is shown. The superiority of T2-FLSs in medical diagnosis applications is
comprehensively studied in [18]. The image classification method is designed by T2-FLSs in [19], and by
several statistical analyses, it is shown that T2FLSs outperform conventional techniques. In [20], the
problem of job shop scheduling is studied, and by several comparisons, the better performance of T2-
FLSs is demonstrated. The control performance improvement based on T2-FLSs is investigated in [21].
In [22], a microgrid islanding system is designed by T2-FLSs, and the better uncertainty modeling of T2-
FLSs is shown. The above review among many other applications of T2-FLSs demonstrates the good
capability of FLSs, especially high-order FLSs. Most recently, a developed version of T2-FLSs called
interval type-3 FLS has been presented [23]. However, the ML-based method using the T3-FLS approach
has been seldom studied. Motivated by the above discussion and review, in this study, a new approach
using T3-FLS with non-singleton fuzzification is designed for CO, solubility modeling and prediction.
Furthermore, a new approach is presented for optimization using SCKF and EKF.

Carbon dioxide (CO,) capture is one of the practical approaches to dealing with climate changes and
environmental concerns. One of the promising technologies is CO, capture and sequestration (CCS) in
brine. The forecasting of CO, solubility has the essential rule in this methodology, and the improvement
of the modeling and prediction accuracy has attracted much attention [24]. Various methods have been
presented for modeling and forecasting CO, solubility. For instance, in [25], the least-square support
vector machine (L-SVM) is introduced. In [26], a neuro-FLS is tuned with the particle swarm
optimization (PSO) method, and the corresponding R2 value for some testing data is analyzed. In [27],
the powerful learning method is developed for CCS, and its capability is compared with an optimized
neural network (NN) by a genetic algorithm (GA). In [28], a thermodynamic model is presented, and its
accuracy under various temperature and pressure conditions is investigated. In [29], L-SVM is designed,
and its inputs are considered pressure, temperature, and salinity. In [30], the Setschenow approach is
extended, and its performance is validated under different salt mixtures. In [31], the Setschenow equation
is developed for forecasting CO, solubility, and the water chemistry is studied.
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In the most of the above studies, the uncertainty of data are not considered, and the conventional learning
approaches are used. In this paper a new method is developed. The basic contributions include:

e A non-singleton T3-FLS is presented for nonlinear system modeling, considering the measurement
error of input data.

e The computations of non-singleton T3-FLS are formulated in detail.

e Unlike most studies, in addition to optimizing the rule database, the level of secondary memberships,
and antecedent parameters are also tuned by a new approach on the basis of SCKF. In the learning
scheme, the nonlinear structure is preserved. Also, the accuracy of the learning scheme is improved.

e The good accuracy and reliability of the designed scheme are demonstrated by several statistical
analyses and comparisons with other FLSs and learning techniques.

In the remain of this paper, the NT3-FLS, learning algorithm, data description, evaluation indexes,
simulations and conclusions are presented.

2 Non-singleton T3-FLS

The T3-FLS [32], are the new version of type-2 FLSs (T2-FLSs) in which their secondary membership is
a type-2 fuzzy set. The estimation capability in T3-FLSs has been improved. In contrast to conventional T2-
FLSs, the bounds of uncertainties in T3-FLSs are not constant. These features cause that T3-FLSs to be more
effective in identifying and modeling problems. In [33] a T3-FLS optimized by an unscented Kalman filter is
used for modeling applications. In the current study, the non-singleton version of T3-FLSs is developed. In
the singleton type of FLS, the input variables are considered to be crisp values and the measurement errors
are neglected. In this study, a non-singleton T3-FLS (NT3-FLS) is presented to handle measurement errors.
Also, in the current study, a new learning technique based on SCKF is presented for NT3-FLS. The details
are given in below.

1) The inputs are 7°X, P bar and M mol - Kg~' (see Fig. 1)
2) The input measurement errors are modeled by type-1 fuzzy sets as follows:

M = exp <—(L/M)2) )

2
O-XM

(T — 2 —(P — 2
T/ = exp (#) , P/ = exp <%> (2)
o g7
LT xp

where, x,/, 17 and yp are the centers of type-1 MFs and o, , 6,, and g, are the corresponding standard
division. At each sample time 7 the centers y,,, x; and yp are to be values of inputs M, T and P and the
standard divisions a,,, , 0,, and g, are considered to be fixed.

2) Two type-3 membership functions (MFs) are considered for inputs 7, P and M as MF} — MF%,
MF}, — MF? and MF), — MF3, respectively. The number of horizontal slices is considered to be 7.
The memberships are computed as follows (see Figs. 2 and 3).
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Figure 1: Flowchart of suggested T3-FLS

Similarly For input P, one has:
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Figure 2: The horizontal slices of type-3 MF
For input M, the relations are:
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Figure 3: Estimation performance for Test data (a) and Training data (b)
For better seen the computations of memberships, the Fig. 2 is presented. We see form Fig. 2, that in T3-

FLS, at each point we have four memberships. Two of them represent the upper/lower bounds for the upper
membership, and the two others denote the upper/lower bounds for the lower membership.

3) The all-possible rules are considered. Since we have 4 memberships (2 for upper memberships and
2 for lower memberships), the rule firings also have 4 degrees. The rule firings at &, are obtained

as:
vy, = /_iMF;lahpMH;\&hﬁMFM&h’ ',Dgh = ,HMFth:uMFﬂghﬂMFMgh (14)
g&h - EMFH&#MH’,\&#MFM&,Q %gh = HMF}\%EMF{;&},HMF/@\%
where, i, j, k =1, 2.
3) For the first type-reduction one has:
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where, R represents the number of rules, §, and 0, are /—th rule parameters.
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4) For the second type-reduction, it can be written:
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5) Finally, the estimated solubility (§ mol - Kg ') is obtained as:
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3 Learning Scheme
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The tuning scheme of rules and MF parameters are explained in this part.

3.1 Tuning Scheme of Rules

The rules are optimized by the EKF algorithm. The vector of rule parameters 0 and @ are learned by the
following cost function:

J = (sa—38)*/2 (18)
where, s, is the reference signal and 5§ is estimated solubility. The learning laws are obtained as:
0(1) = 0(r — 1) + G(1)E(t) (sa — 3), 0(1) = 0(r — 1) + P(1)E(F) (54 — 3) (19)

where, ¢ and ¢(#) represent covariance matrices for 0 and, 0. £(¢) and &(7)
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3.2 Optimizing of MF Parameters and Level of Horizontal Slices
The level of horizontal slices («;, and oy, =1, ..., n) and the centers of

MFs (turts Aarzs Amrzs Kar2s A, and yy2) are tuned by the SCKF algorithm. The details are
explained in below.
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1-The state-space of NT3-FLS is rewritten as:
{4+ 1) =)+ v(t), 5(t 4+ 1) = NT3 — FLS(x(¢)|{(¢2)) + v(¢) (23)
The covariance of v (¢) is shown by 7 and the covariance of v (¢) is denoted by ¢. u(¢) and { (¢) are:
T
T _ _
x(t) = [M’ T, P] ) C(t) = [XMF}? XMF%: XMF[{N XMF,%/Iv XMF},a XMF%? Ops vvvy Kyyy U1y -eey O‘n]

2-Compute cubature points C;, i=1..., 2(6 +2n) as:
Ci,t = WA + szl (24)

where, w,_; is the error covariance at time #—1, 6 + 2n is the number of centers of inputs and number of
horizontal slices. 4; is defined as:

, T
T O A R
P = : T (25)
\/6+2n{0 [ helement 0} Li=642n+1, ..., i=2(6+2n)

3-For each cubature point in (25), evaluate the Eq. (23):

Zi(t) = NT3 — FLS(x(1)|C;,), i=1, ..., 2(6 + 2n) (26)

4-From (78), compute the mean of Z as Z:

2(6+2n)
Zi= Y ZiI2(6 +2n)] @7
=1

Define II,_; as:

Moo= [z, V ~ 74" (28)
t—1 2(6 n 2n) 1,t—1 t—=1y + -+ £2(6+2n),1—1 t—1

5-From (80), the square-root of covariance matrix is obtained as:

Fzz,t—l = Tria([Htfl 5;‘,t71 D (29)
where Tria (-) denotes triangularization and 6, ,—; represents the square root of r,_;.

6-The cross-covariance II;., | is computed as:

HCz,t—l = Ct—IH[T_l (30)
where

Crnm e [C11 ¢ C N 31)

t—1 2(6 T 21]) 1,t—1 t—1y <+ 2(6+2n),t—1 t—1

7-Compute Kalman gain as:

K, = (Héz.,tfl/ r sz,z—1>/ rl, (32)
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8-Update the vector of trainable parameters { as:

G=01— K,(S, - Zz) (33)
9-Update error covariance as:
5r,t = Tria([ (o1 — KA1y Ktér,t—l D (34)

4 Data Description

The real-word data set to evaluate the presented NT3-FLS are taken from [34—37]. The number of total
data sets is 550, in which, 440 data sets are randomly selected for learning and remain 110 data sets
are considered testing. The pressure data is between 0.98 and 1400 bar, molality is between 0.016 and
6.14 mol-Kg ', the temperature is between 273.15 and 723.15 ‘K and solubility is between 0.01 and
12.35mol - Kg".

5 Examination Indexes
To evaluate the suggested approach, the following indexes are used:

RMSE = |+ (s —§)°, VAR = Zu (35)

7 RZ =1= =1 (36)

where, N is the number of data sets and s, and §; are the real and estimated solubility.

6 Simulation

The estimation capability of the designed NT3-FLS is examined in this section and is compared with
some similar methods.

6.1 Testing Data

The performance for both test and training data is depicted in Fig. 3. From Fig. 3, we observe that the
estimated signal reaches the measured solubility well. The supremum of the trajectory of absolute estimation
error is less than 0.5 m01~Kg71. The worst, best, and mean of TIC, VAR, RMSE, and R-squared for test data
are shown in Fig. 4. The mean of RMSE, VAR, TIC, and R-squared is about 0.2, 0.03, 0.07, and 0.97,
respectively. The values of TIC at iterations 1-10 are given in Fig. 5. The histogram plot shows that for
half of the iterations, the value of TIC is about 0.07, and its dispersion is too small. From the box plot, it
is seen that the mean of TIC is about 0.07. The values of RMSEs concerning the epochs and histogram-
box plots of RMSEs are depicted in Figs. 6a—6c. The mean of RMSE for test data is about 0.2, and its
dispersion in various iterations is too small. Similarly, the values of VAR with respect to the epochs,
histogram, and box plots are depicted in Figs. 7a—7c. It is seen that the variance of the approximated
signal is too small in various iterations. Finally, to show the robustness of the suggested estimation
approach, the trajectory of R-squared in iterations 1-10, the histogram, and box plots are shown in Fig. 8.
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One can see that the mean of R-squared is too close to one that represents a well and strong proficiency with
the desired reliability.

I Worst
0.9 I Mean =
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Figure 4: Testing data: RMSE, VAR, TIC and R-squared for
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Figure 5: Results for TIC of test data, (a) The values of TIC; (b) Histogram; (c¢) Box plot

6.2 Comparison and Discussion

To better evacuate the suggested NT3-FLS, a comparison is given. The RMSE and R-squared are
compared with radial-basis function NN (RBF-NN), type-1 FLS (T1-FLS), multi-layer-perceptron (MLP),
interval type-2 FLS (IT2-FLS) and general type-2 FLS (GT2-FLS). The comparisons in Table 1 reveal
the suggested NT3-FLS has better RMSE. Furthermore, the R-squared for our method is closer to one
that indicates better reliability.
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To further examine, a more comparison is presented with UKF [33], Extended Kalman filter (EKF) [38]
and Cubature Kalman filter (CKF) [39] algorithms. The RMSEs are presented in Table 2, for different
algorithms. One can observe that accuracy of the suggested learning technique is better than UKF, EKF,

and CKF algorithms.
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Table 1: RMSE comparison for various neuro-fuzzy systems

RBF 0.33 0.82
MLP 0.34 0.81
T1-FLS 0.31 0.83
IT2-FLS 0.27 0.85
GT2-FLS 0.25 0.94
NT3-FLS 0.21 0.97

Table 2: RMSE comparisons

Learning method RMSE
CKEF [39] 0.26
EKF [38] 0.34
UKEF [33] 0.23
Proposed algorithm 0.21

The proposed scheme can be developed by other fuzzy systems such as valued- T- spherical fuzzy
approach [40], fuzzy linear programming [41], pythagorean fuzzy sets [42,43]. Also, the suggested
approach can be used in various engineering applications such as control systems, signal processing,
modeling problems, dynamic behavior analyzing, and so on [44-56].
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7 Conclusion

In this study, the problem of CO, capture and sequestration is studied, and a new machine learning
approach is designed to forecast CO, solubility in brine on basis of effective factors. The suggested
method is designed by T3-FLSs and non-singleton fuzzification. The input measurement errors are
modeled by a Gaussian MF. The optimization of the rule parameters is done by EKF, and the MF
parameters and horizontal slice levels are tuned by SCKF. By a real-world data set the effectiveness of
the suggested method is examined. It is shown that the mean of RMSE of the test data for 10 running
times is less than 0.2 and also the mean of R-squared is more than 0.97 indicating a most reliable
method. Also, by furthermore analysis such as investigating the values of TIC and VAR for several
iterations, the fitness distribution is examined, and the good efficiency and accuracy of the suggested
approach are shown. The accuracy of the suggested T3-FLS scheme is compared with some other FLSs
such as RBF-NN, MLP, T1-FLS, IT2FLS, and GT2-FLS and other learning methods such as UKF, EKF,
and CKF algorithms. The comparison results demonstrate the superiority of the designed technique on
basis of NT3-FLS and the learning method using EKF and SCKF. For the future studies, the structure of
NT3-FLS can also be trained, in addition to its parameters.
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