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Abstract: The exponential growth of Internet of Things (IoT) and 5G networks
has resulted in maximum users, and the role of cognitive radio has become pivotal
in handling the crowded users. In this scenario, cognitive radio techniques such as
spectrum sensing, spectrum sharing and dynamic spectrum access will become
essential components in Wireless IoT communication. IoT devices must learn
adaptively to the environment and extract the spectrum knowledge and inferred
spectrum knowledge by appropriately changing communication parameters such
as modulation index, frequency bands, coding rate etc., to accommodate the
above characteristics. Implementing the above learning methods on the embedded
chip leads to high latency, high power consumption and more chip area utilisation.
To overcome the problems mentioned above, we present DEEP HOLE Radio sys-
tems, the intelligent system enabling the spectrum knowledge extraction from the
unprocessed samples by the optimized deep learning models directly from the
Radio Frequency (RF) environment. DEEP HOLE Radio provides (i) an opti-
mized deep learning framework with a good trade-off between latency, power
and utilization. (ii) Complete Hardware-Software architecture where the SoC’s
coupled with radio transceivers for maximum performance. The experimentation
has been carried out using GNURADIO software interfaced with Zynq-
7000 devices mounting on ESP8266 radio transceivers with inbuilt Omni direc-
tional antennas. The whole spectrum of knowledge has been extracted using
GNU radio. These extracted features are used to train the proposed optimized
deep learning models, which run parallel on Zynq-SoC 7000, consuming less
area, power, latency and less utilization area. The proposed framework has been
evaluated and compared with the existing frameworks such as RFLearn, Long
Term Short Memory (LSTM), Convolutional Neural Networks (CNN) and Deep
Neural Networks (DNN). The outcome shows that the proposed framework has
outperformed the existing framework regarding the area, power and time. More-
over, the experimental results show that the proposed framework decreases the
delay, power and area by 15%, 20% 25% concerning the existing RFlearn and
other hardware constraint frameworks.
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1 Introduction

Internet of things (IoT) is often characterized by high mobility, high traffic demands, vulnerability to
different security attacks, and jamming. Hence, new agile, intelligent solutions are required for efficient
management among IoT wireless devices. Moreover, it is expected that by 2028, over 70 billion devices
will be absorbed into the Internet, generating the crowded world of devices as “things” [1]. Integrating
Cognitive Radio in IoT has enabled technology to efficiently use spectrum resources and support wireless
communication for increasing traffic demand [2]. Cognitive Radio (CR) in IoT performs various tasks
related to spectrum management for better communication. Moreover, with the few radio spectrum bands
available, cognitive radio adopts several new technologies to adopt spectrum sensing, spectrum access
and spectrum sharing [3–7]. To support these tasks, Machine Learning (ML) and Deep Learning (DL)
provide automated means to learn from and adapt to spectrum dynamics [8,9]. Applying ML and DL
techniques to the CR-IoT Domain faces many challenges that are substantially absent in conventional
learning models. Another big issue absent in traditional DL models is the need to satisfy the hardware
limitations such as power, area and delay. Indeed, models with a high number of neurons/layers in deep
learning networks will require additional resources and energy consumption which are scarce in IoT
devices. Hence, the deep learning model is required to effectively implement CR in IoT devices and
achieve the best performance. However, prior works have investigated the opportunity of using hardware-
centric deep learning models to perform different CR techniques such as spectrum sensing, spectrum
sharing and spectrum management [10–14]. An intelligent deep learning algorithm that can provide a
good tradeoff between the hardware and performance is badly needed. RFlearn [15] is one such Field
Programmable Gate Array (FPGA) architecture which has ported the deep learning algorithm using
hardware-software codesign. Though the RFLearn architecture implements real-time learning,
improvisation is still required to deal with real-time IoT signals. This paper proposes the new technique
of integrating the novel deep learning algorithm with higher performance and also exhibits the high
resource constraint parameters such as Low latency, Low power consumption and low area utilization to
overcome this challenge.

2 Related Works

Mukesh V.’s point is to limit delay and expand the throughput of decision-making engine. This
framework has the decision-making engine based on a Genetic Algorithm (GA) and Field Programmable
Gate Array (FPGA). The GA has a multi-objective handling capacity. The entire framework runs at 199
MHz, and the ideal arrangement is gotten in 9.38 ns over the plan. At first, the plan is tried on XILINX.
This work’s primary target is satisfied by equally preparing the engineering of psychological motor on
programming to diminish delay up to 10% over past programming plans. Nonetheless, minimising force
utilization mainly expands the Bit Error Rate (BER) [16].

Zhi-Ling Tang proposes a master-slave Automatic Modulation Recognition (AMR) architecture
utilizing the reconfigurability of FPGAs. Initially, this work discusses AMR’s building method, which
uses a convolution autoencoder. This technique can get better outcomes under the state of a low Signal to
Noise Ratio (SNR), yet it is vital to ascertain different component amounts as indicated by the numerical
model of the tweak strategy ahead of time [17].

Soltani planned and executed a Deep Learning (DL) put together Radio Frequency (RF) signal classifier
for the FPGA of an installed programming characterized radio stage, DeepRadioTM, that groups the signs
through the RF front finish to various regulation sorts progressively and with low force. This classifier
execution effectively catches complex attributes of remote signs to serve basic applications in remote
security and correspondence frameworks. With Cognitive Radio (CR) transmissions through the air, this
show that the classifier executed on DeepRadioTM achieves high precision with low inertness and low
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energy utilization, and this exhibition is not coordinated by other implanted stages, for example, installed
Graphics Processing Unit (GPU). In any case, highlight amounts are not finished [18].

Maclellan expect to quantise a current Convolutional Neural Network (CNN) for radio balance grouping
to 2-digit loads and enactments for sending on a Zynq System on Chip (SoC). The PYNQ system is
introduced as a down-to-earth implies for getting to the usefulness of the CNN. The actual outcomes
show a high order exactness even with 2-bit loads, actuators and furnish better with lower intricacy in
more limited perception time. The weakness of this kind of calculation is that the presumption that the
images are autonomous and indistinguishably dispersed is usually false in all actuality, and the intricacy
increments with an increment in the number of obscure boundaries [19].

Mendis presented an Automatic Modulation Classification (AMC) technique for Cognitive Radio (CR).
The proposed system comprises one Spectral Coherence based Function (SCF)-based element portrayal
component and Dynamic Bayesian Network (DBN)-based ID conspire. This proposed SCF-based
component portrayal system creates SCF designs that describe the highlights of the related tweak
procedures. DBN-based ID conspire utilizes DBN to characterize the balance strategies by taking in their
highlights from the related SCF designs. With the commotion, versatile SCF designs this strategy can
accomplish high precision of order even within sight of climate clamour. Moreover, the DBN procedure
empowers us to portray the discernable highlights of the adjustment methods having related SCF designs.
Reproduction results show proposed strategies can accomplish precision above 90% in grouping the
regulation methods when SNR is > −2 dB. This kind of technique is more touchy to the confound of the
model; for instance, when a period move happens, the acknowledgement execution disintegrates
significantly [20].

Gao presented a Convolutional Long Short-Term Deep Neural Networks (CLDNN) to defend against
noise while sensing the spectrum. This framework does not require prior knowledge about primary
signals or noise for the defending mechanism. Also provides good results in low SNR scenarios.
However, this framework struggles when handled with real-time datasets [21].

Zheng proposed a deep learning-based solution for the spectrum sensing problem. This framework
optimized the signal power to tolerate the noise power uncertainty issues. This framework also adopted
transfer learning-based methods for the real-time analysis of spectrum signals. This framework provides a
better result in spectrum detection, but a significant drawback of this framework is that system
performance is degraded when the data size is increased [22].

Sarikhani presented Deep Reinforcement Learning (DRL) based solution for Cooperative Spectrum
Sensing (CSS) issues. This framework reduced signalling in the Secondary User’s (SUs) Network. This
framework improved local signal sensing results and increased the spectrum sensing quality. However,
the main downside of this framework is this framework struggles under low SNR scenarios [23].

Xie presented Unsupervised Deep Spectrum Sensing (UDSS) for spectrum detection. This framework’s
main advantage is that it does not require prior knowledge about noise power and statistical Covariance
Matrix (CM). This framework provides better results under Gaussian Noise and Laplace Noise.
Nevertheless, this framework requires improvisation to handle some external noise factors [24].

Zheng presented a deep learning-based solution for Primary User Adversarial Attack (PUAA). This
framework utilized an auto-encoder as a defence mechanism. It can extract both temporal and local
features at the same time to achieve improved system performance. Results show that this framework
effectively reduced the probability of detection and defended PUAA without any degradation in its
performance. However, it requires additional resources to maintain same speed of the network [25].

Xing presented a Deep Neural Network (DNN) based framework for effective spectrum sensing in CR.
This framework utilized local and global features from time series data to handle low SNR scenarios. This
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framework showed better results regarding false alarm rates and missed detection probabilities. However, a
drawback of this framework is that it requires improvisation to handle other noises without any degradation
in its performance [26].

3 Proposed Architecture

3.1 System Overview

Fig. 1 shows the system setup. There are two primary components such as transmitter and receiver. On
the Transmitter side, IoT users are configured using NodeMCU that the users control. The IoT users transmit
signals at 2.4 GHz frequency at various Signal to Noise Ratio (SNR) effects. The transmission completed
over the air by considering the restrictions of spectrum management.

On receiver side, the proposed DEEP HOLE Application Peripheral Interface (API) radio runs the deep
learning model interfaced with GNU Radio by taking the received signals as input and determining the
spectrum prediction and detection. The novelty in the system setup is running optimized deep learning
models on the FPGA at the receiver end. The received signals are preprocessed by the GNURadio, which
calculates the signal features and sends them to the FPGA boards for a real-time decision.

3.2 Dataset Collection

Datasets contain WIFI signals with noises and noise-only samples. Since deep learning algorithms are
supervised learning techniques, data labelling is required to distinguish the different categories of users. The
user transmits the signals by adjusting the signal power, distance and SNR at every iteration presented in
Fig. 2. Dataset generation is presented in Tab. 1.

ESP8266

ZYNQ-
SOC7000

GNU RADIO   
INTERFACED 

WITH THE 
WIFI AND 
ZYNQSOC

DEEP HOLE RADIO

SPECTRUM 
PREDICTION 
AND SENSING 

IoT user-1 IoT user-2 IoT user-3

Figure 1: System setup for the proposed architecture
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3.3 Feature Vectors

After receiving signals from the different users at different SNR iterations, features such as Energy,
distance and User ID are calculated by GNURADIO using the python API. Generally, two substantial
clients will be named primary and secondary for spectrum usage and management. During e-health data
transmission, both clients were initiated for spectrum usage [27]. The total energy expended for every
transmission by all users is given in Eq. (1). We presume the initial energy consumption of each operator
is maximum, and the energy utilization of the operator varies and depends on the number of data transmitted.

Ei;j
x ¼ Jj;i=Dj;i Secð Þ (1)

where “Jj;i” and “Dj;i” represents the throughput and channel capacity. The total energy mentioned in
Eq. (1) utilized during each data broadcast corresponds to the transfer rate and assigned power. Therefore,
energy expenditure of the user for each iteration is calculated by

EX ðdataÞ ¼ Nmax XE
i;j
x (2)

TEX ðtotalÞ ¼ ETX ðdataÞ þ Ei;j
x þ Eidle (3)

Eq. (3) estimates the total energy utilized during transmission. In this paper, the adjustable energy
consumption model is created based on the combination of idle and dynamic utilization under different
Signal to noise ratios (SNR) and distances.

Data from 
the IoT 

Noise Signals 
at Levels 

Different 
Power Modes  

Total Data Collection for Feature 
Extraction 

Data from the 
IoT Nodes 

Data from the 
IoT Nodes 

Different 
Distance   

Data from the 
IoT Nodes 

Figure 2: Data set collection used as the inputs for the deep hole radio systems

Table 1: Algorithm for dataset collection and generation

Algorithm 1 for dataset generation

01 No of iterations N = 1000

02 SNR = −5 to 20 db

03 For n = 0: N−1

04 // Transmitting the WIFI signals At QAM modulations//

05 For SNR = 5 to 20

06 Add the Noise Level

07 // Transmitting the WIFI signals with Noise Signals without user ID At QAM Modulations//

07 End go to step 03

08 End

09 End
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TETX ðtotalÞ ¼ ETX datað Þ þ Ei;j
x þ Eidle

� � � dist (4)

After calculating the energy vectors from the received signals, the distance between the IoT users and
DeepHole Radio is calculated. As mentioned in [28,29], Received Signal Strength (RSSI) is taken as the
main parameter to calculate the distance. The mathematical expressions are given as follows as

Dist N ; Bsð Þ ¼ 10
qo � rm � qr � 10nlog fð Þ þ 30n� 32:44

10n

� �
(5)

where “qo” is the power of the signal (dBm) in the zero distance, “qr” is the Signal power (dBm) in the
distance d, “f ” is the signal frequency in MHz, “rm” is the Fade margin, and “n” is the path-loss exponent.

3.4 Optimized Deep Learning Model

This section discusses the motivation behind the proposed optimized algorithm for hardware porting in
FPGA.

3.4.1 Motivation
As discussed in [30], Long Term Short Memory (LSTM) has several drawbacks when using large

datasets. It leads to the usage of many memory cells, which makes it unsuitable for the resource
constraint hardware. Also, there might be a chance of an overfitting issue directly connected to the
network stability. There is a need to have a computationally efficient model that can predict the different
categories of features used for detecting the spectrum according to the users to overcome this drawback.
A more advanced, simple, efficient and highly accurate model is required to satisfy the above criteria.
The current study aims at developing the new hybrid algorithm by integrating the Firefly algorithms [25]
in LSTM networks.

3.4.2 Optimized LSTM Models
The simple firefly algorithm is used to optimize the weights of LSTM networks. Initially, a random

number of weights and biases are passed to the LSTM cells. The accuracy of the proposed model is
coined as the fitness function. For each iteration, input bias and weights are calculated which are then fed
to the LSTM network and then fitness functions are calculated. The iteration is continued until the fitness
function reaches the maximum accuracy or else the it will be stopped. In this method, firefly provides a
lower convergence speed, improved detection time and requires less time for optimization when
compared with the other meta-heuristic algorithms. This optimized learning model consumes less training
time and bias weights, making them suitable for the embedded systems’ hardware constraints.

3.5 DEEP HOLE RADIO Architecture

Fig. 3 depicts the overview of the architecture of the proposed Deep Hole Radio system. Together with
the GNURDIO interface (Software) and the Accelerators (Hardware), the proposed system reforms the full-
fledged reconfigurable software-defined radio architecture where the proposed system entirely does learning
according to the environment. We briefly introduce the System on Chip Architecture in the preceding section
and then describe each component of the proposed system.

3.5.1 DEEP HOLE RADIO SoC Architecture
For the proposed architecture we adopted the SoCs because of their low power consumption and

customized hardware designs. SoC offers flexibility to the proposed architecture as Programmable Logic
(PL) portions. All the PL can be controlled and managed by the processing system [31].
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The proposed DeepHole Radio uses the three categories of Advanced Extensible Interface (AXI) bus
specifications such as AXI-Lite, AXI-Stream, and AXI-Full, for the following purposes

1. To exchange the data between the PL’s blocks (AXI-Lite)

2. Interchange of data between the PL and PS (AXI-Full)

3. Exchange of data between the PS. (AXI Streaml)

The proposed system uses Direct Memory Access (DMA) along with the AXI-Full buses to allow PL
circuits for the read/write operations via AXI-Stream to the RAM residing in the PS. DMA is highly essential
since the CPU is responsible for read/write operation and thus unavailable to perform other work. Since
GNURADIO resides on the CPU (PS), parallel feature extraction and feeding to the PL take place
simultaneously using DMA. This feature helps maintain a stable data transfer rate between PL and PS.
The proposed system architecture resides both in the PS and PL. The ultimate issue addressed by the PS
of the proposed system is to drive the components in PL without any latency. Hence the PS can run
either on the operating system or in bare metal mode. In the proposed architecture, the Feature extractor
and GNURadio have been installed on the operating system’s top layer. The extracted features are stored
in the separate memory and then fed to the PS, which runs the optimized deep learning models. Fig. 3
depicts the architecture of PL for the proposed feature extractor with GNUradio interfaced.

3.5.2 Hardware Architecture of PL Cores
The PL core aim is to deliver the architecture of the proposed optimized learning architecture, which

continuously receives the features from the unit. The circuit used for constructing the proposed deep
learning architecture is illustrated in Fig. 4. The inputs to the core are ((i) Features collected from the PS
cores and (ii) Parameter tuning (weights and layers) of optimized deep learning models. Since the core
needs to access these parameters in various time instants, both are stored in the Pipelined Distributed
Look Up Tables (PDLUT) for area reduction and high speed. Thus, the FIFO buffer is triggered by the
core so that it can send the features to PDLUTS via AXI-Stream. AXI-Full is utilized for the transactions
between the core and PDLUTS. Each layer presents the following structure: (i) receives the input from a
PDLUTS, (ii) process the input based on optimized layers (iii) writing respective results on the PDLUTS
of the following layer. The significant advantages offered by this architecture are (i) Scalability, (ii)
configurability and (iii) modularity.

3.5.3 DEEP HOLE RADIO–A Design Framework
The fundamental challenge addressed by the proposed architecture in PL is transitioning from a

software-based deep learning implementation to a hardware-based one. High-Level Synthesis (HLS) for
the core design has been employed to implement the deep learning architecture to have an effective

WIFI 

GNURADIO

FEATURE 
EXTARCTOR  

AXI FULL 
BUSES 

PS PL

OPTIMIZED DL 
ACCERALATORS  

OPTIMIZED DL 
ACCERALATOR

S  

AXI  LITE 

Figure 3: Overall hardware architecture for implementing deep hole radio systems
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mechanism. The HLS approach which is used in the design of the proposed architecture is explained as
follows

High-Level Synthesis
The digital circuits used for designing the proposed architecture have several benefits over the traditional

methods. In HLS, C/C++/python languages can be adopted for the implementation. This paper adopts python
for designing the proposed architectures. This approach will reduce the developer’s designing time and
increase efficiency since the HLS program optimizes the circuit according to the system specification.
Moreover, parallelizing the circuit operation is more crucial for a faster response. Hence the HLS
toolchain can tell how many cycles are needed for a circuit to generate all the outputs for a given input
size, given a target parallelization level. It helps the proposed architecture to make the best trade-off
between hardware complexity and latency. Also, the loop pipelining is incorporated to allow the
operations in a loop to be implemented parallelly.

4 Experimentation

Spectrums of the WIFI signals are created in Python, which is then connected to the Zynq-SOC
7000 series using the UART (Universal Asynchronous Receiver Transmitter) to evaluate the performance
of the proposed architecture on the real-world IoT devices. The specification of the test bed used for the
experimentation is tabulated in Tab. 2.

We have used the NODEMCU mounted with MCP3008 ADC for the transmitter side and interfaced
with the four different sensors. The NodeMCU uses the 16-QAM type of modulation type for transmitted

DEEPHOLE 
RADIO 

ACCERALATOR 
UNIT 

FIFO 
MODEL 

Optimized LSTM 
layers-1

Optimized 
LSTM layers-n

PLUTS 

Figure 4: PDLUTS Implementation for the deephole radio systems

Table 2: Specification of the parameters used for experimentation

Sl.no Experimentation parameters Specifications

01 Soc type Xilinx Zynq-7000 XC7Z045-system-on-chip (SoC)

02 PS type Dual ARM-9 Core

03 PL Artix-7 FPGA

04 WIFI Transceivers used ESP8266

05 No of users used 5–10
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signals. The receiver test bed is designed based on the above specifications mentioned in Tab. 2. Fig. 6 shows
the validation curves of the proposed deep learning under different no. of epochs.

4.1 Proposed Deep Learning Model

4.1.1 Dataset Collection
To evaluate the proposed architecture, we have collected nearly different signals at different Signal to

Noise ratios (SNR) at various time intervals. Nearly the number of users is increased from 5 to 50, and
signals are captured using the testbed which runs the proposed architecture. Nearly 2,40,567 feature data
were used for training the proposed architecture. The performance metrics used to evaluate the proposed
architecture are given as follows

Accuracy of Sensing ¼ DR

TNI
� 100 (6)

Sensitivity ¼ TP

TPþ TN
� 100 (7)

Specificity ¼ TN

TPþ TN
� 100 (8)

where “TP and TN Represent True Positive and True Negative values and

DR & TNI Represents Number of Detected Results and the Total number of Iterations”. For evaluating
the performance of the proposed algorithm, nearly 70% of data were taken for training, and 30% were taken
for testing.

4.1.2 Results and Discussion
It is found that the best results in the tuning process were optimized to 115 epochs, with 0.0001 learning

rate and output batch size set to 80. Fig. 5 shows the detection exactness and error rate in training with a
different scenario of testing data used for validation. Also performance of the algorithm has been tested
with the different users with IoT devices.

Fig. 5 shows the validation curve for the proposed resource constraint deep learning models. It is found
that no of epochs is fixed to 126, and accuracy is maintained high and constant at 99.5%. The performance of
the proposed algorithm has been validated for the 50 users. Moreover, the confusion matrix for the optimized
and non-optimized deep learning network has been shown in Figs. 6 and 7. It is clearly shown that the
optimized learning model has produced the constituent accuracy of 99.5% even though the number of

Figure 5: Validation curve for the proposed deep learning model with the No of epochs optimized using
different users
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users increases. However, Fig. 7 shows the decrease in performance of the non-optimized learning models as
the number of users increases. From the above Figures, it is clear that the stability of the network is
maintained in the optimized learning model even though the number of users increases.

Fig. 8 shows that the validation curve for the proposed algorithm with testing and training accuracy is
close to 99.5%. Moreover, different performance metrics such as accuracy, sensitivity, and specificity have
been calculated and compared with other existing deep learning models such as Long Short Term Memory
(LSTM) [32], Convolutional neural network (CNN) [33], and Deep Neural Networks (DNN) [34] used of the
spectrum depends on the number of users. Fig. 8 shows the sensing accuracy for the different deep learning
models in which the proposed optimized deep learning model has shown a high sensing accuracy of 99.5%.
The accuracy of other algorithms, LSTM, CNN and DNN, has 94.5%, 92.0% and 89%, respectively.
However, the existing algorithms have shown a dip in their sensing accuracy, ranging from 10%–15% as
the number of users increases. However, the usage of the optimization algorithm over the deep learning
models maintains the stable and constant accuracy of 99.5%, though the number of users increases. A
similar fashion is observed in sensitivity and specificity performance depicted in Figs. 9 and 10, respectively.

Figure 6: Confusion matrix for the proposed deep learning model using different users

No of users 10 20 30 40 50

10 99.5 0.5

20 1 99.0

30 2.5 97.5

40 4.5 95.5

50 5.75 94.25

Figure 7: Confusion matrix for the deep learning model (without optimization) using different users
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Figure 8: Comparative analysis for the accuracy of sensing using the different deep learning models
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To further investigate the impact of the proposed algorithm on the hardware, we have synthesized the
proposed architecture on the Xilinx VIVADO, and the following parameters, such as area of utilization,
power and latency, have been calculated represented in Tabs. 3 and 4.

10 20 30 40 50

)
%(sisylan

A
ytivitinseS

No of users

Sensitivity Analysis (%)

Proposed Algorithm

LSTM

CNN

DNN

Figure 9: Comparative analysis of the sensitivity using the different deep learning models
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%(sisylan

A
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Proposed Algorithm

LSTM

CNN

DNN

Figure 10: Comparative analysis for the specificity using the different deep learning models

Table 3: Area of utilization for the proposed deephole radio model

No of algorithm No of specifications

No of LUTS BRAM DSP Flip flops

Proposed model Available Used Available Used Available Used Available Used

21378 210 241534 190 2200 0 245450 24500

Table 4: Power and latency of the proposed model with no of users

No of algorithms Power (mW) Latency (ms)

Proposed model 1.100 5.4
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Moreover, to validate the proposed model, we have compared the hardware performance of the proposed
deep learning architecture with the other existing architecture, such as RFlearn and other software-based
mechanisms presented in Fig. 11, Tabs. 5 and 6.

5 Conclusion and Future Challenges

In this paper, we have proposed a DEEP HOLE radio system. This novel approach integrates the
optimized deep learning models for spectrum-driven decisions through real-time hardware-based IoT
devices. The complete hardware design for the DEEP HOLE Radio framework is presented with the new
Pipelined Distributed Look Up Tables (PDLUT) architecture in the place of traditional BRAMS. Finally,
experimental results show that the proposed firefly optimized LSTM network produced an accuracy of
99.5% even though users get increased. Moreover, we have compared the existing learning models used
for spectrum-enabled decisions. The proposed model has edged the other learning models in terms of a
10%–15% increase in performance. RFLEARN type architecture is used for the comparison in which the
introduction of PDLUTS in the architecture has produced a 15% reduction in delay, 20% less power
consumption and 25% area reduction than RFLEARN architectures to prove the hardware efficiency. In
the Future scope, architecture needs improvisation in terms of implementing the hardware-based deep
learning models along with the spectrum sensing and management system.

Table 5: Power analysis between the proposed deephole radio and RFLearn architecture

No of algorithms Power (mW)

RFLearn 1.200

Deep hole radio 1.100

Table 6: Latency analysis between the proposed deephole radio and Rflearn architecture

No of algorithms Latency (ms)

RFLearn 6.589

Deep hole radio 5.400

LUT BRAM FLIP FLOPS(X1000)

Area  of Utilization 

DEEPHOLE RADIO

RFLEARN

Figure 11: Comparative analysis of area utilization between the deephole radio and FPGA architectures
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