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Abstract: Aiming at the problem that a single correlation filter model is
sensitive to complex scenes such as background interference and occlusion,
a tracking algorithm based on multi-time-space perception and instance-
specific proposals is proposed to optimize the mathematical model of the
correlation filter (CF). Firstly, according to the consistency of the changes
between the object frames and the filter frames, the mask matrix is introduced
into the objective function of the filter, so as to extract the spatio-temporal
information of the object with background awareness. Secondly, the object
function of multi-feature fusion is constructed for the object location, which
is optimized by the Lagrange method and solved by closed iteration. In the
process of filter optimization, the constraints term of time-space perception is
designed to enhance the learning ability of the CF to optimize the final track-
ing results. Finally, when the tracking results fluctuate, the boundary suppres-
sion factor is introduced into the instance-specific proposals to reduce the
risk of model drift effectively. The accuracy and success rate of the proposed
algorithm are verified by simulation analysis on two popular benchmarks, the
object tracking benchmark 2015 (OTB2015) and the temple color 128 (TC-
128). Extensive experimental results illustrate that the optimized appearance
model of the proposed algorithm is effective. The distance precision rate and
overlap success rate of the proposed algorithm are 0.756 and 0.656 on the
OTB2015 benchmark, which are better than the results of other competing
algorithms. The results of this study can solve the problem of real-time object
tracking in the real traffic environment and provide a specific reference for the
detection of traffic abnormalities.

Keywords: Complex scene; instance-specific proposals; correlation filter;
multi-time-space perception; object tracking

1 Introduction

Video object tracking [1–3] is an important research direction in computer vision and plays an
essential role in artificial intelligence and big data applications. Firstly, the initialized object position is
used as input, many candidate boxes are generated in the next frame, and the different representation
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features of the candidate boxes are extracted. Then, the candidate box is scored through a specific
mechanism. Finally, the candidate box with the highest score is used as the prediction object, or
multiple prediction results are fused to obtain a better result.

In the past few decades, many theories and algorithms about object detection and object tracking
have been proposed. Video datasets used to test the algorithm’s performance are also emerging, and
the performance and robustness of the algorithm are constantly improving. However, when dealing
with the problem of object tracking in real application scenarios, unpredictable interference factors will
appear at any time, such as the appearance change of the object, illumination variation, and occlusion,
which will affect the effect of the algorithm and bring significant challenges to track. By improving
the tracking performance of the tracking algorithm in complex scenes, such as object deformation,
background interference, fast motion, and occlusion, and realizing the balance between real-time
performance and robustness of the tracking algorithm, the needs of practical applications will be met.

Based on these aspects, researchers have conducted studies on the object appearance represen-
tation model and model update [4,5]. However, many problems still need to be addressed, such as
the ability to effectively use different features to adapt to different environments. Therefore, how
to optimize multi-feature coupling objective function and train an adaptive filter model are urgent
problems to be solved.

In this study, starting with the optimization of the objective function of the multi-feature
correlation filter (CF), a coupling correlation filter model based on the multi-time-space perception
is designed, and the dual filter with adaptive environment weights is used to locate the object,
which provide a reference for improving the tracking effect in a complex environment. The critical
contributions of the proposed algorithm are summarized as follows:

• The time-space information is established from the mask matrix and the neighborhood of the
object by calculating the consistency of the object frames and the filter frames to improve the
identification of the algorithm in complex scenes.

• The constraint term of time-space perception is introduced to enhance the learning ability of
the correlation filters to optimize the final tracking results. The objective function is optimized
by the Lagrange function and iteratively calculated in a closed form to obtain an adaptive filter
model.

• A multi-time-space perception complementary scheme is proposed based on CF to locate the
object by introducing adaptive position weights. The complementary scheme can adaptively
and perfectly combine these advantages of different features and solve the long-term tracking
in complex scenes, such as occlusion and background clutter.

• When the tracking results fluctuate, the proposed scheme of instance-specific proposals is
designed to reduce the risk of model drift effectively.

2 State of the Art

We will discuss the tracking methods related to this work in this section.

2.1 Tracking by Correlation Filters
Before the emergence of the object tracking algorithm based on CF, all tracking operations were

completed in the time domain. The amount of data in matrix operation is large, and the calculation
time of the algorithm is long. The object tracking algorithms based on CF [6,7] convert the tracking
operations into the frequency domain, which can reduce the amount of calculation and ensure data
integrity. Many domestic and foreign scholars have introduced CF into object tracking algorithms
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[8,9] and achieved excellent results in the latest open datasets and academic competitions. The trackers
based on CF only need to extract features from the searching box once and generate many candidate
samples through cyclic convolution operation. According to the convolution theorem, convolution
calculation can be transformed into multiplication by elements in the frequency domain. The tracker
can effectively learn from the training samples, which significantly reduces computational complexity.
Bolme et al. introduce the CF into the tracking field for the first time and propose to use the minimum
output sum of square error (MOSSE) filter to realize the tracking task. This algorithm can obtain
faster-tracking speed while ensuring accuracy [10]. However, when the MOSSE filter is used for dense
sampling, the tracking performance will degrade due to insufficient training samples. Based on the
MOSSE algorithm, Danelljan et al. add a regular term in the construction of the objective function
to alleviate the situation that the sample has zero frequency components in the frequency domain
and build a scale pyramid to estimate the object scale [11]. Henriques et al. [12] propose the kernel
correlation filter (KCF) algorithm, which significantly improves the object tracking speed by extracting
the characteristics of the histogram of oriented gradient (HOG) and combining it with ridge regression
and cyclic matrix. Hare et al. [13] design an adaptive object tracking algorithm (Struck) based on
structured support vector machine (SVM), which omits the classification process and directly outputs
the results. Liu et al. [14] use the locally sensitive histogram and super-pixel segmentation to represent
the object appearance model and propose a CF model based on multi-feature fusion, which achieves
good tracking results.

2.2 Tracking by Multi-Feature Objective Function Optimization
Karunasekera et al. [15] discuss the latest development trend and progress of tracking algorithm

and compare the performance of the tracker based on CF and non-correlation filter, which provides an
essential reference for the research of object tracking algorithm. The continuous convolution operators
(C-COT) algorithm [16] uses the method of weighting different filter coefficients for regularization
constraints, and the background region is allocated with low coefficients. Kim et al. design a tracking
algorithm with channel and spatial reliability [17], which divides the candidate region into foreground
and background and then performs spatial regularization processing. Ma et al. propose a boundary-
constrained tracking algorithm [18], which only activates the coefficients of the object region and
forces the coefficients of the corresponding background region in the filter to 0. Yuan et al. [19]
propose a real-time tracking algorithm combining gradient feature and color feature with a complex
ridge regression framework. Liu et al. [20] design a long-term tracking algorithm based on dual model
fusion and carry out adaptive fusion of the sparse kernel correlation filter model and color model to
realize long-term tracking. Liu et al. [21] fuse the scale-invariant feature transform (SIFT) feature
and the color histogram feature for object matching, and mark the motion state of the object in
each frame to achieve object tracking. The abovementioned algorithms don’t take into account the
mathematical modeling of multi-feature objective function and the optimization of filter model and
ignore the diversified advantages of multi-feature in different scenes.

2.3 Tracking by Region Proposals
The correlation filter is used to solve the long-time tracking, and the performance of the

tracking algorithm is greatly improved with the help of the re-detection function [22,23]. A scale-
driven convolutional neural network (SD-CNN) model is proposed in reference [24] to improve the
object detection accuracy, which uses heads as the dominant and visible features to localize people
in videos consisting of low-density to high-density crowds. Due to the complex and changeable
traffic environment, the possible deformation of the object, and background interference, it is easy
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to cause tracking failure. Zhang et al. [25] propose a re-detection architecture based on the Siam
network (SiamRPN), which uses the first frame annotation and the previous frame prediction for
dual detection, and combines with the trajectory-based dynamic programming algorithm to model the
complete history of the tracking object to achieve long-term object tracking. Pareek et al. [26] calculate
the average value of all tracking results before the current frame and update the object template. With
continuous tracking, the object template is constantly polluted, which eventually leads to tracking
drift. When the object is blocked, the impact of this pollution will be more obvious. Shan et al. [27]
design a sample pool based on high confidence and use the template in the reserved sample pool to
train and update the model online. The algorithm can maintain certain robustness. Wang et al. [28]
introduce the Kalman filter [29] to compensate for the position of the occluded part of the object,
which plays well on the tracking benchmark. The above mentioned re-detection methods have less
consideration for the effectiveness of the initial frame, and there are still unsatisfactory or inefficient
solutions to different complex scenes.

Given the shortcomings of the abovementioned algorithms in the objective function modeling,
the CF is optimized from the modeling method of coupling objective function. By looking for the
coupling relationship between features, the tracking position is adaptively obtained according to the
contribution of different features.

The remainder of this study is organized as follows. Section 3 describes the overall framework
of the proposed algorithm, constructs the multi-time-space perception correlation filter and location
prediction algorithm, and discusses the execution steps of the algorithm in detail. Section 4 verifies
the tracking effect of the algorithm on the object tracking benchmark 2015 (OTB2015) and the temple
color 128 (TC-128) and compares it with other compared algorithms through experiments in two
aspects, namely, quantitative analysis and qualitative analysis. Section 5 summarizes the conclusions.

3 Methodology

A correlation filter tracking algorithm based on time-space perception is proposed by unified
modeling of different feature objective functions and exploring the constraint relationship between
objective functions. Based on the consistency of the object models of two adjacent frames, the objective
function of multi-time-space perception coupling is constructed and optimized. The correlation filter
models CF1 and CF2 corresponding to different features are obtained respectively (see Sections 3.2–3.3
for details). The position corresponding to the maximum response is calculated using the trained filter
model and the final object position is estimated with dynamic weighting (see Section 3.4 for details).
Given the loss of object tracking, a solution for instance-specific proposals (see Section 3.5 for details)
is proposed to achieve continuous tracking. The algorithm model is shown in Fig. 1. The blue box
represents the searching box, the red box represents the detecting result, and the green box represents
the instance-specific proposals.

3.1 Discriminative Correlation Filter Model
The discriminative correlation filter is a regularized least squares objective function to solve the

filter ωt. The objective function [3] is as follows:

�ωt = arg min
ωt

∥∥∥∥∥
D∑

d=1

ωd
t ∗ xd

t − y

∥∥∥∥∥
2

+ λ

D∑
d=1

∥∥ωd
t

∥∥2
, (1)
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Figure 1: Algorithm model

where ωt is the correlation filter of the frame t, ωd
t is the filter corresponding to each feature dimension,

and xd
t is the feature map corresponding to each feature of the input candidate box. d = 1, 2, · · · , D, D

is the number of feature dimensions, with a value of 2. λ is the regularization coefficient that increases
the generalization ability of the model, ∗ is the relevant operation in the time domain, and y is the
relevant expected output. We convert the objective function to the frequency domain and omit the
subscript t, which can be expressed as:

ω̂ = arg min
ω

∥∥∥∥∥
D∑

d=1

ω̂
d � x̂d − ŷ

∥∥∥∥∥ + λ

D∑
d=1

∥∥ω̂d
∥∥2

. (2)

� represents the point multiplication operation in the frequency domain, ω̂, x̂, and ŷ are the
Fourier transform of ω̂, x̂, and ŷ, respectively, and ω̂ represents complex conjugation. The point
multiplication in the frequency domain is the multiplication of each element. The process of optimizing
Eq. (2) is to optimize the solution at the pixel level, as shown in Eqs. (3)–(6).
∂
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x̂ijx̂ij + λ
, (6)
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where i and j are the index of pixels, (i, j) ∈ {0, 1, · · · , W − 1} × {0, 1, · · · , H − 1}, W is the width of
the candidate area, and H is the height of the candidate area. According to Eq. (7), the filter of each
feature dimension is obtained, which is expressed as follows:

ω̂l = x̂lŷ
D∑

d=1

x̂dx̂
d + λ

= Al
t

Bt

. (7)

The filter update strategy of the frame t + 1 is shown as follows:

Al
t+1 = (1 − β) Al

t + βx̂
l

t ŷt, Bt+1 = (1 − β) Bt + β

D∑
d=1

x̂d
t x̂

d

t , (8)

where β is the learning rate, Al
t+1 and Bt are the numerator and denominator of the filter ω̂l

t+1. When the
model is updated, the update operation is carried out according to the numerator and denominator.
Given a frame, its feature vector is expressed by z, and the filter response can be calculated by Eq. (9).

y = f (z) = F−1

(
D∑

d=1

A
d
zd/ (B + λ)

)
(9)

3.2 Proposed Multi-Time-Space Perception Objective Function Model
The correlation filter based on the HOG feature is robust in motion blur and illumination vari-

ation, but it is susceptible to object deformation. The texture feature is robust in similar background
color and object deformation. Therefore, in order to solve the problems of similar background color,
illumination variation, and object deformation in the long-term tracking process, the dual independent
time-space perception filters used for object location are trained according to the HOG features and
texture features, respectively.

According to Eq. (2), the objective functions of the HOG feature and texture feature are obtained
respectively, as shown in Eqs. (10) and (11).

arg min
ωhog

∥∥∥∥∥
D∑

d=1

ωd
hog ∗ xd

hog − yhog
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∥∥2
(10)

arg min
ωtex

∥∥∥∥∥
D∑
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ωd

tex
∗ xd

tex − ytex
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2

+ λ
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∥∥ωd
tex

∥∥2
(11)

Subscripts hog and tex represent the HOG feature and texture feature of candidate regions,
respectively. Generally, the object and background of the adjacent two frames change little or are
similar in the object tracking in the real environment. So, the object models of the adjacent two frames
will be the consistent; that the filter ωt+1 obtained from the frame t + 1 is the same as the filter ωt

obtained from the frame t, which are expressed by the following mathematical model:

arg min
ωhog

∥∥ωhog
t+1 − ωhog

t

∥∥2
, (12)

arg min
ωtex

∥∥ωtex
t+1 − ωtex

t

∥∥2
. (13)
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The mask matrix M [4] is introduced into the filter to make it have a specific ability to perceive the
background information in space. Combined with Eqs. (10)–(13), the objective function of multi-time-
space perception coupling is constructed, and the proposed spatio-temporal perception constraint is
shown in Eq. (14).

arg min
ωhog ,ωtex
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where ξ and ζ are trade-off coefficients, which control the strength of the regularization term formed
by the difference of filters between adjacent frames to prevent it from becoming more significant in the
process of optimization solution. Otherwise, when the object is blocked, it will lead to tracking drift.

3.3 Optimization Process of the Proposed Objective Function
The objective function represented by Eq. (14) is optimized by constructing the Lagrange method,

which is constructed by a Lagrange multiplier combined with certain constraints. Then, ADMM
optimization [30] is iteratively updated in a closed form, and the constructed Lagrange function is
as follows:
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(15)

τ t+1
hog and ρ t+1

hog are Lagrange penalty parameters and multipliers, respectively. Eq. (15) is optimized
and solved by optimizing the following objective functions:

arg min �
(
ωt+1

hog , ωt+1
tex , ρ t+1

hog , τ t+1
hog

)
. (16)

(1) Solution of ωt+1
hog

Given ωt+1
tex , ρ t+1

hog , and τ t+1
hog , the variable ωt+1

hog is solved by optimizing the corresponding objective
function, which is expressed as follows:
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(17)

The closed solution is obtained in the form of a contraction threshold, which is expressed as
follows:

ωt+1
hog = F−1
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(2) Solution of ωt+1
tex

Given ωt+1
hog , ρ t+1

hog , and τ t+1
hog , the variable ωt+1

tex is solved by optimizing the corresponding objective
function, which is expressed as follows:
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The closed solution is obtained in the form of a contraction threshold, which is expressed as
follows:

ωt+1
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(3) Solution of ρ t+1
hog and τ t+1

hog

Given ωt+1
hog and ωt+1

tex , variables ρ t+1
hog and τ t+1

hog are updated as follows:

ρ t+1
hog = ρ t+1

hog + τ t+1
hog

(
ωt+1

hog − ωt+1
tex

)
. (21)

(4) Update the Lagrange multiplier

The updating method of the Lagrange multiplier ρ t+1
hog is shown in Eq. (22), where ρ̂t represents the

Fourier transform of the Lagrange multiplier at the i-th iteration, ω̂i+1
hog and ω̂i+1

tex denote the solution of
the corresponding sub-problem at the i + 1-th iteration.

ρ̂i+1 = ρ̂t + ω̂i+1
hog − ω̂i+1

tex (22)

Repeating the above four steps to optimize, a set of optimal filters and spatial regularization
weights can be obtained after convergence.

3.4 Proposed Object Location Estimation Model
On the premise that the position and size of the previous frame are known, the position of the

current frame will be solved. The current frame represents the frame t, the object position of the frame
t − 1 is Pt−1 = (xt−1, yt−1), and the scale is Sln

t−1 = (anWt−1, anHt−1). Regional samples are obtained by
using the cyclic shift of the matrix. The scale of each candidate sample is Sln

t−1 and the regional samples
named X padding

t are expressed as follows:

X padding
t = {xt, yt |‖Pt − Pt−1‖ < padding } . (23)

The candidate samples Zt are obtained by calculating the real rectangular box Dt−1 at the object
position Pt−1 = (xt−1, yt−1) with X padding

t using Eq. (24).

Zt =
{

Z : 0.5 <
area

(
Dt−1 ∩ X padding

t

)
area

(
Dt−1 ∪ X padding

t

) < 0.9

}
(24)
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According to the time-space perception correlation filter ωt−1
hog and ωt−1

tex provided in the frame t−1,
the correlation responses f t

hog (z) and f t
tex (z) of the HOG feature zt

hog and the texture feature zt
tex of the

candidate samples Zt are calculated, respectively.

f t
hog (z) = F−1

(
ω̂

t−1

hog � Zt
hog

)
(25)

f t
tex (z) = F−1

(
ω̂

t−1

tex � Zt
tex

)
(26)

The corresponding maximum response values f max
hog and f max

tex are obtained respectively according to
Eqs. (25) and (26), which are expressed as follows:

f max
hog = arg max

n

(
fmax

(
Z1

t

)
, fmax

(
Z2

t

)
, · · · fmax

(
Zn

t

))
, (27)

f max
tex = arg max

n

(
ftex

(
Z1

t

)
, ftex

(
Z2

t

)
, · · · ftex

(
Zn

t

))
. (28)

The object position response diagram ffianl is calculated by Eq. (29) as follows :

ffinal = κhogf max
hog + κtexf max

tex . (29)

where κhog and κtex are the object position weight coefficients estimated by the HOG feature and texture
feature, respectively. The weight coefficients related to the maximum response values corresponding
to different features are calculated as follows:

κhog = F
(
f max

hog

)
F

(
f max

hog

) + F
(
f max

tex

) , (30)

κtex = F
(
f max

tex

)
F

(
f max

hog

) + F
(
f max

tex

) . (31)

Different features have different abilities to distinguish objects and backgrounds in different

tracking environments. The function F (x) is expressed as F (x) = 1
1 + exp (−x)

which can balance

the interference of background to feature contribution.

3.5 Proposed Instance-Specific Proposals for Re-Detection
In a real environment, object tracking may be interfered with different factors, resulting in

tracking failure. How to effectively restore retraining is also a significant problem when designing
an object tracking algorithm. When g (·) defined as the maximum response of the filter is less than the
threshold T0, the instance-specific proposals is started. The Edgebox [31] method is used to generate
the candidate region of the whole image and calculate its reliability score. The candidate region with the
highest confidence is the re-detection result. The candidate regions generated by the EdgeBox include
two types, one is near the prediction object (represented by Bs), and the other is the whole image region
(represented by Bh). B (B ∈ {Bs, Bh}) is a candidate bounding box in Bs or Bh, which is expressed as
(x, y, w, h). (x, y) is the central coordinate of the bounding box and (w, h) is the width and height of
the bounding box. The similarity of the two edge groups

{
Bi, Bj ∈ B

}
is determined by the average

position expressed as
(
xi, xj

)
and the average direction expressed as

(
αi, αj

)
. The similarity of edge

boxes is represented by D
(
Bi, Bj

) = ∣∣cos
(
αi − αij

)
cos

(
αj − αij

)∣∣2
, where αij represents the direction

deviation of two edge groups, which is obtained from the average position xi and xj.
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The candidate boxes are searched in the whole image using the Edgebox algorithm, in which
case the candidate boxes may contain background or other interfering objects. Noise suppression
promotes the determination of the final object candidate box. The contour that intersects with the
candidate region Z which includes the object does not belong to the object. When the candidate region
is suppressed, the influence of the background is suppressed accordingly.

An inhibitory factor χZ (B) is designed, expressed as χZ (B) = max
P

|P|−1∏
i=1

D (bi, bi+1). P with a length

of |P| refers to the candidate box path which ends at b|P|. The response score of each boundary box
g

(
bi

t

)
is recalculated after calculating all boundary suppression factors in candidate region Z.

According to the filter response score g
(
bi

t

)
, N recommended areas with high scores are considered

as object candidates. The Euclidean distance between the candidate boxes (bi
t, i = 1, 2, · · · N) of the

current frame and the CF results (pt−1, (xt−1, yt−1)) is calculated as follows:

D
(
bi

t, pt−1

) = exp
(

− 1
2σ 2

∥∥(
xi

t, yi
t

) − (xt−1, yt−1)
∥∥2

)
. (32)

σ is the diagonal length of the initial object size, and (xt, yt) indicates the object position predicted
in the frame t. The re-detection result is selected as the optimal scheme by minimizing the joint
weighting term of confidence and Euclidean distance:

arg min
i,j

βg
(
bi

t

) + (1 − β) D
(
bi

t, bt−j

)
, g

(
bi

t

)
> T0. (33)

The object is blocked for a long time in the video sequence Jogging. Fig. 2 shows the candidate
region recommendation results after the object reappears. The red boundary box represents the
manually marked position, and the green boundary boxes represent the recommendation candidate
regions. The regions generated by the Edgebox, as shown in Fig. 2a, stay near the object position when
it is blocked. The proposed regions generated in this study, as shown in Fig. 2b, are around the object,
which is more suitable for solving the problem of re-detection.

(a) Proposals of EdgeBox (b) Instance-specific proposals

Figure 2: Region proposals

3.6 Model Update Scheme
When there is more than one similar object in the scene, the tracker treats the similar object as the

background. If the maximum response value g (·) of the current frame is greater than the threshold
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T0, the object model is updated. Assuming the learning rate is γ , the updating strategy of the object
model is expressed as follows:

ωt+1 = (1 − γ ) ωt+1 + γωt. (34)

3.7 Algorithm Flow
The response diagrams with different characteristics are calculated using the learned multi-space-

time perception filter model to obtain the object location adaptive to the real environment. The main
working steps of the proposed algorithm are shown as follows:

Algorithm 1: Proposed Tracking Algorithm
Input: Image It, previous object position: (xt−1, yt−1, wt−1, ht−1)

Output: Estimated object position: (xt, yt, wt, ht)

1: Crop the search window in It centered at (xt−1, yt−1) and extract features
2: Train multi-time-space perception correlation filters ωt

hog and ωt
tex with different features

3: Calculate the adaptive weights of different features according to Eqs. (30) and (31), and calculate
the fusion response diagram using Eq. (29)
4: Calculate the maximum position of the fusion response diagram and obtain the object position
5: if (fmax > T0), then
6: Update the filter model, else
7: Retrieve the object location with instance-specific proposals

4 Result Analysis and Discussion

To evaluate the multi-time-space perception coupling tracking algorithm based on the correlation
filter proposed in Section 3 comprehensively and objectively, a large number of experiments are carried
out on the OTB2015 [32] benchmark, which contains 11 video challenge attributes, covering the
complex scenes of various challenging factors contained in the real application environment. The
sensitivity of the algorithm is analyzed by using the benchmark protocol and different parameter
values, and the parameters with the best comprehensive tracking effect are selected. The parameter
settings are as follows: the regularization parameter λ is 0.01, the object model update threshold
T0 is 0.2, and the learning rate γ is 0.85. The proposed algorithm is compared with other four
competing algorithms: KCF [12], C-COT [16], an unobtrusive multi-occupant detection (uMoDT) [9],
and SiamRPN [25] from two aspects of quantitative analysis and qualitative analysis. The experimental
simulation environment is MATLAB R2018b. The computer configuration are as follows: Intel Core
i7-8550U CPU, 2.0 GHZ frequency, 8GB memory, and Windows 10 operating system.

The regularization term prevents model overfitting, and its value affects the tracking performance
directly. If λ is too small, the regularization term is inactive. In contrast, if λ is too large, the
regularization term dominates the overall error. The distance precision rate (DPR) and overlap success
rate (OSR) achieved by the proposed tracker with different regularization terms are listed in Table 1.
As the regularization term changes slowly, it is proved that the proposed multi-space-time perception
model has strong stability while bringing performance gain.
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Table 1: DPR and OSR achieved with different regularization term

Regularization term λ DPR OSR

1 0.526 0.452
10−1 0.641 0.603
10−2 0.756 0.656
10−3 0.761 0.635
10−4 0.645 0.628
10−5 0.632 0.582

4.1 Evaluating Indicator
The experiments in this study are mainly carried out on the OTB2015 and the TC-128 benchmarks.

The algorithm is compared and analyzed with two evaluation indexes which are DPR and OSR.

(1) DPR

The center position error (CPE) is calculated by using the Euclidean distance between the center
point of the object position and the center point of the manually marked object. As CPE decreases, the
accuracy and stability of the algorithm increase. DPR refers to the percentage of video frames whose
Euclidean distance are less than a given threshold. With different thresholds and different ratios, a
curve is obtained. Generally, the threshold is set to 20 pixels.

(2) OSR

The overlap rate (OR) is calculated by using the predicted bounding box S1 estimated by the
tracking algorithm and the ground-truth bounding box S2. As the OR increases, the success rate
increases. The intersection and union of these two bounding boxes S1 and S2 are represented by ∩ and
∪, and Area (·) represents the area. The OR S is calculated using S = |Area (S1 ∩ S2)| / |Area (S1 ∪ S2)|.
OSR represents the percentage of video frames whose OR scores are bigger than another given
threshold.

4.2 Quantitative Analysis
The algorithms will be evaluated and analyzed on the OTB2015 and the TC-128 benchmarks.

4.2.1 Experiment on the OTB2015

(1) Comparison and analysis of DPR

The typical evaluation method is to initialize the object position in ground-truth for the tracking
of subsequent frames, so as to calculate the accuracy and success rate of other frames. This evaluation
standard is called one-pass evaluation (OPE). Fig. 3 shows the comparison results of CPE of different
algorithms in different video sequences where the objects are disturbed by occlusion for a long time,
motion blur, and scale variation. The results show that the uMoDT algorithm is prone to tracking loss
when the background and foreground colors are similar. Although the SiamRPN algorithm achieves
a good tracking effect, its efficiency is low due to the increase in re-location per frame. The CPE of the
algorithm in this study maintains a low value, and its the maximum is only 23. The tracking window
can converge to the object area and maintain good tracking results.
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The object in the video sequence Biker has the characteristics of motion blur, low resolution,
and fast motion. The comparison results of the DPR of different algorithms in the video sequence
Biker are shown in Fig. 4. Fig. 4a shows the maximum response curve of the algorithm in this study
in each frame of the video sequence. The maximum response values are above 0.2, which meets the
threshold conditions, and the object model is updated commonly. As can be seen from Fig. 4b, when
the threshold is set to 8, the DPR obtained by the algorithm in this study is close to 1, indicating
the effectiveness of the threshold setting. Otherwise, the tracking accuracy of KCF and uMoDT
algorithms are very low, which are close to 0. The object is correctly tracked only in the first few
frames of the video sequence. When the object leaves the line of sight, the tracking will drift. In the
later tracking process, the object cannot be located.

Fig. 5 shows the complete statistical results of the DPR of the comparison algorithms on the
OTB2015. The DPR of this study reaches 0.756, which is 19.6% higher than that of the second-
ranked SiamRPN algorithm (0.608). Compared with the KCF tracker with a precision rate of 0.525,
the performance is improved by more than 30.5%. In complex environments such as illumination
variation and occlusion, the proposed algorithm achieves high accuracy and shows strong robustness.
The proposed algorithm constructs an adaptive object function, which improves the tracking effect of
the algorithm in various complex environments.

(a) Comparison of CPE in Biker (b) Comparison of CPE in Girls2

Figure 3: Comparison results of CPE in different test videos

(a) Maximum response of this study (b) DPR of this study in Biker (c) DPR of SiamRPN in Biker

Figure 4: (Continued)
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(d) DPR of C-COT in Biker (e) DPR of KCF in Biker (f) DPR of uMoDT in Biker

Figure 4: Comparison of DPR of different algorithms in Biker

Figure 5: Comparison of DPR on the OTB2015
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(2) Comparison and analysis of OSR

Fig. 6 shows the complete statistical results of the OSR of the comparison algorithms on the
OTB2015. The OSR of this study reaches 0.656, which is 11.7% higher than that of the second-
ranked SiamRPN algorithm (0.579). Compared with the KCF tracker whose accuracy is 0.516, the
performance of the proposed algorithm is improved by more than 21.3%. In the video sequence where
the object is occluded for a long time, the instance-specific proposal scheme designed in this study
can better relocate the object and achieve a high success rate. Other comparison algorithms have poor
performance in dealing with the problem that the object disappears for a long time.

Figure 6: Comparison of OSR on the OTB2015

Fig. 7 shows the comparison results of OR of different algorithms in video sequences Biker and
Girls2. The average OR of the algorithm in this study are 0.70 and 0.82, respectively. The candidate
region recommendation module is started since the object is out of view around frame 160, and the
normal tracking mode is quickly restored. The OR of the uMoDT algorithm is only 0.25, and the
robustness of this algorithm is weak in the scene of object disappearance.
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(a) Comparison of OR in Biker       (b) Comparison of OR in Girls2

Figure 7: Comparison results of OR in different video sequences

(3) Performance analysis

The tracking speed described by FPS (frames per second) are shown in Table 2. Although the
proposed tracker is not the fastest, it is better than other comparison trackers in the tracking accuracy.
The proposed algorithm has a tracking speed of 60FPS, which can meet the real-time tracking
requirements.

Table 2: Tracking effect of different algorithms

Performance index This study C-COT KCF uMoDT SiamRPN

Tracking speed 60 37 89 45 9

Fig. 8 shows the OSR and tracking speed between the proposed tracker and other comparison
trackers on the OTB2015. The abscissa represents the tracking speed, and the ordinate represents the
OSR. The results show that the proposed tracker achieves the highest tracking accuracy. However, the
tracking speed needs to be improved. In the future study, we prepare to use the SVM to optimize the
re-location module to improve the speed of the proposed algorithm.

4.2.2 Experiment on the TC-128

The comparisons with the state-of-the-art trackers on the TC-128 [33], including KCF [12],
C-COT [16], uMoDT [9], and SiamRPN [25], are shown in Table 3. The first and second best values
are highlighted in bold and underlined. It shows that the proposed tracking algorithm obtains the
best performance with a DPR of 0.749 and an OSR of 0.637. Compared with uMoDT, the proposed
algorithm achieves significant improvements, which shows the benefits of using the multi-time-space
perception objective function model.
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Figure 8: Comparison of the efficiency of different algorithms

Table 3: Comparisons with the state-of-art trackers in terms of DPR and OSR on the TC-128

Dataset Evaluation criterion This study C-COT KCF uMoDT SiamRPN

TC-128 DPR 0.749 0.621 0.634 0.549 0.673
OSR 0.637 0.497 0.534 0.468 0.603

4.3 Qualitative Analysis
The comprehensive effects of the algorithms on all video sequences of the OTB2015 are analyzed

and discussed in Section 4.2. The visualization results in all video sequences of the OTB2015 and
the TC-128 benchmarks will be analyzed to more intuitively illustrate the accuracy of the proposed
algorithm in this section. Fig. 9 shows the visual comparison results between the proposed algorithm
and the other four competing algorithms (KCF, C-COT, uMoDT, and SiamRPN) in four typical video
sequences, namely, Car2, Car4, Biker, and Girl2 with different complex environments.

The fast speed, low resolution, and significant background interference of the object in the video
sequence Car2, as shown in Fig. 9a, lead to significant central position error and small overlap rate
when the object changes lanes, but it can still ensure that the object is in the tracking box. When
the object is gradually away from the line of sight, other comparison algorithms can also track the
object correctly, but there are some deviations. It shows that these algorithms are robust in complex
environment with low resolution and changing illumination. The speed of the tracking object in the
video sequence Car4, as shown in Fig. 9b, is fast, and the illumination changes significantly, which
leads to some errors in tracking when the object changes lanes, but there is no failure. The SiamRPN
algorithm has different degrees of drift and even leads to tracking failure. The KCF algorithm drifts
from 100 frames, and the overlap rate is 0. Around 450 frames, the overlap rate rises to 0.3, which
still can’t meet the standard of accurate tracking. The resolution is low in the video sequence Biker,
as shown in Fig. 9c, and the motion blur phenomenon occurs in the rapid movement of the object.
When the object is gradually away from the line of sight, the proposed algorithm results deviate from
the manual annotation, causing a central position error, which is close to the tracking effect of the
C-COT algorithm and SiamRPN algorithm. Due to the rotation change of the object attitude, other
comparison algorithms drift and fail. The object in Fig. 9d has deformation and rotation, and other
comparison algorithms cannot accurately locate the object. However, the proposed tracker benefits
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from the robust object appearance representation model, which can locate the object accurately. The
SiamRPN tracker performs well in deformation and fast-moving sequences (Car2), but fails to track
in sequences where the object is occluded (Girls2). Other comparison algorithms can’t solve the
problem of object tracking in complex scenes with both deformation and background interference.
The qualitative analysis results show that the multi-time-space perception coupling model can adapt
to the complex scenes such as background noise, illumination change, color similarity, and occlusion.
The proposed algorithm has obvious advantages, which further verifies the effectiveness of the re-
detection module.

#0015 #0100 #0300 #0700

(a) Video sequence Car2

#0080 #0175 #0240 #0495

(b) Video sequence Car4

#0005 #0049 #096 #0140

(c) Video sequence Biker

#0015 #0103 #0130 #0193

(d) Video sequence Girl2

This Study SiamRPN KCFuMoDTC-COT

Figure 9: Qualitative comparison of different algorithms in typical video sequences

4.4 Failure Cases
In the Gym video sequence of the OTB2015, the proposed approach performs poor in the presence

of in-plane rotation. As the proposed algorithm uses instance-specific proposals with a small step
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size to generate scale proposals that consider the background regions as parts, the model is updated
inaccurately in the rotation scene.

5 Conclusion

Starting with modeling the objective function, the filter model of multi-time-space perception
is designed based on exploring the coupling relationship between different feature filter models and
sparse constraints of different filter models. The following conclusions can be drawn:

(1) Considering the small changes between the object and background of two adjacent frames, the
prediction accuracy can be improved by constructing a multi-time-space perception coupling objective
function to train the object model, which is adaptively optimized according to the real environment.

(2) The mask matrix and the constraints term of time-space perception are introduced into the
object function to enhance the learning ability of the CF to optimize the final tracking results.

(3) The maximum response is dynamically weighted to realize the object position estimation. In
the optimization process, trade-off coefficients are added to balance the background interference on
different feature contributions, which reduces the risk of tracking drift.

(4) Aiming at solving the tracking loss caused by severe occlusion of the object, the optimal
instance-specific proposals are selected as the re-detection result by minimizing the weight of con-
fidence and the Euclidean distance. In this way, the proposed algorithm can maintain high robustness
and efficiency in the long-term tracking.

For the sensitive performance of a single filter model in complex scenes, the adaptive multi-time-
space perception model designed in this study shows strong robustness in various complex scenes,
which has a specific reference for the subsequent development of traffic event processing.
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