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Abstract: The software engineering technique makes it possible to create high-
quality software. One of the most significant qualities of good software is that
it is devoid of bugs. One of the most time-consuming and costly software proce-
dures is finding and fixing bugs. Although it is impossible to eradicate all bugs, it
is feasible to reduce the number of bugs and their negative effects. To broaden the
scope of bug prediction techniques and increase software quality, numerous
causes of software problems must be identified, and successful bug prediction
models must be implemented. This study employs a hybrid of Faster Convolution
Neural Network and the Moth Flame Optimization (MFO) algorithm to forecast
the number of bugs in software based on the program data itself, such as the line
quantity in codes, methods characteristics, and other essential software aspects.
Here, the MFO method is used to train the neural network to identify optimal
weights. The proposed MFO-FCNN technique is compared with existing methods
such as AdaBoost (AB), Random Forest (RF), K-Nearest Neighbour (KNN),
K-Means Clustering (KMC), Support Vector Machine (SVM) and Bagging Clas-
sifier (BC) are examples of machine learning (ML) techniques. The assessment
method revealed that machine learning techniques may be employed successfully
and through a high level of accuracy. The obtained data revealed that the proposed
strategy outperforms the traditional approach.

Keywords: Faster convolution neural network; Moth Flame Optimization (MFO);
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1 Introduction

The quality and stability of computer software have grown increasingly significant and critical as the
functionality of computer operations has gotten more important and intricate in modern civilization. As
the need for software grows, so does the amount, complexity, and importance of the code. The amount of
the code increase, the quantity of flaws in the program grows as well (Felix, E.A et al., 2020) [1]. Except
a software module contains a large number of bugs that severely limit its functioning, it is said to be bug-
prone. One strategy for boosting the efficiency and efficacy of software testing is software bug prediction
[2]. Bug prediction includes acquiring bug data, selecting an appropriate model based on the data,
arranging input data in terms of time, applying statistical techniques to the reliability model, and
analyzing the projected effects. Bug prediction has been a primary focus of software reliability growth
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models. Our research will focus on a variety of aspects of software bug prediction. During the life cycle’s
development phase, which also includes planning, deployment, design, testing, problem assessment,
development, along with continuation, as well as software development life cycle models, machine
learning techniques are used to anticipate software bugs. Machine learning techniques and statistical
analysis may both be used to anticipate bugs (Saharudin, S.N et al., 2020) [3]. During the software
development process, many approaches are employed to get better excellence. The objective of this
research is to be able to estimate the number of bugs in software ahead of time utilizing software data
such as the characteristics, methods, number of lines of code, and other significant software aspects [4].
We’ll also analyze the datasets utilized in the model, as well as commonly used software metrics and
performance criteria for the model’s evaluation. As a result, we can gain the desired approaches and
procedures for use in future experiments.

The following is how the remaining of the paper is structured: The strategy for locating relevant research
was detailed in Section 2. The proposed methodology was mentioned in Section 3. The implementation was
explained in Section 4. At last, in Section 5, we wrap up the report and make suggestions for further research.

2 Related Work

Errors, mistakes, and flaws in the source code are known as software bugs (Huggins, 2006) [5]. Memory
bugs contribute to the detection of memory bug root causes, which occur when memory corruption extends
throughout effecting awaiting a visible crash, such as a software collapse; occur (Jeffrey et al. 2009) [6].
Security concerns play a vital role in identifying security flaws that were previously classified as non-
security (Gegick et al., 2010) [7]. There is a strong link between the number of bugs and the number of
flaws in the source code that cause the software to fail (Tran 2012) [8]. The most important or relevant
indicators were chosen using principal component analysis (Fioravanti et al., 2001) [9]. Different software
metrics are utilized for defect prediction, and some of the most essential metrics for forecasting software
module defects are defined (Okutan et al. 2014) [10]. For bug prediction, both black box and white box
techniques are utilized (Rana 2015) [11]. To forecast uncertainty, a machine learning technique is also
employed (Delphine Immaculate et al., 2019) [12]. Decision Trees are made up of decision nodes, which
are made up of branch and leaf nodes and are nothing more than decisions. The model predicts
73 percent accuracy (AwniHammouri et al, 2018) [13]. Artificial Immune Network-based hyper-parameter
optimization outperforms the default hyperparameters. The accuracy of the model is 73.9 percent. The
software bug prediction model’s results revealed that machine learning models with optimized
hyperparameters outperformed those with default hyperparameters (Khan, F et al., 2020) [14]. Multiple
linear regressions can be used to forecast fault density in open-source software. predictive factors use
include source lines of code (SLOC), code churn, commits count, and developers count up (S. Rathaur
et al., 2020) [15].

3 Proposed Methodology

The objective of this research is to be able to predict in advance the number of bugs in the software using
the software data itself such as the number of attributes, number of methods, number of lines of code, and
other important software properties. In Python, the term “central tendency” refers to a single-center value that
describes the whole distribution. The main steps are Advanced EDA and visualization using proposed Faster
Convolution Neural Network (FCNN), Dimensionality reduction algorithms, and evaluation parameters.
Each process includes some algorithms for processing. The Advanced Exploratory Data Analysis (EDA)
and visualization using FCNN include descriptive statistics. correlation matrix, feature importance
(Lasso), feature importance (RFC), kernal density estimation, 3D scatter cross plots, UMAP
dimensionality reduction, Principal Component Analysis (PCA) dimensionality reduction, and clustering
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analysis. The Dimensionality reduction algorithm has two stages. The First stage is hyper-parameter tuning
and solving the imbalance problem and the second stage is to tackle imbalance. The first stage includes
classifying data where the classes are: no bugs, 1 bug, or > 2 bugs, and classifying data where the classes
are: no bugs, > 0 bugs. Under Sampling, Over Sampling, and Feature Selection is used in the second
stage for tackling imbalance. Hyper-parameter tuning is the process of obtaining the optimum model
architecture using parameters that influence the architectures. Accuracy, ROC, F-1 Score, Confusion
Matrix, Area under the curve of ROC are the evaluation parameters in this research. Fig. 1 depicts the
proposed method’s block diagram.

To predict bugs, data analysis employs two basic statistical methodologies. There are two types of
inferences: descriptive and inferential. Descriptive statistics describe data using tools like mean and
standard deviation on a sample. Inferential statistics examine data that might fluctuate randomly and then
draws inferences. The descriptive statistics approach is used to forecast software bugs.

3.1 Faster Convolutional Neural Network (FCNN) Based Bugs Prediction

Convolutional Neural Networks give weightage in deep learning for sufficient feature extraction in bug
prediction. We may get high precision with the aid of this strategy. Using this method, the train and test data
programs are first transformed into abstract syntax trees. The nodes of each tree are then chosen and turned
into token vectors. These token vectors are then sent to FCNN after being transformed to numerical vectors in
the encoding stage. It produces semantic and structural features for software, which are then coupled with
bug prediction features already in place. The characteristics are then fed into a logistic regression model
to determine whether or not the software is bugged. The following Fig. 2 depicts the convolutional neural
network structure.

3.2 Moth Flame Optimization Algorithm

Mirjalili initially presented MFO, a swarm optimization technique, in 2015. A moth is a bug of the
butterfly group, and its major activity begins in the dark. The core concept for MFO is derived from the
exploration progression of moths when seeking light in nature is known as the orientation of transverse

Figure 1: Block diagram of the proposed method
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while migrating toward the light at dark, depending on whether the light is emitted by the light. The location
of moths is determined by a set movement angle in relation to the incoming light. Moths travel in a circular
pattern, attempting to maintain a comparable angle for the artificial light. Such flying techniques will result in
a fatal spiral flight track for moths (Mirjalili, S., 2015) [16].

Each moth represents a possible solution in the problem’s search area. The moths’ solutions are shown in
the matrix below.

M ¼
m1;1 m1;2 : : m1;d

: : : : :
: : : : :

mn;1 mn;2 : : mn;d

2
664

3
775 (1)

where, n denotes to the number of moths, d denotes the problem dimension.

The finest spots in the search space are represented by a series of flames. The set of flames is depicted in
the below matrix, which is analogous to the moth’s matrix.

F ¼
F1;1 F1;2 : : F1;d

: : : : :
: : : : :

Fn;1 Fn;2 : : Fn;d

2
664

3
775 (2)

Here, n and d denote the number of moths and dimensions of the search space, correspondingly. In the
search space, flames and moths are solutions. The biggest distinction between them, though, is the update
procedure. Moths despise the real search agents who roam the search space. Every moth explores the area
around a flame and updates its position. This method allows moths to strike a balance between the
explorative and exploitative processes while searching. Using the fitness values from each generation, all
flames are arranged ascendingly. As a result, the moths’ locations are updated using a process based on
the nearest best solutions.

mi ¼ P mi; Fj

� �
(3)

s mi; Fj

� � ¼ Di:e
bt: cos 2ptð Þ þ Fj (4)

Di ¼ Fj � mi

�� �� (5)

Figure 2: Schematic of convolutional neural network
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Eq. (3) depicts the flame-based updating process, where Fj indicates the jth flame and mi denotes the ith

moth. Eq. (4) depicts the spiral function logarithmic used to update moths in the search space, here b is a fixed
value used to regulate the form of the logarithmic spiral function, Di indicates the distance between mi moths
& Fj flame and t is a random value between −1 and 1. The Di calculation procedure is depicted in Eq. (5).
Because of the moth’s updating process, the quantity of flames will steadily decrease with more repetitions.
This decrementation process will maintain a proper ratio of exploitation to exploration. Eq. (6) shows the
number of flames within the MFO algorithm.

Flame number ¼ round N � l � N � l

T

� �
(6)

where l is the number of iterations actually performed, T is the maximum number of iterations and

N is a preset value that denotes the starting number of flames at the first iteration.

4 Implementation

The dataset was interpreted after pre-processing, and the details were passed to a vector using the Python
function. Two parameters were created, one of which was given the Quality level, while the other was applied
to other attributes that were chosen. Data sets were shown to have an incredibly strong link between software
consistency and defect count. The software’s consistency is likely to be influenced by the timing and cost of
development. Fig. 3 depicts the bugs and their occurrences. The bug occurrences may differ as to the number
of lines of code, methods, and characteristics are differing.

Must be careful not to overfit or have the classifier prefer “Class 0” unjustly based on these class
balances. The value of the correlation coefficient between sets of variables is shown in a correlation
matrix, which is a table. This demonstrates the correlation between cbo, dft, fanln, fanout, lcom,
noc, number of public attributes inherited, number of public attributes, number of private attributes
inherited, number of attributes, number of private attributes, number of attributes inherited, number of
methods, number of methods inherited, number of lines of code, wmc, rfc, and bugs. The highest
correlated variables with Bugs are (Fig. 4):

Figure 3: Bug vs. occurrences
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1. cbo is correlated with fanIn, fanOut

2. fanout is correlated with wmc, rfc, number of lines of code, number of methods

3. number of lines of code is correlated with wmc, rfc, number of methods

4. number of methods is correlated with wmc, rfc, number of public methods

rfc, cbo, fanOut, wmc, number of lines of code, and number of methods inherited are some of the most
important characteristics from this research analysis with correlation matrix, lasso regression feature
importance, and random forest classifier feature relevance: Fig. 5 depicts feature importance with Lasso
regression and random forest classifier, while Fig. 6 depicts Kernel Density of Classes with respect to one
variable. Kernel density estimation is a basic data smoothing issue that entails inferring population
conclusions from a small sample of data. Kernel density estimates are similar to histograms, but they can
have smoothness and continuity if the correct kernel is used.

When employing up to two-way multiple regression analysis to regress Y on X and Z, the Scatter 3D
Cross Plot process offers the ability to rotate the data so that may look at it from different perspectives. It
also has the option to visualize the multiple regression surfaces. This was shown in Figs. 7 and 8 shows
the features vs. bugs plot in scatter 3D cross plot. From the above Fig. 8, the greater number of negative
qualities have the highest possibility of bugs. The plot is colored by K-Means predictions in Clustering
Analysis using the UMAP Dimensionality Reduction method (Fig. 9a). UMAP method is comparable to
t-SNE, and it potentially maintains more of the global structure while providing better run time speed. It
reduces different software metrics having bugs by using the K-mean center. UMAP may also be utilized

Figure 4: Correlation matrix

1246 IASC, 2023, vol.36, no.2



as a general-purpose machine learning dimension reduction strategy because it has no computational limits
on embedding dimensions. There is no correlation between the number of bugs and the clusters created by
the K-Means predictor in this graph. The numbers 0, 1, and 2 represent the number of clusters that K-Means
require (Fig. 9a). The Next Plot is colored by real values (y train) and K-Means centers are provided to clear
up any confusion (Fig. 9b). PCA Dimensionality Reduction Algorithm (Fig. 9c) and Next Plot is colored by
K-Means cluster predictions rather than actual values (y train) (Fig. 9d).

In this research, two types of modeling were used to predict bugs. The corresponding AUC curve was
shown in Fig. 10. There are two kinds of categorization: Multi-Class Classification and Binary Classification.
Some clarifying algorithms are utilized for each technique. For Multi-Class Classification, Random Forest
Classifier (Ensemble), K-Nearest Neighbor, and K-Means Clustering are utilized.

Figure 5: Feature importance
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Figure 6: Kernel density of classes with respect to one variable
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The AdaBoost algorithm, the Support-Vector Machine, and the Bagging Classifier are all employed.
Neural Network (FCNN) is also utilized for Binary Classification. these SVM, KNN, K-Means, FCNN
models require scaling for more generalized results, because they are distance-based and, might favor one
feature over another. However, if the weak learner is a tree-based classifier for AdaBoost, Bagging, or
RFC, the weak learner is not affected by scaling. Confusion Matrix is a table that displays right guesses
as well as several sorts of wrong predictions.

False Negative, True Negative, False Positive, and True Positive are the four possible consequences for
each model (Fig. 10). The accuracy, AUC, and F-measure of the classifiers employed in this study are all
utilized to evaluate their performance. Fig. 11 shows the results of the Evaluator Function of the MFO-
FCNN. The percentage of precise estimates over the total number of forecasts made represents the
model’s accuracy. The total accuracy is expressed as follows:

Accuracy ¼ TNþ TPð Þ½ �
FNþ FPþ TNþ TPð Þ½ � (7)

The F-measure i.e., F1-score is a test accuracy metric that takes both precision and recall into
account.

F‐measure ¼ 2:
Precision � Recall

Precisionþ Recall
(8)

Precision (Positive Predictive Value) is the percentage of positive cases among all those that are
projected to be positive.

Precision ¼ TP

TPþ FPð Þ (9)

To calculate the bug rate, recall (sensitivity) is a metric that accurately detects the flaws.

Recall TPRateð Þ ¼¼ TP

TPþ FNð Þ (10)

The AUC (Area Under the Receiver Operating Characteristic Curve) is a measurement of the area under
the receiver operating characteristic curve. It’s a graphical representation of a prediction model’s diagnostic

Figure 7: Scatter 3D cross plot
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capabilities at various threshold levels. On the y-axis, the true positive rate is displayed, while the false
positive rate is plotted on the x-axis (Fig. 10).

Figure 8: Features vs. bugs plot in scatter 3D cross plot
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The area under the curve is the probability that a classification algorithm would rank a randomly selected
positive module higher than a randomly selected negative module. This FCNN approach will value all
classes equally; with no one class having a disproportionate influence on the measure. As a result, both
the ROC and the F1-Score will be calculated using Macro-Averaging. The scores will be far lower than
expected as a result of the imbalance (Fig. 11).

Fig. 12 depicts the effect of Data-Driven Model Optimization. Select the top three models in this
category, such as Under Sampling, Over Sampling, and With Feature Selection. Reducing the number of
samples in the majority class at random such that the two classes are balanced in Under Sampling, and
then testing it on an unbalanced real-world-like dataset.

The characteristics evaluated for the MFO-FCNN include rfc, cbo, fanOut, wmc, number of lines of
code, and number of methods inherited (Fig. 12). This research model was also trained with and without
under-sampling on a PCA training set.

Figure 9: Clustering analysis
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Figure 10: AUC curve of classifiers
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Figure 11: Evaluator function results of MFO-FCNN
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5 Conclusion

The software industry benefits more from the identification of issue causes and bug prediction in order to
supply high-quality goods to users. Prediction accuracy is determined by the precise causes of software faults

Figure 12: Data-driven model optimization result
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as well as the performance of the prediction model. Quality and dependability are being prioritized, resulting
in fewer software application failures, improved security, and improved application performance. The
software business, as well as IT workers, has a difficult difficulty in identifying and anticipating the most
critical vulnerabilities. This research has made a substantial contribution to the detection of underlying
causes of software issues, as well as the forecast of bug numbers using a variety of approaches. This
research uses a mix of the Faster Convolution Neural Network and the Moth Flame Optimization method
to anticipate the frequency of faults in software based on program data. The proposed method has f1-
score is 0.1351 %, the value of AUC-ROC is 0.8746% and the Accuracy is 0.8411%. That means the
MFO-FCNN has 84% of accuracy. As a consequence, when compared to other current algorithms, the
outcomes of these existing approaches reveal how accurate they are. Still, attempts are being made to
learn more about this technology for anticipating a bug, which uses machine learning algorithms to
improve accuracy for huge datasets. Other measures might be included in the future study. More open-
source data sets might be incorporated to improve bug prediction accuracy.
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