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Abstract: As cloud system architectures evolve continuously, the interac-
tions among distributed components in various roles become increasingly
complex. This complexity makes it difficult to detect anomalies in cloud
systems. The system status can no longer be determined through individual
key performance indicators (KPIs) but through joint judgments based on syn-
ergistic relationships among distributed components. Furthermore, anomalies
in modern cloud systems are usually not sudden crashes but rather grad-
ual, chronic, localized failures or quality degradations in a weakly available
state. Therefore, accurately modeling cloud systems and mining the hidden
system state is crucial. To address this challenge, we propose an anomaly
detection method with dynamic spatiotemporal learning (AD-DSTL). AD-
DSTL leverages the spatiotemporal dynamics of the system to train an end-
to-end deep learning model driven by data from system monitoring to detect
underlying anomalous states in complex cloud systems. Unlike previous work
that focuses on the KPIs of separate components, AD-DSTL builds a model
for the entire system and characterizes its spatiotemporal dynamics based on
graph convolutional networks (GCN) and long short-term memory (LSTM).
We validated AD-DSTL using four datasets from different backgrounds, and
it demonstrated superior robustness compared to other baseline algorithms.
Moreover, when raising the target exception level, both the recall and precision
of AD-DSTL reached approximately 0.9. Our experimental results demon-
strate that AD-DSTL can meet the requirements of anomaly detection for
complex cloud systems.
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1 Introduction

Currently, cloud systems with large-scale distributed architectures are becoming more complex
[1]. Meanwhile, the workload of information technology (IT) operations is growing dramatically [2].
System administrators are experiencing various unexpected failures [3]. In addition, unlike most legacy
software, whose failures can be reported directly through error messages or some other observable
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anomaly indications, modern cloud systems often run out of order imperceptibly [4]. The reasons
for this phenomenon are as follows. Cloud services are usually supported by large-sized clusters with
high complexity. Thus, cloud systems rarely break down by throwing explicit exception messages or
interrupted processes. Instead, such systems with anomalies tend to perform as “partially available,
partially unavailable” or “most of the functions are available, but a few are not.” We call this
phenomenon “weakly available.”That may induce a hardship in which the operations and maintenance
staff react passively only after their customers’ business has been severely impacted. It is nontrivial but
valuable to proactively detect subtle anomalies that lurk in complex cloud systems.

Although many research efforts have been devoted to solving the problem of detecting system
anomalies in recent years, most have focused on the system’s individual metrics or key performance
indicators (KPIs), such as in references [5,6]. However, as the cloud system complexity increases, it
becomes increasingly difficult to train and maintain respective models for every component. Especially
for systems composed of microservices, the number of KPIs grows exponentially, bringing numerous
monitoring demands. Moreover, when determining whether a module is anomalous, the metrics or
KPIs to review should not be confined to that component but include others in correlation with
it. The demands above challenge general machine learning models. It concerns that, for large-scale
cloud systems, ignoring the interactions among submodules will likely lose insights into their internal
topology and may eventually lead to limitations on the anomaly detection models.

1.1 Research Motivation
We explain the hardship of anomaly detection for complex systems with an example of contrast

analysis. The case is from an elasticsearch cluster. Elasticsearch is a distributed search engine popular
in the industry [7]. In our example, the elasticsearch cluster is composed of five peer-to-peer nodes.
We set up two groups of writers writing to the elasticsearch with homogeneous contents but different
writing modes. Then, we compare the performance of the two groups.

First, we give the runtime monitoring of Group 1. There are five parallel clients in Group 1, each
of which writes to its corresponding index as one-to-one mapping without crossover, and they write
at nearly the same rate. The monitoring of the servers and clients in Group 1 during parallel writing
is displayed in Fig. 1.

Figure 1: Monitoring of Group 1
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Then, we give the runtime monitoring of Group 2. Similar to Group 1, Group 2 also has five
parallel clients. The writing rate and content from each client in Group 2 were consistent with those
in Group 1. However, the difference from Group 1 is that the clients in Group 2 did not have a one-
to-one mapping with the indices. In Group 2, three clients shared writing indices with each other. The
data distribution among cluster nodes is skewed, as most data are submitted to the same index. The
monitoring of the servers and clients in Group 2 during parallel writing is displayed in Fig. 2.

Figure 2: Monitoring of Group 2

From the monitoring results in Figs. 1 and 2, the differences in performance between Group 1 and
Group 2 are mainly on the client side. In Group 1, the write rate of each client is high and consistent
(above 2,000,000), while in Group 2, the write rate of Clients 1–3 fluctuates significantly, with clear
lows (below 2,000,000) from time to time. Broadly speaking, in Group 2, the monitoring of memory
and CPU indicators shows no abnormal fluctuations (the metrics of Node 4 are slightly higher on
average, but they are still within the normal range). No particular abnormalities were observed on the
severe side of either Group 1 or Group 2. However, as indicated by the red marks in Fig. 2, a closer look
at the monitoring of Group 2 shows that the metrics of resource usage on Node 1, Node 3, and Node
4 almost overlap at peak when there are slight delays in Client 1, Client 2, and Client 3, respectively.
Meanwhile, the metrics in Group 2 display a relatively larger amplitude of oscillation than in Group 1.
This phenomenon occurs because Clients 1–3 cross-wrote to the same indices, and the affected skewed
indices are managed by Node 1, Node 3, and Node 4.

In this example, the clients of Group 2 may have sensed something is not in harmony, but at the
same time, it is hard to detect the subtle anomalies from individual monitoring on the server side.
For this case, when deciding whether a service is in health, it is necessary to consider the various
components connected and the interactions between them, not just the properties of the individual
service.

1.2 Contributions
Aiming at the problem of anomaly detection in complex cloud systems, this paper makes the

following contributions. We propose an anomaly detection method for cloud systems with dynamic
spatiotemporal learning. For convenience, it is abbreviated as AD-DSTL. AD-DSTL models the
collaborative cluster as a graph. The graph model represents the system topology, in which the service
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endpoints or process instances are regarded as nodes, and the interactions between them are regarded
as connections. AD-DSTL not only deliberates on the temporal dynamics of various properties on
both nodes and connections but also considers spatial dynamics such as connection generation and
disconnection. The core implementation of AD-DSTL is an end-to-end spatial-temporal deep learning
network. We conduct experiments on four datasets. The results show that AD-DSTL outperforms
other alternative methods in terms of overall performance. In addition to the comparative evaluation,
ablation studies are carried out from multiple perspectives to sufficiently validate the effect of various
factors on AD-DSTL. We have released partial source code and one new dataset publicly [8], allowing
for easy use by researchers and practitioners for future studies.

The remainder of this paper is organized as follows. Section 2 examines the related work. Section 3
sets up several essential concepts and defines the objective problem. Section 4 depicts the details of
AD-DSTL. Section 5 presents the experimental analysis. Section 6 concludes this paper.

2 Related Work

Many works have studied anomaly detection from various levels and perspectives. In the context of
this paper, related research can be divided into two categories: common detection algorithm research
and detection method research targets for cloud service maintenance scenarios. The first category
focuses on the development of basic anomaly detection algorithms, while the second category centers
on creating specialized techniques for detecting anomalies in cloud service maintenance scenarios.
Next, we will explore the relevant literature according to the above categories.

2.1 Generic Anomaly Detection Algorithms
The demands of anomaly detection exist in various fields, such as disease detection, financial

fraud detection, and network intrusion detection. Therefore, anomaly detection is usually abstracted
as a science research question. Some work has been carried out based on knowledge and rules [9].
Nevertheless, as far as research development is concerned, more researchers have chosen data-driven
techniques, which detect anomalies based on data reflecting the target’s state [10].

Most of the earlier data-driven methods leverage statistical techniques, assuming that the data
obey some distribution and estimate the parameters of the probabilistic model. The advantage of
statistical methods is that they are suitable for low-dimensional data and have better robustness.
However, these methods rely heavily on distribution assumptions and are less able to adapt to dynamic
changes in data distribution. Many research efforts, such as literature [11], have developed clustering-
based anomaly detection algorithms. The disadvantage of the clustering approach is that it usually just
gives a 0/1 result (i.e., whether it is an anomaly or not) but cannot quantify the degree of an anomaly
for each data point. In addition, the performance of the clustering-based techniques depends heavily
on whether the clustering algorithm can capture the clustering structure of normal instances. The local
outlier factor (LOF) is another well-known method for anomaly detection [12]. It is a classical density-
based algorithm that can quantify the degree of an anomaly for outliers and does not depend on the
data distribution.

With the development of deep learning in recent years, many anomaly detection models based
on deep learning techniques have emerged [13,14]. Deep learning-based models have gained much
attention in recent years because they are better at modeling complex dependencies in data. For
example, Ergen et al. [15] investigated anomaly detection in an unsupervised framework and intro-
duced long short-term memory (LSTM) neural network-based algorithms. Ding et al. [16] studied
the anomaly detection problem on attributed networks by developing a novel deep model; it used a
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graph convolutional network (GCN) to synthesize the structure information of the graph to obtain
the embedding of nodes and then leveraged the learned embeddings to reconstruct the original data
by using an autoencoder. Pang et al. [17] surveyed the research of deep learning-enabled anomaly
detection and showed the importance of deep anomaly detection.

The above research on generic anomaly detection problems provides a basic reference for system
operation and maintenance detection. However, to achieve the best practical results, it is usually nec-
essary to further combine the characteristics of the problems in the system operation and maintenance
and design methods that are closer to realistic needs, more feasible, and more effective in application.
In this paper, a system anomaly detection method based on spatiotemporal deep learning is designed
precisely close to realistic system operation and maintenance problems.

2.2 Anomaly Detection Methods for System Operation and Maintenance
The detection of anomalies in running IT systems is a critical concern for system maintenance,

and much research has been conducted specifically in this area. Unlike ordinary studies on generic
algorithms, research in this area usually needs to take advantage of actual business characteristics and
then flexibly apply suitable anomaly detection algorithms. For example, Wang et al. [18] proposed
a progressive exploration framework for collective anomaly detection on network traffic based on
a clustering method. This framework enables analysts to effectively explore collective anomalies
in network traffic. Islam et al. [19] designed a deep learning-based anomaly detector for system
logs. This system utilized deep learning neural networks to detect anomalies in near real-time in
multiple platform components simultaneously. Du et al. [20] designed a deep learning-based anomaly
detector for system logs. Soldani et al. [21] provided a structured overview and qualitative analysis of
currently available techniques for anomaly detection and root cause analysis in modern multiservice
applications.

In recent years, some literature on system anomaly detection has involved constructing a graph-
based representation for the system [22–24]. In particular, He et al. [24] focused on capturing the
spatiotemporal characteristics of cloud systems and created a deep learning model for anomaly
detection using a graph neural network (GNN) and a recurrent neural network (RNN). However, that
work has several limitations regarding the spatial modeling of the system topology. First, it does not
account for the dynamics of the system topology over time. Second, it only considers the node elements
but not the connections of the system topology. In addition, it obtains the final anomaly score on the
nodes. However, the anomaly of complex systems is usually systematic. This paper focuses on bridging
these gaps and designing a more easily implemented spatiotemporal deep learning network. Moreover,
unlike in the above research study, this paper takes into account that modern system operations and
maintenance will be supported by sophisticated automated platforms that can provide sufficient data
for supervised training of deep learning models. Therefore, the model designed in this paper adopts a
supervised model that is easier to implement and more effective in practice.

3 Problem Statement

In this section, we first define several key concepts and then provide the objective of our research.
For convenience, the main mathematical notations used in this section are summarized in Table 1.

The architecture of modern systems broadly adopts a complex distributed pattern. For such a
distributed system, its structure can be naturally abstracted as a graph and can be denoted as GCloud.
All the nodes in GCloud usually should follow a consistent granularity, e.g., services as nodes, processes
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as nodes, hosts as nodes, etc. The connections in GCloud correspond to interactions or dependencies
between nodes, such as service invocation and message passing.

Table 1: Summary of mathematical symbols

Symbol Explanation

Nn×m Nodes-matrix.
Ep×q Edges-matrix.
An×n Adjacent-matrix.
Snapshott = <Nt, Et, At> A triplet representing a snapshot of the system state at a certain time.
SnapshotsSequence The time series of Snapshot.
EventsSequence The event sequence of historical records during system running time.

We are concerned not only with the topology but also with the properties of each element in it. The
nodes and connections both have their properties. For example, on the nodes, there are resource usage
and execution time, etc. On the connections, there are communication volume and transmission delays,
etc. Therefore, multidimensional properties of either a “node” or “connection” can be represented by
a vector x. We suppose that the quantity of nodes is n, each has m properties, there are p connections
among the nodes, and each connection has q properties. Under the above settings, the following three
matrices can characterize the state of the system.

Nodes-Matrix Nn×m: Each row of this matrix corresponds to a node of the system topology, and
the row vector represents the node’s properties.

Edges-Matrix Ep×q: Each row of this matrix corresponds to a connection in the system topology,
and the row vector represents the connection’s properties.

Adjacent-Matrix An×n: This matrix describes the node adjacency in the topological graph for the
system.

After abstracting the system topologically and identifying the properties of the topological
elements, to portray the system state more closely, the topological dynamics must be considered. The
dynamics include two aspects as follows. (1) Structure dynamics: The system structure may change
dynamically over time, e.g., the number of nodes and connections may change dynamically over time.
(2) Property dynamics: The property values of each node and connection may change dynamically
over time.

We use a triplet Snapshott = <Nt, Et, At> to represent a snapshot of the system state at a certain
time. Then, by capturing the snapshots of the system state at a fixed interval period, we can get a time
series SnapshotsSequencet0:tn = [Snapshott0, Snapshott1, . . . , Snapshottn]. If the observation interval
period for SnapshotsSequence is valued appropriately, then SnapshotsSequence can be supposed to
contain sufficient information for analyzing the system state from t0 to tn period.

During system operation, once anomaly events occur, such as service quality decline and unavail-
ability, the professional staff submits event records in detail through structured or semistructured
objects in various management information systems. It is worth highlighting that those records not
only describe some basic information such as timestamp and location but also include the context and
impact. Therefore, extracting worthwhile events from historical records is feasible and meaningful. We
formally define the event sequence as EventsSequence = [e0, e1, . . . , en].
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The relationship between EventsSequence and SnapshotsSequence is shown in Fig. 3. When we
review the historical SnapshotsSequence and EventsSequence, we can assume that the SnapshotsSe-
quence fragment earlier before an event is highly likely to contain some signs of the event occurrence.
For example, as shown in Fig. 3, it is reasonable to assume that the series from t0 to t3 can reflect some
signs of the occurrence of Event A.

Figure 3: An example of the relation between SnapshotsSequence and EventsSequence

SnapshotsSequence is supposed to contain the integrity information reflecting the system state.
Therefore, theoretically, it can be used to detect and predict the current and future state. We give the
formal definition of the above statements as Eq. (1). The F function in Eq. (1) describes the research
objective. It takes SnapshotsSequence as an input, and its output O is a vector of probability distri-
butions that enumerates the types of events collected from EventsSequence with their corresponding
probabilities of occurrence. O indicates the probability of an anomaly occurring in a short time from
the current time t to the future t+t′. Alternatively, in some scenarios, it is acceptable to degrade the
capability of the F function, whose output O is a binary result indicating the probability of being
normal or not.

O = F(SnapshotsSequence(t−t′′ ,t)) (1)

The implementing techniques for the F function are open and diverse. Given a large amount of
historical time series and event sequences as training samples, building a supervised machine learning
model is advisable. In the following sections, we introduce our implementation for the F function
called AD-DSTL.

4 Methodology

This section will provide a comprehensive overview of the model structure and methodological
approach, followed by an in-depth analysis of critical issues.

4.1 The Overall Architecture
To implement the F function in Eq. (1), we propose AD-DSTL, an anomaly detection method

for cloud systems based on dynamic spatiotemporal learning. The overall architecture of AD-DSTL
is displayed in Fig. 4. Its input is the SnapshotsSequence, and its output is the prediction result. The
input-output conforms to the Sequence2Sequence pattern. The input sequence element is Snapshott,
which corresponds to the representation of the system state at time t. We know that Snapshott = <Nt,
Et, At> includes information from both “nodes” and “connections” in the topology. Accordingly, we
designed a model with dual pipelines, one of which is oriented to the nodes and the other is oriented
to the connections. After processing independently, the two pipelines are combined through a fully
connected layer to give the final result jointly.
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Figure 4: The fundamental architecture of AD-DSTL

The core design idea of AD-DSTL is leveraging GCN [25] to extract the features hidden
underneath the Snapshot, then passing the intermediate results to the downstream LSTMs [26], which
remember the historical hidden features and combine historical dynamics with the latest input to
produce the current prediction. In summary, GCN takes care of spatial feature extraction, while LSMT
complements the capability of capturing temporal dynamics.

The common GCN only focuses on the features of nodes. In our opinion, the connection features
are also important. It is necessary to find a way to process the connections using the same techniques
processing the nodes to obtain the advantages of reusability and parallelism. Overall, there are
several critical challenges and problems in the design of AD-DSTL. (1) How can the topology of the
connections be reasonably characterized? (2) How can graph-level features be generated for systematic
detection, even if the default output of the GCN is at the node level? (3) Do the dual LSTMs perform
better than the single mode? Next, we will discuss the above issues.

4.2 GCN and Line Graph
As shown in Fig. 4, we use GCN to extract the state of the system topology at each moment t.

GCN is a kind of deep learning technology designed for graph data. It is helpful when modeling the
spatial dependence among metrics collected from interactive components. GCN draws lessons from the
convolution operation in the frequency domain on an image by mapping the graph into the frequency
space, performing the convolution operations, and then converting it back to the node space. The most
commonly used GCN network was proposed by Kipf et al. [25], given a graph G and one layer of it can
be formulated as Eq. (2), in which A is the adjacency matrix of G and X l is the hidden representation

of the node at the l layer, Ã = A + I is the adjacency matrix with the node’s loop inside, D̃ =
N∑

i=0

Ãii is

the degree matrix of Ã, and σ (·) is the activation function.

X
l+1 = σ(D−1/2ÃD̃−1/2X lW l) (2)
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For the distributed cloud system mentioned in Section 3.1.1, a topological graph G can be
naturally obtained from a physical perspective. Then, we can obtain the state of the topological nodes
by calculating X in Eq. (2). If we had stopped here, then we would have ignored the status of all the
connections among the nodes. However, these connections convey the internal interactions and are
also critical to determining the state of the cloud system. Therefore, we adopted the method of line-
graph conversion [27] to transform the original graph G into the corresponding line graph GE. Given
an undirected graph G = (V , E), the line graph of G is an undirected graph GE = (E, F), in which there
is an edge f ∈ F that connects the nodes e, e′ ∈ E if and only if there is a node v ∈ V such that both e
and e′ are incident on v in G. If A is the adjacency matrix for G, then the adjacency matrix AE for GE

can be deduced by Eq. (3).

AE = ATA − 2I (3)

Through the line-graph conversion, the structure of the connections is preserved as much as
possible. Consequently, we can reuse the same GCN method to extract the connection features. Fig. 4
shows that Phases 1 and 2 are divided into two parts. GCNN and GCNE are formulated as Eqs. (4) and
(5), respectively.

GCNN : X l+1
N = σ(D̃−1/2

N ÃD̃−1/2
N X l

NW l
N) (4)

GCNE : X l+1
E = σ(D̃−1/2

E ẼD̃−1/2
E X l

EW l
E) (5)

In Phase 1, illustrated in Fig. 4, two sets of inputs representing “nodes” and “connections” can
be denoted by matrix SNt and matrix SEt, respectively. After the parallel calculation by GCNN and
GCNE, the hidden features extracted from SNt and SEt can be denoted as FNt and FEt, respectively.

4.3 Graph-Level Features

Algorithm 1: The main process of the Weisfeiler-Lehman algorithm
1: for each vi in G do
2: if convergence then
3: break;
4: else
5: Get the properties hvj from all neighboring nodes vj;
6: Update the properties hvi = hash(

∑j hvj ) of node vi;
7: end if
8: end for

FNt and FEt are still one step away from the graph-level feature representation. Although joining
all the nodes can be a way of obtaining the graph-level features, the problem with this method is that
the topology of the graph evolves dynamically over time, so it is inadequate to stereotype the node
features according to some static strategies (e.g., splicing node features in some fixed order). For a
dynamic graph, it is crucial to ensure that the inductions at different moments follow an isomorphism
principle. Namely, the nodes need to be ordered by a “consistent structural order.” For this purpose,
we leverage the Weisfeiler-Lehman algorithm [28] to recognize the graph structure. The procedure of
the one-dimensional Weisfeiler-Lehman algorithm is outlined in Algorithm 1, according to which we
perform computing for each node in FNt and FEt. It assigns labels to the graph vertex by iterative
computations, and in this way, the nodes with similar statuses or roles in different graphs will obtain
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the same labels. Then, by the labels, we can obtain an ordinal relationship to sort the nodes and join
the ordered nodes to obtain the graph-level feature representation.

4.4 Dual LSTM Pipelines
LSTM is a special RNN network. Compared to an ordinary RNN, it implements a more

sophisticated processor unit containing memory cells and several gate controllers. The memory cell
maintains its state over time, and the gates control the information flow. LSTM usually consists of
three gates: input gate, forget gate, and output gate. The gates are realized by the sigmoid function and
dot multiplication operation. The general formulation of the gates can be expressed as g(x) = σ (Wx +
b). Let i, f , and o represent the input gate, forget gate, and output gate, respectively. Let � represent an
elementwise product, and let W and b represent the weight matrix and the offset vector of the network,
respectively. The forward procedure of LSTM can be expressed as Eqs. (6) to (10), which are explained
as follows.

At step t, the input and output vectors of the hidden layer of LSTM are xt and ht, respectively,
and the memory unit is ct. The input gate is used to control how much the current input xt can flow
into the ct. The value of the input gate is expressed by Eq. (6).

it = σ (Wixt + Wiht−1 + bi) (6)

The forget gate controls which information should be kept or forgotten and in some way, avoids
gradient disappearance or explosion. The value of the forget gate is expressed by Eq. (7). The forget
gate can determine the influence of the last memory cell ct−1 on the current memory cell ct. The memory
cell’s value is expressed by Eq. (8).

ft = σ(Wf xt + Wf ht−1 + bf ) (7)

ct = ft � ct−1 + it � tanh(Wcxt + Wcht−1 + bc) (8)

The output gate controls how memory cell ct affects the current output value ht, that is, which
part of the memory cell will be output at the time step t. The value of the output gate is expressed as
Eq. (9), and the output ht of the LSTM at time t is expressed as Eq. (10).

ot = σ(Woxt + Woht−1 + bo) (9)

ht = ot � tanh(ct) (10)

Jain et al. [29] mentioned that for sequences with irrelevant natures, higher accuracy could be
obtained by using independently separated LSTMs. The explanation is that if two sequences are
independent, then two LSTMs in isolation are a more natural way to correspond. As shown in Fig. 4,
for AD-DSTL, we use two independent LSTMs for the two output sequences from GCNN and GCNE.
We illustrate the architecture of the dual LSTMs in detail in Fig. 5.

We can use a shorthand notation as Eq. (11) to denote the recurrent LSTM operation. Then, we
pass the two graph feature streams (x1

n . . . xT
n) and (x1

e . . . xT
e) independently through LSTMN

and LSTME, which are formulated as Eqs. (12) and (13), respectively. The fusion layer in Fig. 5
is formulated as Eqs. (14) and (15). We will verify the effectiveness of this approach in subsequent
experiments.

(ht, ct) = LSTM (xt, ht−1, ct−1) (11)
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(
hn

t , cn
t

) = LSTMn

(
xn

t , hn
t−1, cn

t−1

)
(12)

(
he

t , ce
t

) = LSTMe

(
xe

t , he
t−1, ce

t−1

)
(13)

et = tanh
(
Wf

[
hn

t ; he
t

] + bf

)
(14)

yt = softmax
(
Wyet + by

)
(15)

Figure 5: The structure of dual LSTM pipelines

5 Experimental Evaluation

In this section, we will show the experimental evaluation of AD-DSTL on four real datasets and
provide an in-depth analysis of the process and results.

5.1 Datasets
We used four datasets, including three public datasets and one confidential dataset. The essential

information is shown in Table 2.

Table 2: Summary of the experimental datasets

Properties Datasets
DS-MBD DS-MMS DS-ESC DS-TRACES

Time 3 days 3 days 2 days 3 months
Sampling interval 30 s 60 s 10 s 60 s
Data volume 16 MB 20 MB 49 MB 630 GB
Public or not Yes Yes Yes No
Number of topology nodes 5 49 7 92
Number of topology connections 8 748 22 305
Whether to include the connection properties No No Yes Yes
Whether to monitor the topology dynamic No No Yes Yes



1798 IASC, 2023, vol.37, no.2

DS-MBD and DS-MMS are both from the work of He et al. [24]. DS-MBD is collected from a
Hadoop cluster consisting of one master and four workers. DS-MMS is collected from a simulated
microservice system called Hipster-Shop, which can be abstracted as a topology with 49 nodes and
748 connections. Notably, DS-MBD and DS-MMS only have monitoring data for node properties
but not for connections. In addition, the system topology given by these two datasets is static.

DS-ESC is from the operational monitoring data of an elasticsearch cluster. The cluster consists
of 7 nodes and provides data indexing services for software development and testing. We treat the
processes of elasticsearch as topological nodes and the communications among the processes as
topological connections. We call the Cluster-API provided by elasticsearch to collect the node states,
which include the metrics of the OS, JVM, and various pooled resources for the process. We use
the iftop command to capture the communications between specific ports held by the processes and
acquire the number of network links and the amount of data exchanged. We have published DS-ESC
for free access [8].

DS-TRACES is collected from the distributed invocation tracings for the microservices in a
commercial bank. Its business background is complex financial processes involving various application
systems in the banking field, such as channel systems, bus systems, core systems, credit systems, and
batch operations. Taking the systems as the granularity for the nodes, DS-TRACES covers a total
of 92 nodes, involving 305 connections. The monitored properties of the nodes include TPS, a 75%
response time, memory usage, etc. The monitored properties of connections include the number of
TIME_WAIT, number of messages, average latency, size of exchanged data, etc. DS-TRACES is
confidential due to commercial reasons.

5.2 Performance Metrics
We use the F1-Score to evaluate the effectiveness of the anomaly detectors. The F1-Score is a

commonly used evaluation metric for classification algorithms [30]. Its definition is shown in Eq. (16).

F1-Score = 2 × Precision × Recall
Precision + Recall

(16)

The definitions of precision and recall are shown in Eqs. (17) and (18), respectively.

Precision = TP/(TP + FP) (17)

Recall = TP/(TP + FN) (18)

TP (true positive) represents the correct detection of an anomaly. FP (false positive) indicates that
a normal state is mistaken for an anomaly. FN (false negative) indicates that an anomaly is mistaken
for normal.

5.3 Experimental Setup
5.3.1 Comparison Methods

We compare AD-DSTL with several baseline anomaly detectors, including support vector
machine (SVM) [31], GCN [25], LSTM [26], one-class support vector machine (OC-SVM) [32], LOF
[12], and a topology-aware multivariate time series anomaly detector (TopoMAD) [24]. SVM, GCN,
and LSTM are supervised methods. OC-SVM, LOF, and TopoMAD are unsupervised methods. SVM
is a supervised learning method with the advantage of sound mathematical theory. LOF is a classical
nonmachine learning anomaly detection method. Because of its simple implementation and good
effect, it has been widely used. Since the AD-DSTL model is a composite model that combines GCN
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and LSTM, we selected both the original GCN and LSTM for comparison to confirm the effect of
the compound. TopoMAD is also a composite deep learning model, but in contrast to AD-DSTL, it
does not consider connections of the graph as inputs.

5.3.2 Experimental Environments and Parameters

To easily integrate AD-DSTL into a production environment’s operations and maintenance
(O&M) system, we implemented it using Deeplearning4j [33], a suite of tools for deploying and training
deep learning models using the JVM. We implemented the GCN layer to Deeplearning4j and released
the source code publicly [8]. All the experiments are conducted on a server with an Intel(R) Core(TM)
i5-8250U CPU @ 1.6 GHz/1.80 GHz, 16 GB RAM, and Windows 11 installed.

The raw sampling intervals of MBD, MMS, ESC, and TRACES are 30, 60, 10, and 60 s,
respectively. Because the sampling frequency is too high, we need to use a sliding window for coarse-
grained aggregation. For DS-MBD, the sliding window size is 10 with a total period of 5 min; for
DS-MMS, the sliding window size is 4 with a total period of 4 min; for DS-ESC, the sliding window
size is 30 with a total period of 5 min; for DS-TRACES, the sliding window size is 4 with a total period
of 4 min. The sliding step lengths are all one-half the size of the window, and the numeric metrics are
all aggregated by calculating the average value. For the DS-MBD, DS-MMS, and DS-ESC datasets,
for which the duration is two days, we used one day for training and the other day for testing. For the
DS-TRACES dataset, we used a random filter to remove considerable bland data with meaningless
repetition. Finally, the dataset was compressed to a total length of 4 days, in which two days were used
for training and the others were used for testing. For each detector on each dataset, we repeated the
tests ten times and then obtained the average score for comparison.

In the deep network of AD-DSTL, the GCN parts, including GCNN and GCNE are both set up
with three layers, where the number of neurons in the input layer is equal to the length of the input
dimensions, and the number of neurons in the middle and output layers are set as 64. Both LSTMs
have one layer, and the hidden size of each layer is set to 128. The learning rate for the training of
LSTMs was set to 10−3. The GCN and LSTM used for comparison are set up with the same parameters
as the corresponding modules in AD-DSTL. For the TopoMAD algorithm, we use the reference
configuration given in the original literature. LSTM, OC-SVM, SVM, and LOF cannot utilize the
graph structure due to their limitations. For these methods, we concatenate all properties of the nodes
and connections in a fixed order as the input. In addition, due to the lack of monitoring for the
connection properties and topology dynamics in the datasets DS-MBD and DS-MMS, degradation
strategies are adopted when using AD-DSTL to conduct experiments on those two datasets.

5.4 Overall Performance
We examined the overview performance of each algorithm. Fig. 6 shows the F1-score, precision,

and recall of each tested algorithm on different datasets. Overall, the supervised methods work better
than the unsupervised method, and the deep learning-based methods work better than the classic
methods. That is as expected. However, we have not yet obtained results with high F1-scores. In the
results, the comparatively better value of the F1-Score ranged from 0.6 to 0.7. AD-DSTL exhibits a
more stable performance on all four datasets compared to other algorithms but is mostly still less than
0.7. The main reason for the low F1-scores is that all the precision values were generally not high. The
precision was between 0.5 and 0.6 at best. Fortunately, most deep learning-based methods achieved
relatively good recall performance, especially AD-DSTL, which acquired the highest recall value of
0.856.
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Figure 6: Comparing the best scores of each tested algorithm

Further comparing the results of all the tested algorithms, we can sense that the inherent nature
of the dataset has a profound impact on the performance of algorithms. DS-MBD and DS-MMS are
from the environments more inclined to simulations, while DS-ESC and DS-TRACES are collected
in production environments. Therefore, there are more noisy and dirty data within DS-ESC and
DSTRACES. Therefore, the F1-scores of each algorithm on DS-ESC and DS-TRACES are lower
than those on DS-MBD and DS-MMS.
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Regardless of the impact of the datasets, the methods based on deep learning were generally more
stable. Compared to deep learning methods, SVM and LOF showed worse adaptability on complex
datasets, and they could only perform well on simpler datasets.

The AD-DSTL algorithm shows the strongest robustness on different datasets. Although on the
datasets DS-MBD and DS-MMS, the difference between the results of each algorithm is not obvious,
when coming to the datasets DS-ESC and DS-TRACES, both of the other algorithms lag behind
AD-DSTL evidently. The main reason for this is that there is only node status but no monitoring
of connections in DS-MBD and DS-MMS, which degraded the capability of AD-DSTL and made
AD-DSTL’s performance not much different from ordinary GCN and LSTM. However, additional
connection monitoring helps AD-DSTL show distinctive advantages in DS-ESC and DS-TRACES.

Low precision is a matter of concern because it will result in ample false alerts. Therefore, it is
necessary to answer the following two questions. (1) What is the reason for the low precision? (2) Are
there any effective countermeasures against low precision?

The low precision is because of the noise and fluctuations in the datasets, which look like
anomalies but are not. This phenomenon can affect both supervised and unsupervised methods. For
unsupervised methods, noise may be classified as anomalies due to their anomaly scores being above
the threshold. For supervised methods, the problem arises from the particular sampling means adopted
due to sample imbalance. Since there are fewer anomaly samples and much more normal samples,
some deliberate sampling balance techniques can easily lead to the sieving out of noise samples from
the normal group. This causes the model to misclassify normal noise into an anomalous category.

Low precision will bring great problems to system administrators, exhausting them in handling
substantial fake alerts. Consequently, the anomaly detector loses its feasibility. In this regard, we
further refine the verification experiments. Generally, in production management processes, the O&M
specification classifies the severity level of the failure according to some dimensions, such as affected
functions, impact scope, impact duration, and the number of affected businesses. For our experiment’s
datasets, DS-ESC and DS-TRACES, faults can be classified into three top categories with six fine-
grained sublevels, as shown in Table 3. Accordingly, we proposed the following subdivided policies for
anomaly labeling for the datasets DS-ESC and DS-TRACES. (1) Policy A: Keep all original anomaly
labels. (2) Policy B: Only keep the anomalous labels in the categories of severe and moderate; the others
are regarded as normal samples. (3) Policy C: Only keep the anomalous labels in serious categories;
the others are regarded as normal samples.

Table 3: Fault levels

Category Sublevel Description

Severe
Level 1 System crashes or core functions are unavailable.
Level 2 Core functions are partly affected, and service quality is decreased.

Moderate
Level 3 Noncore functions are unavailable.
Level 4 Noncore functions are partly affected, and service quality is decreased.

Mild
Level 5 Warnings about noncritical runtime logic errors.
Level 6 Warnings related to middleware, common services, and underlying

systems.
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Using the above three policies, three new datasets with different scopes of anomaly labeling can
be obtained from the original DS-ESC and DS-TRACES datasets. We applied the AD-DSTL method
to the newly derived datasets to verify the method’s effects. The results are shown in Table 4.

Table 4: The performance of AD-DSTL on DS-ESC and DS-TRACES restricted by Policies A, B,
and C

Score DS-ESC DS-TRACES

Policy-A Policy-B Policy-C Policy-A Policy-B Policy-C

F1-score 0.655 0.824 0.866 0.617 0.762 0.909
Precision 0.569 0.792 0.854 0.551 0.743 0.874
Recall 0.772 0.858 0.878 0.701 0.783 0.946

The validation results in Table 4 show that the AD-DSTL scores, especially the precision score,
gradually increase with escalating failure levels. The main reason is that as the failure level increases,
the specificity of the anomalies is relatively enhanced, so these anomalies can be different from normal
random noise. The most evident manifestation is from the dataset DS-TRACES restricted with Policy
C, where the performance of AD-DSTL is greatly improved. The trade-off of reducing the FP by
increasing the detection level is consistent with the actual demands because higher-level faults tend to
receive more attention in practice. Therefore, it is reasonable to consider detecting anomalies only at
severe and moderate levels in practical applications.

In this paper, another critical problem is the generalization ability of AD-DSTL. AD-DSTL is a
supervised method. For the sake of training efficiency, we chose to slice a subrange from the historical
data for training rather than using the whole. Therefore, two implications need to be considered: (1) the
selected training data cannot be guaranteed to be sufficiently comprehensive, and (2) the monitored
system is evolving continuously, which may generate unknown conditions that have not appeared in
history. This matters to the generalization ability of the detector. To investigate the generalization
ability of AD-DSTL, we designed relevant evaluation experiments. The validation process is as follows.
When training the model, we purposely partially take anomaly labels with the proportion of ρ from
all. However, when validating the model, all the anomaly labels are included. In this way, we compare
the F1-Score of the four supervised learning methods, including AD-DSTL, GCN, LSTM, and SVM,
for the cases of ρ = 100%, ρ = 65%, and ρ = 35%. The results are shown in Fig. 7. As seen from
the results, except for SVM showing ρ insensitivity because of its consistent ineffectiveness on the two
datasets of DS-ESC and DS-TRACES, the performance of the remaining three declines as the ρ value
decreases. Notably, from ρ = 100% to ρ = 65%, AD-DSTL’s F1-score has the smallest drop, especially
on DS-ESC, which hardly diminishes. We believe that utilizing spatiotemporal factors in AD-DSTL
is the fundamental reason for its superior generalization performance.

Based on the above discussion, we can conclude the following.

1) For anomaly detection in complex systems, deep learning methods taking into account
spatiotemporal factors show more advantages, especially in terms of robustness.

2) The validation demonstrates that AD-DSTL is of great practical value, focusing on two aspects.
(a) After raising the fault grade, its performance is sufficient to achieve the application requirements.
(b) It shows a strong generalization ability for the unknown types of anomalies that may constantly
appear in production.
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Figure 7: Results of the generalization ability test

5.5 Effects of Topological Connections
To investigate the effects of topological connections, we conducted the following experiments. We

purposely ignored the topological connection properties using the DS-ESC and DS-TRACES datasets
and only used the node properties. That is, AD-DSTL only received half of the input, and the other half
of the input was null. The consequences under the above conditions are compared with the original,
as shown in Table 5. When only retaining the input of the node part, DS-ESC and DS-TRACES
both have significant drops in effectiveness compared to the original. This experiment confirms that
topological connections have substantial effects on the research target.

Table 5: The F1-scores of AD-DSTL by complete-input (both node and connection properties) and
half-input (only node properties)

Datasets Half-input Complete-input

DS-ESC 0.598 0.655
DS-TRACES 0.519 0.617

5.6 Effects of Dual LSTMs
AD-DSTL intentionally designs architectures with dual LSTMs. The middle states are processed

by two separate LSTMs in parallel before combining, rather than combining first and then input to
a single LSTM. To clarify the practical effectiveness of this approach, we conducted experiments to
compare the two different architectures mentioned above (single LSTM and dual LSTMs) on DS-ESC
and DS-TRACES. The results are shown in Table 6. We can see that the dual LSTMs have a slight
advantage. Therefore, if the training cost is acceptable, then dual LSTMs are a feasible and effective
option.
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Table 6: The F1-scores of AD-DSTL using two different LSTM architectures

Datasets Single LSTM Dual LSTMs

DS-ESC 0.643 0.655
DS-TRACES 0.611 0.617

6 Conclusion

We now summarize the main findings of our work and discuss some possible directions for future
research.

6.1 Conclusion and Discussion
This paper targets the problem of anomaly detection for complex cloud systems. We propose

a dynamic spatiotemporal learning method named AD-DSTL, which takes into account the col-
laborative structure and temporal dynamics in cloud systems. In the validation experiments, AD-
DSTL demonstrates the strongest robustness compared to other baseline algorithms, and when raising
the target exception level, both the recall and precision of AD-DSTL reach approximately 0.9. The
experimental results demonstrated that AD-DSTL could satisfy the practical requirements. We have
released part of the source code and datasets to facilitate future research [8].

In addition, we wish to discuss some important assumptions and limitations of this paper, as
follows. First, the AD-DSTL model adopts a supervised learning technique design, assuming that
labeled data required for training is readily available in the application environment. In the cloud
service operation and maintenance scenario, various modern operation and maintenance platforms
are usually constructed from which the required training data can be obtained. However, in most
cases, the operation data management may lack standard work specifications and process practices.
Consequently, the application of the AD-DSTL model may face diverse and complex data pre-
processing issues. While this paper does not cover the data preparation, it should be noted that
the actual application effect of the AD-DSTL model will be directly affected by this. Second,
the design and validation of the AD-DSTL model focus on practical problems in its application
context. The study examines crucial issues in model structure, topological edge parameters input,
and topological dynamics. The AD-DSTL model is designed based on the principles of simplicity
and effectiveness, aiming to facilitate easy application. Its design validity has been fully demonstrated
through experimental results. However, regarding the abstract modeling of spatiotemporal dynamic
learning problems, there may exist other variants of combined GCN and LSTM in AD-DSTL,
such as using LSTM to initialize and maintain dynamic parameters in GCN rather than directly
extracting system temporal state features. Although this paper does not delve into these issues in-
depth, a comprehensive generalization of related technical theories could enhance understanding of
the advantages of model design in depth.

6.2 Future Work
For future work, we will continue to focus on the following issues. (1) This paper has only validated

the AD-DSTL model on just four datasets. Next, it is suggested to collect more validation datasets
from realistic environments and further research the optimization for various hyperparameters of AD-
DSTL. (2) We assumed that labeled data could be obtained conveniently. However, that assumption
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may not represent all cases, so it is worthwhile to research how to evolve toward semi-supervised
or unsupervised learning schemes. (3) The location and interpretability of anomalies deserve more
attention. In particular, it would be valuable if it could suggest the anomaly time, location, and even
cause in the spatiotemporal context.
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