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Abstract: Recently, the convolutional neural network (CNN) has been dom-
inant in studies on interpreting remote sensing images (RSI). However, it
appears that training optimization strategies have received less attention in
relevant research. To evaluate this problem, the author proposes a novel algo-
rithm named the Fast Training CNN (FST-CNN). To verify the algorithm’s
effectiveness, twenty methods, including six classic models and thirty archi-
tectures from previous studies, are included in a performance comparison.
The overall accuracy (OA) trained by the FST-CNN algorithm on the same
model architecture and dataset is treated as an evaluation baseline. Results
show that there is a maximal OA gap of 8.35% between the FST-CNN and
those methods in the literature, which means a 10% margin in performance.
Meanwhile, all those complex roadmaps, e.g., deep feature fusion, model
combination, model ensembles, and human feature engineering, are not as
effective as expected. It reveals that there was systemic suboptimal perfor-
mance in the previous studies. Most of the CNN-based methods proposed
in the previous studies show a consistent mistake, which has made the model’s
accuracy lower than its potential value. The most important reasons seem
to be the inappropriate training strategy and the shift in data distribution
introduced by data augmentation (DA). As a result, most of the performance
evaluation was conducted based on an inaccurate, suboptimal, and unfair
result. It has made most of the previous research findings questionable to
some extent. However, all these confusing results also exactly demonstrate the
effectiveness of FST-CNN. This novel algorithm is model-agnostic and can be
employed on any image classification model to potentially boost performance.
In addition, the results also show that a standardized training strategy is
indeed very meaningful for the research tasks of the RSI-SC.
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1 Introduction

Remote sensing is an important imaging technique for humans observing the earth from space.
The interpretation of RSI plays a crucial role in applications. In general, interpreting RSI requires a
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higher level of real-time processing. However, as the number of orbital sensors grows, the big data from
RS cannot be processed manually. As a result, machine learning became the foremost technique for
interpreting the RSI [1]. Traditional ML-based methods rely excessively on human-engineered feature
indicators [2]. In other words, interpreting the RSI is still labor-intensive and domain-specific, even for
ML-based algorithms. Fortunately, this quandary has a suitable solution in the form of deep learning
(DL) techniques [3]. The leading characteristic of DL is the automatic feature extraction and end-to-
end training procedure.

Different roadmaps have been proposed for the RSI tasks. As an essential part, the semantic
classification (SC) application gains most of the attention compared to other tasks, e.g., semantic
segmentation [4], object detection [5], and recognition [6]. There have been several technical routes for
SC tasks. Deep CNN is gradually gaining traction due to its higher accuracy, controllable capacity,
and low hardware cost [7]. Unsurprisingly, the winning CNN story is not immediately apparent.

Firstly, the CNN-based methods are only used as fixed feature extractors for RSI-SC [8]. The
models are only pre-trained on natural images, and no customized training strategies or fine-tuning
procedures are used. Following that, CNN-based methods changed to transfer-learning strategies,
and the majority of them have been fine-tuned on RSI datasets. At that time, deep features fused
with handcrafted ones were popular. For example, Chaib et al. proposed a method using discriminate
correlation analysis (DCA) for deep features [9]. However, these relevant algorithms are commonly
very abstruse and not universal across different datasets. The cause is mainly due to two facts, i.e., the
insufficiency of optional CNN architectures and knowledge about CNN’s remarkable representation
ability. Afterwards, the pure CNN-based technical line becomes dominant. In the course of the
accuracy competition, algorithms consisting of multiple models or feature enhancements govern
the research fields [10]. In contrast, the time and hardware costs garner little attention. Only until
the transformer arises will the academic community suddenly realize that the training optimization
strategy is so important for the CNN models [11].

DL techniques are more discriminative mainly because of the multidimensional affine transfor-
mations generated by the top-down, hierarchical deep layers. It is well known that the depth of the
CNN model corresponds to more multivariable features, while the width indicates multidimensionality.
Arguably, the traditional ML technique is less competitive owing to its limited human-engineered
features. Hence, all of the aforementioned methods can be effective, mainly because the algorithm’s
indicators have increased. The difference is that the algorithmically extracted features are more
efficient than the handcrafted ones. Technically speaking, more attention-structured modules in
the CNN’s architecture are a good option to boost the model’s performance. Nevertheless, more
discriminative features can be achieved through extensive data samples, too. In fact, data augmentation
(DA) techniques are the most widely employed strategies to boost the CNN method’s performance
nowadays. For example, Khan et al. proposed a method using a pseudo-example generator to improve
the model’s performance [12].

Recently, the author proposed an algorithm to improve a CNN model’s performance for RSI-
SC, named the FST-EfficientNet [13]. It employs the smallest architecture of EfficientNet version 2
(EfficientNetV2-S) as the base model. The method outperforms all the other previous methods only
by employing a routine transfer learning strategy. More importantly, only classic data augmentation
(DA) tricks are included without any handcrafted indicators. Motivated by these findings, the author
further examines two dozen previous studies that employed different CNN architectures for tasks
in RSI-SC. As a comparable baseline, all the same CNN architectures, datasets, and training ratios
used in the literature are trained by the FST-CNN algorithm. Surprisingly, only one of the previous
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studies significantly exceeded the author’s baseline results. In other words, most of the former literature
has achieved suboptimal performance unintentionally. The three contributions of this study are
summarized as follows:

Firstly, to the best of our knowledge, this is the first time that the issue of systemically existing
suboptimal performance in previous studies has been revealed. Results show that there is a maximal
OA gap of 8.35% between the FST-CNN and those methods in the literature, which means a 10%
margin in performance. The crucial reasons include the inappropriate training strategy and data-
distributing shift introduced by DA.

Secondly, the results demonstrate that the FST-CNN algorithm is efficient and model-agnostic.
Consistent performance enhancements across different CNN architectures are obvious compared to
methods in the literature. DA is only implemented for the input samples. Hence, the algorithm can be
employed on any image classification model to potentially boost performance.

Finally, and most importantly, the results show a standardized training strategy is indeed very
meaningful to the research of RSI-SC. Most of the performance evaluation in the literature was
conducted based on an inaccurate, suboptimal, and unfair result. It has made most of the previous
research findings questionable to some extent. There seems to be a big chance to reshape the patterns
of deep learning for RSI-SC.

The remainder of this paper is organized as follows: Section 2 gives a brief review of related
works. Section 3 describes the proposed method in detail. Section 4 introduces experimental designs
and results. Experimental results are discussed in Section 5. Section 6 presents a conclusion and
future work.

2 Related Works

Liu et al. proposed a complex approach focusing on modifications of the classical cross-entropy
loss function [14]. In detail, three different CNN models are employed to extract the deep features
for the formation of hierarchical Wasserstein distance (HWD) metrics, which are packaged into the
cross-entropy loss as a hybrid one. Apparently, information disclosure happens when the validation
images are involved in the extraction of deep features. Nonetheless, Liu et al. proposed another similar
approach by integrating CNN models with Wasserstein distance (WD) losses [15]. Specifically, the
validation images are still treated as the inputs of the deep feature extractors.

Cheng et al. proposed a discriminative CNN (DCNN) approach by defining a relatively slim
object function [16]. In detail, the Euclidean distances of the deep features are introduced into the
cross-entropy losses as regularization. However, the method’s performance is somehow not ideal. As a
competitor, Bazi et al. attribute the return of complex handcrafted features to the vanishing gradient
problem that exists in the back propagation procedure [17]. As a solution, an auxiliary loss function is
introduced to the model’s shallow layers to tackle the vanishing gradient. As we know, the vanishing
gradient problem is commonly relevant to a lot of factors, e.g., the learning rate, activation function,
and model capacity.

Zhang et al. propose a cascade algorithm that employs two different CNNs as feature extractors,
and then the features are fed into a capsule network (CapsNet) [18]. Zhu et al. propose another
attention-based deep feature fusion (ADFF) algorithm [19]. It consists of two CNNs, one as a deep
feature extractor and the other as a gradient-attention generator. Besides, Minetto et al. proposed
the “Hydra” ensemble [20]. It consists of fourteen CNN models. Model combinations and ensembles
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outperform other routine algorithms in terms of accuracy. However, the cascade CNN models are
truly hardware expensive, too.

With the rise of the transformer [21], the attention mechanism offers a cost-controlled technique
to enhance the performance of CNN. Guo et al. proposed a saliency-dual attention network (SDANet)
[22]. The spatial attention structure is only placed in the model’s second stage, while the channel
attention is placed in the third, fourth, and fifth stages, respectively. Similarly, Tong et al. proposed
a channel-attention-based network (CADNet) [23]. The “Squeeze and Excitation” (SE) blocks first
proposed by Hu et al. [24] are imported into every stage of the model’s architecture. Guo et al. also
proposed a global-local attention network (GLANet) [25]. The difference is that it only consists of
two attention branches at the end of the fifth stage, i.e., channel and spatial attention. Similarly,
Alhichri et al. proposed another spatial attention network (AttnNet) [26]. As a common feature,
these four approaches only introduce a controllable parameter increment to the model. However, a
significant improvement in performance is not guaranteed for all of them. In conclusion, the former
two perform better than the latter ones.

Attention mapping is also included for RSI-SC. Li et al. proposed a method using the fusion
of deep features and class activation maps (CAM) to seek a more discriminative feature represen-
tation [27]. Tang et al. proposed a method using pairs of rotated images to achieve an attention-
consistent network (ACNet) [28]. The multi-scale deep features are also considered attention patterns.
Xie et al. proposed a scale-free CNN (SFCNN) method [29]. It replaces the fixed-parameter full-
connected layer with a convolutional operation for arbitrary input sizes. Sun et al. proposed a gated
bidirectional network (BDNet) [30]. It employs a bi-directionally connected model to hierarchically
aggregate multilayer convolutional features. Li et al. proposed a gated recurrent multi-attention
network (GRMANet) [31]. It extracts multilevel features at various stages for input to a deep-gated
recurrent unit. Chen et al. proposed another global context-spatial attention network (GCSANet)
[32]. It consists of multi-scale feature extraction and context modeling. In a word, these five atypical
attention methods do achieve ordinary performance, though the algorithm’s procedure seems abstruse.

Recently, training optimization strategies have boomed. Howard proposes a “progressive resizing”
method by increasing image size in successive training epochs [33]. This method offers convenient
multi-scale features, though its accuracy is not ideal. Hoffer et al. propose a “mix and match” method
by using stochastic images and batch sizes through random sampling to improve the algorithm’s
robustness and training efficiency [34]. This method applies effects like regularization to the objective
function. Tan et al. also propose a “progressive learning” method [35]. It employs more intensive
regularization as the training image size progressively increases. However, as Touvron et al. conclude
[36], these typical DA techniques will introduce a data distribution shift because the random size crop
(RSC) transformation is always involved. The ratio of the training and testing image sizes is crucial if
the RSC operation is used for training images. In other words, smaller images produced by the RSC
have a data distribution similar to larger ones.

Motivated by these optimization ideas, the author proposes the FST-CNN algorithm. The
algorithm’s special parts are followed. Firstly, the training procedure includes two steps. The RSC
transformation is only included in step 1, but other settings are shared between the two steps. Second,
extensive experimentation confirms the optimal size of training images transformed by the RSC.
The results show that the empirical size of training images transformed by the RSC should be re-
determined if the testing resolution changes [37]. Thirdly, the Adam-W algorithm [38] and label smooth
(LS) technique [39] are employed. The AdamW is less sensitive to the learning rate, while the LS can
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help CNN models achieve higher accuracy compared to the hard label. Finally, no layer is frozen like
Touvron et al. do [36] because the RSI dataset is smaller.

However, ideas from previous studies like feature fusion, multi-models, or ensembles are totally
excluded from the algorithm. The “progressive resizing,”“mix-and-match,”and “progressive learning”
methods are also excluded in view of the unsolved data distribution. All experimental results are
derived solely from the original architecture of all those SOTA CNN models. All attention structures
are excluded from this paper. The reason is that this paper mainly focuses on the performance
comparisons of previous studies.

In the process of effectiveness evaluation, 20 previous CNN-based methods, six classic models,
and 30 architectures are involved and investigated. The results are presented in Section 4.

3 Methodologies
3.1 Model Architecture

Six CNN models were included in the performance comparison, i.e., the VGGNet [40],
GoogLeNet [41], ResNet [42], DenseNet [43], EfficientNet [44], and EfficientNetV2. Twenty different
studies are surveyed, including nine different CNN architectures, i.e., the DenseNet-121, VGGNet-16,
GoogLeNet, ResNet-18, ResNet-34, ResNet-50, ResNet-101, EfficientNet-B0, EfficientNet-B3, and
EfficientNetV2-S.

VGGNet-16 is released by the Visual Geometry Group of the University of Oxford, and reference
[40] shows its architecture. VGGNet-16 consists of 13 convolutional layers. It is a well-known
architectural style that represents the deep CNN. Similarly, GoogLeNet is divided into five stages, and
reference [41] shows its architecture. Particularly, the model’s third, fourth, and fifth stages have an
“inception” block. It consists of four branches to conduct dimensionality reduction, which extracts
deep features from different scales without those traditional redundant layers. It is a well-known
architectural style that represents the wider CNN.

ResNet consists of a different number of layers, e.g., ResNet-18 means 18 layers. The architectures
of ResNet-18 and residual blocks are shown in Fig. 1. As shown in Fig. 1a, every two layers with the
same color are residual blocks, while the black curve arrow means the shortcut connections. Shortcut
connections can well handle the vanishing gradient problem, while models go deeper. As shown in
Fig. 1b, the residual block consists of two branches, and the curve arrow in black represents the identity
mapping. The x represents inputted images, while the f is the convolution function. The output of
residual blocks is the sum of x and f(x). Residual blocks have been widely inherited in later CNN
models.

Figure 1: Architectures of ResNet-18 and residual block
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DenseNet’s architecture is shown in reference [43]. It has a similar residual block as ResNet. The
difference is that each layer in the dense block is feed-forward connected to all subsequent layers. For
each layer, features of all preceding layers are inputs, and their outputs are inputs to all subsequent
layers. DenseNet has fewer parameters than ResNet because feature reuse is enhanced.

The architectures of EfficientNet-B0 and mobile block (MB) are shown in reference [44]. The
model includes nine stages, while stages 1–8 consist of the MBs. Every two MB has a residual block.
In addition, a SE structure [24] is included in the MB to enhance channel attention.

The architecture of EfficientNetV2-S can be found in reference [13]. It is similar to that of
EfficientNet-B0. However, an architecture search changes the scale ratio of MBs.

3.2 Method’s Framework
The proposed method’s framework is shown in Fig. 2. The method pipeline consists of two steps.

In Step 1, the pre-trained models on ImageNet 2012 are retrained on RSI datasets by transfer learning
strategies. Afterwards, in Step 2, the weight files from transfer-learned models are inherited and the
models are fine-trained on RSI datasets. The biggest difference between Step 1 and Step 2 is the DA
strategy. More details are presented in Sections 3.3 and 3.4.

Figure 2: The proposed method’s framework

3.3 Algorithm
The algorithm of the FST-CNN is shown in Algorithm 1. In detail, three hyper-parameters are

crucial to implement. Firstly, the Step 1 training epoch is 120, while the 180 epochs of Step 1 are
only used on the smaller dataset. The model needs more samples from small datasets to achieve
convergence. Secondly, the size of the training image transformed by the RSC is 1762. Extensive
experiments confirmed that the empirical resolution can properly solve the data distribution shift [37].
Thirdly, the initial learning rate (LR) is 0.0001 for Step 1 and 0.00001 for Step 2, both with cosine
decay. Commonly, a smaller LR has a smoother fitting curve for transfer learning strategies.

Additionally, other hyper-parameters are similar to previous studies. The batch size is 30. The
testing resolution is 2562. The accuracy is the best result of Step 2, and the training epoch is empirical
240.
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Algorithm 1: The procedures of FST-CNN
X: original images, Y: corresponding labels
Xt: transformed images
Stf: size of transformed image
St: image size for testing
Trs: combination of transformations
P: the function of predicting images’ probabilities
Acc: model’s prediction Accuracy
Results: dictionary of Acc

1. St = {256}, where 256 mean a resolution of 2562

2. Stf = {176}, where 256 mean a resolution of 1762

3. Trs = {color Jitter, horizontal and vertical Flip, rotation}
4. Step 1 Initial training
5. Input: X and Y
6. Resize transformation: Xt = Resize (X, size = Sv)
7. RSC transformation: Xt = RSC (Xt, size = Stf)
8. Random transformations Xt = Rtrans (Xt, size = Stf)
9. Output: images Xt and labels Y
10. For Epoch = 1, 2, . . . , 120 do
11. Predict images’ probability on the training sub-dataset: Acc = P (Xt)
12. Update parameters through back propagating
13. End For
14. Step 2 final training
15. Input: X and Y
16. Resize transformation: Xt = Resize (X, size = St)
17. Random transformations Xt = Rtrans (Xt, size = Stf)
18. Output: images Xt and labels Y
19. For Epoch = 1, 2, . . . , 240 do
20. Predict images’ probability on the training sub-dataset: Acc = P (Xt)
21. Update parameters through back propagating
22. Predict images’ probability on the testing sub-dataset: Acc = P (Xt)
23. If Acc is the best then
24. Save Acc and St in Results
25. End For
26. Return Results

3.4 Data Augmentation
The DA in this study employs an understandable strategy that consists of six kinds of image

transformations in a cascade combination. That is, the resize is followed by the RSC, and then there is
the color jitter, horizontal flip, vertical flip, and rotation in turn. However, the RSC is excluded from
Step 2. DA is implemented via the default code in the PyTorch libraries.

3.5 Dataset and Division
There are two RSI datasets widely used as benchmarks in previous studies, i.e., the Aerial

Image Dataset (AID) and the Northwestern Polytechnic University Remote Sensing Image Scene



1388 IASC, 2023, vol.37, no.2

Classification 45 Dataset (NWPU45D). The details about the two datasets can be found in reference
[13]. Samples of some typical subsets in AID and NWPU45D are shown in Fig. 3.

Figure 3: Typical samples in AID and NWPU45D

The training ratios of the two datasets are the same as in the previous studies, i.e., 20% and 50% for
AID and 10% and 20% for NWPU45D. The training and testing subsets are also chosen at random.

3.6 Evaluation Criteria
In previous studies, the overall accuracy (OA) and confusion matrix were commonly used as

criteria for performance evaluation. The definition of “confusion matrix” can be found in reference
[13]. The OA is as described in Eq. (1):

OA = Nc

Nt

(1)

where OA is defined as the total number of accurately classified samples (Nc) divided by the total
number of tested samples (Nt).

3.7 Hardware and Software Environments
The experiments were performed on four personal computers equipped with a single RTX 2060

GPU. PyTorch 1.11.0 is installed on Windows 10. All the models were initialized by the pre-trained
weights file on ImageNet2012 in PyTorch. All the experimental results were averaged over three runs.

4 Results
4.1 Fitting Curves

The fitting curves of AID at a training ratio of 20% are shown in Fig. 4. As shown on the top of
Fig. 4, it is clear that all five CNN models (i.e., the VGGNet-16, GoogLenet, DenseNet-121, ResNet-
50, and EfficientNet-B0) achieve smooth fitting curves at training step 1. In detail, the accuracy curves
show a fast fitting speed at the beginning 50 epochs. Afterwards, the convergent speed slows. This
phenomenon is classical in transfer learning strategies.

As shown at the bottom of Fig. 4, all five models achieve a distinct accuracy lift, while the yields
are slightly different. In detail, the lift amplitude is more obvious for DenseNet121 and EfficientNet-
B0. Nonetheless, all five models show a consistent accuracy enhancement of 1.0%–1.6% after the data
distribution shifting introduced by DA is corrected. These results may indicate that all the previous
studies achieved suboptimal performance due to a lack of fine training.
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Figure 4: Fitting curves of AID at a 20% training ratio

4.2 OA Results for AID
The OA results of different methods on AID are shown in Table 1. As shown in Table 1, there are

seventeen methods and thirty models included. The OA results in black from models trained by the
FST-CNN algorithm are set as a baseline benchmark. The OA result in red means below the baseline,
while green means above the baseline. The “None” means that no relevant results are presented in the
literature.

Table 1: OA (%) comparison of different methods on AID

Methods Base model Training ratio

20% 50 (%)

DCA [9] VGGNet-16 None 89.71 ± 0.33
HWD [14] VGGNet-16 None 96.37 ± 0.30

GoogLeNet None 94.12 ± 0.32
WD [15] GoogLeNet None 97.24 ± 0.32
DCNN [16] VGGNet-16 90.82 ± 0.16 91.89 ± 0.22

GoogLeNet 88.79 ± 0.10 96.22 ± 0.10
AuxCNN [17] EfficeintNet-B0 93.69 ± 0.11 None

EfficeintNet-B3 94.19 ± 0.15 None
CapsNet [18] VGGNet-16 91.63 ± 0.19 94.74 ± 0.17
ADFF [19] ResNet-18 93.68 ± 0.29 94.75 ± 0.24
CADNet [23] DensnNet-121 95.73 ± 0.22 97.16 ± 0.26
GLANet [25] VGGNet-16 95.02 ± 0.28 96.66 ± 0.19
AttnNet [26] EfficeintNet-B3 94.45 ± 0.76 96.56 ± 0.12
ACNet [28] VGGNet-16 93.33 ± 0.29 95.38 ± 0.29
SFCNN [29] VGGNet-16 93.60 ± 0.12 96.66 ± 0.11

GoogLeNet 91.83 ± 0.11 95.53 ± 0.09
BDNet [30] VGGNet-16 92.20 ± 0.23 95.48 ± 0.12
GRMANet [31] ResNet-18 94.58 ± 0.25 97.06 ± 0.37

ResNet-50 95.43 ± 0.32 97.39 ± 0.24
ResNet-101 96.19 ± 0.48 97.48 ± 0.39

(Continued)
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Table 1: Continued
Methods Base model Training ratio

20% 50 (%)

GCSANet [32] DensnNet-121 95.76 ± 0.38 97.52 ± 0.32
FST-EfficientNet [13] EfficientNetV2-S 96.37 ± 0.03 98.01 ± 0.22
FST-CNN [this work] VGGNet-16 94.25 ± 0.34 96.35 ± 0.22

GoogLeNet 95.60 ± 0.09 96.99 ± 0.01
DensnNet-121 96.25 ± 0.01 97.46 ± 0.04
EfficeintNet-B0 96.58 ± 0.07 97.83 ± 0.18
EfficeintNet-B3 96.90 ± 0.04 97.99 ± 0.15
ResNet-18 95.49 ± 0.08 97.20 ± 0.10
ResNet-50 95.73 ± 0.09 97.09 ± 0.03
ResNet-101 95.74 ± 0.20 97.11 ± 0.34

In detail, a maximal OA gap of 6.64% is found in the DCA method, which employs the
VGGNet-16 architecture. Meanwhile, a similar gap of 2.87% is found in the DCNN method, which
employs the GoogLeNet architecture. More specifically, only three of these seventeen methods have
performance near or slightly beyond baseline results. However, the WD method only employs a
smaller testing ratio of 30%, which makes its result doubtful. The GCSANet method also shows a
very close result to the baseline when considering the error. The GLANet does show an improvement
on the VGGNet-16 model. However, the VGGNet-16 architecture is out of fashion. The GRMANet
results may indicate that the introduced GRU sequential architecture has the potential to boost model
performance.

In any case, these true existence results show that the previous CNN-based approaches for RSI-SC
have a systemic problem. This suboptimal performance issue across different methods and CNN-based
architectures is supported by good empirical evidence. It reveals that a cognitive consistency bias has
existed for over a half-decade.

4.3 OA Results for NWPU45D
The OA results of different methods on NWPU45D are shown in Table 2. There are sixteen

methods and thirty base models included in Table 2. The OA results are illustrated by the same rule
as Table 1.

Table 2: OA (%) comparison of different methods on NWPU45D

Methods Base model Training Ratio

10% 20 (%)

HWD [14] VGGNet-16 None 93.27 ± 0.17
GoogLeNet None 88.43 ± 0.18

DCNN [16] VGGNet-16 89.22 ± 0.50 91.89 ± 0.22
GoogLeNet 86.89 ± 0.10 90.49 ± 0.15

(Continued)
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Table 2: Continued
Methods Base model Training Ratio

10% 20 (%)

AuxCNN [17] EfficeintNet-B0 89.96 ± 0.27 None
EfficeintNet-B3 91.08 ± 0.14 None

CapsNet [18] VGGNet-16 89.18 ± 0.14 85.08 ± 0.13
ADFF [19] ResNet-18 90.58 ± 0.19 91.91± 0.23
Hydra [20] ResNet-50 None 94.51 ± 0.21
SDANet [22] ResNet-101 89.40 91.15
CADNet [23] DensnNet-121 92.70± 0.32 94.58 ± 0.26
GLANet [25] VGGNet-16 91.30± 0.18 93.45 ± 0.17
CAM [27] ResNet-18 92.17 ± 0.08 92.46 ± 0.09
ACNet [28] VGGNet-16 91.09 ± 0.13 92.42 ± 0.16
SFCNN [29] VGGNet-16 89.89 ± 0.16 92.55 ± 0.14

GoogLeNet 87.43 ± 0.13 90.51 ± 0.13
GRMANet [31] ResNet-18 92.84 ± 0.36 94.26 ± 0.27

ResNet-50 93.19 ± 0.42 94.72 ± 0.25
ResNet-101 93.67 ± 0.21 95.32 ± 0.36

GCSANet [32] DensnNet-121 93.39 ± 0.39 94.95 ± 0.36
FST-EfficientNet [13] EfficientNetV2-S 93.74 ± 0.04 95.60 ± 0.08
FST-CNN [this work] VGGNet-16 90.92 ± 0.17 93.43 ± 0.05

GoogLeNet 92.50 ± 0.10 94.42 ± 0.12
DensnNet-121 93.62 ± 0.07 95.33 ± 0.03
EfficeintNet-B0 93.86 ± 0.10 95.73 ± 0.04
EfficeintNet-B3 94.29 ± 0.07 95.96 ± 0.08
ResNet-18 92.40 ± 0.10 94.60 ± 0.03
ResNet-50 93.31 ± 0.05 94.90 ± 0.07
ResNet-101 93.18 ± 0.10 94.94 ± 0.08

In detail, a maximal OA gap of 8.35% is found in the CapsNet method, which employs the
VGGNet-16 architecture. Meanwhile, a similar gap of 5.99% is found in the HWD method, which
employs the GoogLeNet architecture. More specifically, only one of these sixteen methods achieves
performance beyond baseline results. The GRMANet method shows an acceptable improvement to
the baseline on NWPU45D. It may indicate that sequential features extracted by CNN can do more
than expected.

As a short conclusion, the OA results on AID and NWPU45D do show a consistent suboptimal
performance in the previous studies for RSI-SC. Although different roadmaps have been employed,
the final result is that “sample is the best.” The simple FST-CNN algorithm employs a traditional
transfer learning strategy that overwhelms the other methods. These results demonstrate that there is
a big chance to reshape the patterns for RSI-SC.

4.4 Confusion Matrixes of AID
The confusion matrix of AID at a 50% training ratio is shown in Fig. 5. It is the result of

EfficeintNet-B3 being trained by the FST-CNN. There are 12 subclasses, including the airport,
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basketball field, beach, farmland, forest, parking, playground, pond, port, railway station, stadium,
and viaduct, with an OA of 100%. Besides, there are three subclasses with an OA above 98%. The
confusion mainly occurs in the subclasses, including center, park, resort, and school. In detail, the
resort is at the lowest OA of 90%, while the square is at a lower 92%. This confusion result is consistent
with other previous studies, although its OA is higher. It reveals that the performance gap between
different CNN architectures is primarily due to their representation abilities.

Figure 5: Confusion matrix of AID at a 50% training ratio

4.5 Confusion Matrixes of NWPU45D
The confusion matrix of NWPU45D at 20% training ratios is shown in Fig. 6. It is the result of

EfficeintNet-B3 being trained by the FST-CNN. There are five subclasses, including the chaparral,
harbor, sea ice, ship, and snow berg, with an OA of 100%. There are 30 subclasses with an OA
above 95%. Besides, the confusion mainly occurs in the subclasses, including commercial area, dense
residential area, industrial area, island, lake, medium residential, railway station, roundabout, snow
berg, and wetland, with an OA below 95% but above 90%. Confusion is most prevalent in the church
and palace, which have an OA of less than 90%. It reveals that the covariate shift in these two subclasses
is more significant. The confusion results are consistent with other prior studies. It is generally agreed
that the difference in interclass in NWPU45D is greater than AID. Firstly, the total number of samples
in NWPU45D is three times that of AID. Secondly, the image’s resolution in NWPU45D is only 2562

compared to AID’s 6002.

In brief, the results demonstrate that the FST-CNN algorithm significantly boosts the model’s
performance.
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Figure 6: Confusion matrix of NWPU45D at a 20% training ratio

4.6 Attention Maps
Attention maps generated by the GradCAM algorithm [45] are shown in Fig. 7. The brighter areas

indicate more discernment information. As shown in Fig. 7a, the airport scene is correctly classified by
all five CNN models. As shown in Fig. 7b, the church scene is obviously misclassified by VGGNet-16
due to the similarity between subclasses. The EfficientNet-B0 should have better discernment due to
the SE attention structure. However, the clue was not clear in previous studies. The results do prove that
most of the previous studies achieved suboptimal performance due to improper training procedures.

Figure 7: Original scene images and attention maps derived from Grad-CAM
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4.7 Ablation Study
In this section, the DA strategy of Step 2 in the FST-CNN algorithm is used as the baseline to

evaluate the effectiveness of RSC, LS, and fine-training on different CNN models for RSI-SC. That is,
the baseline’s DA strategy excludes RSC and LS, while fine-training (i.e., the Step 2 train procedure)
is employed for all tests. The experiments are tested on AID at a training ratio of 20%. The ablation
studies’ results are shown in Table 3.

Table 3: Results of ablation studies on AID

Model OA (%)

Baseline Baseline + RSC Baseline + LS Baseline + RSC + LS

VGG-16 Step1 93.40 ± 0.13 93.85 ± 0.32 93.33 ± 0.21 92.52 ± 0.13
Step2 93.93 ± 0.09 94.05 ± 0.23 94.18 ± 0.09 94.25 ± 0.35

GoogLeNet Step1 95.10 ± 0.31 94.23 ± 0.27 93.52 ± 0.46 94.07 ± 0.08
Step2 95.37 ± 0.11 94.58 ± 0.27 95.63 ± 0.06 95.60 ± 0.09

ResNet-50 Step1 95.06 ± 0.15 93.24 ± 0.25 94.32 ± 0.06 94.35 ± 0.09
Step2 95.55 ± 0.08 95.33 ± 0.19 94.66 ± 0.11 95.73 ± 0.09

DenseNet-121 Step1 95.37 ± 0.12 95.15 ± 0.21 91.19 ± 0.64 93.30 ± 0.22
Step2 95.89 ± 0.07 95.16 ± 0.17 95.64 ± 0.05 96.25 ± 0.08

EfficientNet-B0 Step1 95.72 ± 0.15 96.20 ± 0.05 94.15 ± 0.46 94.92 ± 0.11
Step2 96.13 ± 0.10 96.53 ± 0.07 96.23 ± 0.03 96.58 ± 0.07

As shown in column “Baseline,” the fine-training procedure boosts all five models’ performance
by a 0.4% to 0.5% increase in OA. This result reveals that the baseline DA strategy, which only consists
of classic geometric and color transforms, also introduces a data distribution shift to the dataset. As
shown in the column “Baseline + RSC,”the shift also exists, but the intensity is different across models.
As shown in the column “Baseline + LS,” the shift intensity varies more across models. However,
as shown in the column “Baseline + RSC + LS,” the fine-training procedure boosts all five models’
performance by a more noticeable 1.5% to 2.9% increase in OA.

In general, the results demonstrate that the data distribution shift introduced by DA truly exists.
The ignore of the problem brought out the consistent suboptimal performance in the previous
literature. However, the problem can be well handled in a cost-controlled way, just like the FST-CNN
algorithm does.

5 Discussions

Feature extraction is a core skill for ML-based algorithms. However, these feature-reliance
practices are quite different for DL methods. The results in this work demonstrate that the CNN
model’s performance for RSI-SC cannot be improved by simple stacking features. That is, the features
automatically extracted by the algorithms are very different from the handcrafted ones. In other
words, those feature fusion strategies do not significantly boost the model’s performance as expected.
Meanwhile, the benefit of stacking models is not proportional to the number of models. The results
of the Hydra ensemble show that hardware costs will outweigh the benefits when the GPU budget is
not well controlled.

Moreover, DA techniques like the RSC seem to be a cheaper option for CNN-based methods
to achieve more multi-scale features if the data distribution shift is well handled. DA techniques are
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usually implemented on the CPU, so the GPU cost is more controllable. Meanwhile, the training
images’ resolution generated by the RSC is commonly smaller than the original ones. Its training time
is less expensive.

However, the results in this work prove that the previous studies paid more attention to the model’s
architecture, feature extraction, and object function optimization. The training optimization strategies
have been long ignored, so all the previous ones have achieved suboptimal results like an under-fitting
problem. This problem has created a dilemma because it is difficult to evaluate the value of previous
studies. It is time to double-check these methods.

6 Conclusions

The CNN-based algorithm is dominant in the current studies on interpreting RSI. However, it
appears that training optimization strategies have received less attention in relevant research.

To evaluate this problem, the author proposes a novel training algorithm named FST-CNN.
It employs a routine transfer learning strategy coupled with routine DA procedures. Afterward, to
verify the algorithm’s effectiveness, 20 methods from previous studies are included in a performance
comparison. In total, there are six classic models, and 30 architectures are involved and investigated.
In detail, the same model architecture trained by the FST-CNN algorithm on the same datasets serves
as the evaluation baseline.

The results reveal a real predicament in the previous studies for RSI-SC. That is, there is clear
evidence of systemic suboptimal performance in the previous literature. In other words, most of the
CNN-based methods proposed in the previous studies show a consistent mistake, which has made
the model’s accuracy lower than its potential value. The most important reason seems to be the
inappropriate training strategy and the data distribution shift introduced by DA.

Meanwhile, all those complex roadmaps, e.g., deep feature fusion, model combination, model
ensembles, and human feature engineering, are not as effective as expected. More than that, most of
the performance evaluation was conducted based on an inaccurate, suboptimal, and unfair result. It
has made most of the previous studies’ research findings questionable to some extent.

However, all these confusing results also exactly demonstrate the effectiveness of FST-CNN.
This novel algorithm is model-agnostic and can be employed on any image classification model to
potentially boost performance. In addition, the results also show that a standardized training strategy
is indeed very meaningful for the research tasks of the RSI-SC.

Anyhow, some ideas truly show the possibility of boosting CNN’s performance further, e.g.,
the sequential deep features and the attention blocks. Additionally, the model’s performance seems
to be saturated, even though the training samples are doubled in the Step 2 process of the FST-
CNN algorithm. It seems to come from the architecture’s heterogeneity. We will investigate all similar
questions thoroughly in the future.
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