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Abstract: Conferring to the American Association of Neurological Surgeons
(AANS) survey, 85% to 99% of people are affected by spinal cord tumors. The
symptoms are varied depending on the tumor’s location and size. Up-to-the-min-
ute, back pain is one of the essential symptoms, but it does not have a specific
symptom to recognize at the earlier stage. Numerous significant research studies
have been conducted to improve spine tumor recognition accuracy. Nevertheless,
the traditional systems are consuming high time to extract the specific region and
features. Improper identification of the tumor region affects the predictive tumor
rate and causes the maximum error-classification problem. Consequently, in this
work, Super-pixel analytics Numerical Characteristics Disintegration Model
(SNCDM) is used to segment the tumor affected region. Estimating the super-pix-
els of the affected region by this method reduces the variance between the iden-
tified pixels. Further, the super-pixels are selected according to the optimized
convolution network that effectively extracts the vertebral super-pixels features.
Derived super-pixels improve the network learning and training process, which
minimizes the maximum error classification problem also the efficiency of the
system was evaluated using experimental results and analysis.

Keywords: Maximum error-classification problem; optimized convolution
network; super-pixel analytics numerical characteristics disintegration model
(SNCDM)

1 Introduction

Development of the abnormal tissues in the spinal column or spinal cord [1] is a spinal tumor. These
abnormal tissues are grown uncontrollably, influencing and controlling normal cell growth. The spinal
tumor [2] has two subtitles primary and secondary tumors. The spinal cord originated abnormal cells are
primary and cancer spreading from another region to the spine is a secondary or metastatic tumor. The
tumors are identified in two ways: region (sacrum, lumbar, thoracic, and cervical) and locations
(Intradural-extramedullary,Intramedullary, and Extradural) [3]. The intradural tumors have occurred in the
thin region of the spinal cord, around 40% [4]. The intramedullary tumor cells are developed inside the
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cord obtained from ependymal cells, and 5% in frequency of occurrence [5]. Then, extradural is located
outside of the dura, and 55% [6] is the frequency of occurrence. These abnormal tissues encompass the
nerve roots. In addition to this, bone metastasis is one of the general bony spinal which experience
almost 30% to 70% of patients [7]. The bone spine is vertebral hemangiomas are benign lesions that have
rare symptoms like pain. Lower or middle back pain is the most common spinal tumor symptom [8]. The
back pain not only occurred by injuries; it also happened physical and stress activities. The main spread
from the back to the legs, hips, arms, and feet aggravates over time. Additionally, a spine tumor has
several symptoms: muscle weakness, sensation loss, stiff back, neurological symptoms, walking
difficulties, sensitivity loss, paralysis, and scoliosis [9].

Once the patient suffers from these symptoms, a medical examination must require to diagnose spinal
tumors. The radiological tests [10] include computed tomography (CT scan), X-ray, Magnetic Resonance
Imaging (MRI), and Bone Scan. These radiological experiments investigated the inner details that help to
identify the tumor types. However, a biopsy [11] needs to diagnosis the unclear findings to maximize the
treatment procedures. During the treatment, abnormal tissues or neoplasms are classified by examining
spinal canal involvement, soft tissues, and bony. Then, abdomen and lung scanning are suggested to
confirm the spine tumors. The manual medical examination consumes more time as well as failure to
identify the exact affected area. Therefore, various medical analysis is performed to create an automated
computer-aided system for detecting the spine tumor [12]. The computerized system utilizes radiological
images to achieve clinical examination using image processing and machine learning techniques. The
automated system utilizes the MRI images [13] to detect the spine tumor because the MRI images can
identify the tumor position, size, and type with minimum effort. It can discriminate the normal small
tissues and tissue density changes and mutations linked with tumors. The main reason for choosing an
MRI image is, it does not have any ionizing radiation. The captured MRI images are investigated by
segmentation techniques [14] that predict the spine modalities, which helps identify the tumor issues
accurately.

The image segmentation process identifies the affected region by minimizing the manual delineation
time consumption. The segmenting process locates the density changed tissues by contouring the MRI
images. This process identifies the irregular boundaries and tissue interest variation from images
effectively. Although, the exact tumor detection is a complex task while overlapping between the normal
and abnormal tissues. Then most of the tissues are heterogeneous in tumor size, shape, appearance, and
position, so the abnormal tissues [15] affect average tissue growth. The MRI high-resolution images are
needs high computational resources and memory to segment the affected region. Different types of
methods were introduced to overcome the spinal MRI image segmentation process. The segmentation
process decomposes the images into 2D slices processed sequentially while training the MRI image
features. The second method decomposes the images into patches that effectively process the volumetric
data. However, the traditional techniques are facing difficulties while investigating image topological
changes like splitting and merging issues. This causes slow convergence and optimal local problems,
which reduces the overall tumor detection accuracy.

Several researchers utilize advanced techniques that include integrating machine learning and swarm
intelligent techniques to resolve the convergence issues. The swarm techniques optimize the system’s
performance by updating the network parameters, and the global solution is obtained during the updating
process. However, the region interest intensity should be identified to improve the recognition accuracy.
For this, an intense training set is needed to enhance the system performance with minimum difficulties.
Thus the primary intention of this study is to improve the tumor segmentation accuracy with minimum
complexity. In this paper, the super-pixel analytics Numerical characteristics Disintegration Model
(SNCDM) approach is utilized. The SNCDM approach segments the region based on the super-pixels
that minimize the variance between the identified pixels. The vertebral super-pixel is examined that
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extracts the spinal features based on the super-pixel using the optimized convolution neural networks. This
process reduces the maximum inaccurate segmentation problem (MIS) successfully. The effectiveness of the
system is evaluated using MATLAB tool with respective performance metrics.

Then the rest of the paper is organized as follows; Section 2 discusses the various researchers’ analyses
about spinal tumor detection—Section 3 analyzes the SNCDM method-based spinal tumor detection
framework. Section 4 evaluates the effectiveness of the system discussed, and the conclusion is
summarized in Section 5.

2 Related Works

Alafri 2019 [16] recommended deep neural networks to detect lumbar spinal stenosis from MRI images.
The method investigates the boundary of the spine images according to the lumbar spine characteristics. The
method uses the network layers that classifies the changes in MRI image. The method maintains the system’s
consistency, quality, and confidence while segmenting the affected region. In addition, the Jaccard metric
shows that the deep learning approach has highly differentiated the normal and abnormal tissues in MRI
images.

Liu, et al., 2019 [17] apply convolution neural network technique to identify and detect the lumbar in
MRI images. The method uses the convolute layers that speed up the computation process and store the
memory. The method derives the S1 shapes from the spine image, and L1-L5 features are extracted from
the round region. The discussed system attains 98.9% of accuracy while detecting Lumbar.

In MRI image analysis, Alam et al., 2019 [18] introduced fuzzy c-means clustering to detect brain
tumors. Initially, the image grey level intensity value is estimated, which helps to identify the cluster
center. Then fuzzy membership values are computed to group the similar pixel, and this computation is
updated according to the membership values. The clustered details are investigated to extract entropy,
energy, contrast, homogeneity, dissimilarity, correlation, and entropy value. According to these features,
the affected tumor region was detected with minimum time.

Chmelik et al., 2018 [19] detected spinal lesions from 3D CT data by applying the deep convolutional
network. Here, convolution networks are utilized to extract the automatic features without depending on the
patient’s activities. The extracted features are processed by a random forest approach that classifies the lesion
region. Then medial axis transform is applied to improve the overall segmentation approach.

Anter et al., 2019 [20] applying neutrosophic fuzzy c-means and adaptive watershed algorithm to
segment the tumor region from CT liver image. The CT images are processed by median filter and
histogram equalization approach to eliminate noise and improve the quality of the image. Then, a
clustering algorithm is applied to differentiate the image regions. Here, morphological and adaptive
threshold values are utilized to determine the segmenting strategies. This process ensures 95% of
accuracy and minimum time while segmenting the tumor-affected region.

Punarselvam et al., 2019 [21] analyzed MRI spine images for detecting tumors by applying the soft
computing and finite element approaches. The gathered MRI images are continuously analysed to detect
the boundary lines. The region boundaries are predicted using different methods like Roberts, Prewitt,
Sobel, and canny edges. The predicted edges are smoothened by noise removal techniques that help to
improve the overall spine tumor detection accuracy. In addition to this, the method investigating the
L4 and L5 lumbar predicts changes in spinal structure effectively.

Jena et al., 2020 [22] recommend a canny, morphological, and Sobel (CMS) edge detection approach to
predict image edges. The method uses mathematical operators to identify the edges in the color and greyscale
images. The extracted edges are more powerful to derive the affected region. The obtained results are
compared with Laplacian of Gaussian, Roberts, Sobel, and Prewitt detection approaches.
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Reza et al., 2019 [23] segmenting tumor region from spine MRI images using cascaded convolution
neural networks. This paper uses the auto context model that uses the learners to identify the tumor voxel
and fine-tuning procedure applied to classify the tumor region. The method predicts the correlation
between the features with maximum accuracy and minimum deviations. According to the various
researcher’s analyses, the MRI image segmentation is performed by applying different image processing
and machine learning techniques. However, the existing approaches consume more time and create a
segmentation problem. Therefore, in this paper, Super-pixel analytics Numerical characteristics
Disintegration Model (SNCDM) is utilized to improve the overall segmentation accuracy. The detailed
working process of this study is illustrated in Section 3.

3 Spinal Tumor Detection Using SNCDM Framework

The SNCDM framework-based spinal tumor prediction process is illustrated in Fig. 1. This system aims
to overcome the maximum inaccurate segmentation problem (MIS) by segmenting the relevant region from
an MRI image. The images are investigated via super pixels because it helps to identify the pixel
characteristics during the segmentation. The super pixel identifies the relationship between the pixels,
ensuring the changes in region intensity, position, and size. The successive identification of the affected
region solves the maximum error classification while classifying the spinal tumor. The SNCDM
framework is illustrated in Fig. 1.

The captured spinal cord images are analyzed by elliptical Fourier descriptors used to get the vertebral
shape. This process does not consider the aliasing issues in different resolution images but produces
continuous descriptors. The captured spinal cord image dðtÞ is defined as a vector function that has
position points ðp1 . . . p2Þ8pc which are presented in the two orthonormal axes. Then, the spinal region has
axial coordinates ðxc; . . . :yc; . . . :zcÞ and the spinal cord is represented in the mathematical form in Eq. (1)

dðtÞ ¼ dyðtÞVy þ dxðtÞVx (1)

The dyðtÞ and dxðtÞ values are estimated according to the Fourier descriptor derivation concerning the
bx0 ; by0 defined in Eq. (2). Here Vy ¼ ½10�T and Vx ¼ ½01�T . The coordinate values are calculated as follows

Figure 1: SNCDM framework
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by0ðtÞ ¼
by0
2
þ
Xl¼1

l¼1

ðbyl cosðlxtÞ þ ayl sinðlxtÞÞ

bx0ðtÞ ¼
bx0
2
þ
Xl¼1

l¼1

ðbxl cosðlxtÞ þ axl sinðlxtÞÞ

9>>>>=
>>>>;

(2)

The descriptor coefficients are derived from the trigonometry computation of angular frequency (xÞ and
harmonic number (lÞ. These coefficients in both directions help identify the spinal tumor-affected region by
solving the maximum error-rate classification problem. Here, the Fourier descriptor coefficients byl , bxl , ayl
and axl are computed using Eq. (3)

byl ¼
2

n

Xn
j¼1

yj cosðlxjÞ

ayl ¼
2

n

Xn
j¼1

yj sinðlxjÞ

bxl ¼
2

n

Xn
j¼1

xj cosðlxjÞ

axl ¼
2

n

Xn
j¼1

xj sinðlxjÞ

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

(3)

The coefficients byl , bxl , ayl and axl computed from the sampling points n both axial position xj and yj of
the j shape model. These sampling points are more used to identify the shape of the spinal cord concerning
the ðp1 . . . p2Þ8pc points. Considering these mathematical computations, the spinal cord region-related
descriptors are estimated and simplified as Eq. (4).

ððp1 . . . p2Þ8pcÞ ¼ dyðtÞ
dxðtÞ

� �
¼ 1

2
by0
bx0

� �
þ

Xl¼1

l¼1

byl ayl
bxl axl

� �
cosðlxtÞ
sinðlxtÞ

� �
(4)

From the investigated regions in dðtÞ, L1-L5 lumbar region is more beneficial to identify the tumor-
related spot. The computed ðp1 . . . p2Þ8pc in discrete cosine components helps to compute the sharp ROC
model with maximum frequency. The computed tumor-related coefficients axial points are estimated
in Eq. (5).

dyðtÞ
dxðtÞ

� �
¼

Xl¼1

l¼1

byl ayl
bxl axl

� �
cosðlxtÞ
sinðlxtÞ

� �
(5)

The derived coefficients are more valuable to identify the super-pixel (SP) in the spinal image. The SP
computation helps to get the features from the images by considering the image boundaries, shapes, and
location characteristics. This process converts the images into a sequential representation which helps to
identify the exact tumor affected region. Here, the dðtÞ images are divided into grid cells (small images).
The spinal MRI images have a height (H) and width (W) denoted as I ¼ H �W . Then the I is
divided into small images with a size of h � w. Initially, every grid cell has super pixels (seed)
that are more useful for identifying the tumor-affected region. Each pixel in the image
ðu; vÞ; u ¼ ðaxl ; bxlÞand v ¼ ðayl ; bylÞ is mapped with the super pixel SP ¼ ði; jÞ. The mathematical
form of mapping is defined as gsðSPÞ ¼ gi;jðu; vÞ. If the mapping process gsðSPÞ ¼ gi;jðu; vÞ returns one
as value, then the pixel belonging to super-pixel else not. According to the super-pixel, the remaining
pixels are grouped that are segmented for further analysis. To reduce the computation complexity, here,
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SP matching process performed in defined small grids @SP. For every computation, almost 9 grid cells are
utilized to perform the mapping process. This grid cell-based mapping minimizes the maximum
inaccurate segmentation problem (MIS). Therefore, the mapping is written as G 2 ZH�W�j@SP j.

In the image, the ðSPÞ they are computed using the encoder-decoder network design. Here, convolution
networks use the input images and give the high-level feature maps are output. The derived feature maps are
more helpful in identifying the tumor-affected region performed in the encoder phase. After that, the decoder
utilizes the de-convolution layer functionalities to up sample the features from the encoder layer. The max-
pooling ReLU activation process is performed during this process to get the output from the feature vector.
The last layer uses the softmax activation function to obtain the SP value from the collection of image pixels.
This encoder-decoder convolution networks based SP analysis reduces the loss functions and increases the
flexibilities. The identified SP value should be preserved because the remaining pixels are grouped according
to SP. For every SP, it has a location vector ISP and property vector USP; then the center SP value is written
as CSP ¼ ðUSP; ISPÞ. These values are computed using Eq. (6).

USP ¼
P

SP:2@P
f ðPÞ:qsPðPÞP

SP:2@P
qsðPÞ

ISP ¼
P

P:SP2@P
P:qsPðPÞP

P:SP2@P
qsPðPÞ

9>>>=
>>>;

(6)

The super-pixel SP characteristics are computed from the P surrounding pixels @P and predicting
probability qsPðPÞ of P associated with SP. The Eq. (6) computation is carried out for the entire pixel
involved in the spinal image. For pixels in images have property values that have been reconstructed as,

f 0ðPÞ ¼ P
SP2@P

USP:qsPðPÞ
P0 ¼ P

SP2@P

ISP:qsPðPÞ

9=
; (7)

According to this computation, the loss function (Eq. (8)) is computed from the property of interest and
super-pixel spatially compact.

LF ¼
X
P

distðf ðPÞ; f 0ðPÞÞ þ m

S
kP � Pk02 (8)

The loss function (LFÞ computed from the distance of pixel properties f ðPÞ Weight balancing of two-
term m and super-sampling interval S. The super-pixel extraction process is illustrated in Fig. 2.

With the help of the computed super-pixel, vertebral features are extracted to identify the affected region
precisely. For each super-pixel, a set of features are extracted that helps to quantify the pixel orientation,
position, and shape. Initially, orientation and position-related features are extracted concerning the super-
pixel. The super-pixel centroid value ðCx; CyÞ is calculated respective to the image dimension in xj and
yj the said Lumbar MRI region is obtained by assigning in the supine position during the scanning time
axis. Then, the orientation of the SP should be computed in ӿ axis of the ellipse. The calculated
orientation and centroid information identify the availability of the medical images. These two values are
analyzed the super-pixels form the recorded vertebral. The orientation and position feature extraction
process is illustrated in Fig. 3.

After that, complexity features such as fractal and shape information is retrieved from the MRI spinal
image. Generally, the MRI images are obtained from a specific orientation and frame, which helps derive

the complexity features with minimum cost. Here, fractal features Pr2

A

� �
are derived in three ways such as

superpixel boundaries are measurement is challenging one; therefore, it has been calculated by taking the
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ratio between the square of the perimeter ðPr2ÞAnd area ðAÞ of superpixel. The calculated fractal features are
varied from standard spinal image and abnormal spinal image. The standard MRI image fractal value is
square, which is varied in odd images. Then shape features like solidity and extent features are extracted

from the MRI image. Solidity SP�A
Ac

� �
is computed between the ratio of superpixel area (SP-A) and

convex hull area ðAcÞ. The computed solidity values are convex that have the value of 1 else 0. The

Extent feature SP�A
Ab

� �
value is also calculated by taking the ratio between super-pixel areas bounding box

areas (AbÞ. The extent value must be high due to the square shape characteristics of the super-pixel.
According to the super-pixel characteristics and feature vectors, tumor affected region is identified
effectively. This process identifies the vertebral changes in MRI images. The complexity feature
extraction process is illustrated in Fig. 4.

Figure 2: Super-pixel identification process using convolution networks

Figure 3: Orientation and position feature analysis
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The maximum error-rate classification problem is reduced by applying the effective training process.
Consider, the training set has a set of images I ¼ fI1; J 2; . . . . . .J i . . . . . .J Tg. The training images
are T training set of MRI images and pre-selected super-pixel SSPij. The superpixel selection procedure
selects the vertebral parameter represented as P ¼ fP1; P2; . . . :Pj; . . . :PNg. With the help of these
parameter settings, a training label set Kij is created for image J i According to Eq. (9).

fSPijk jk 2 1; . . . :Kijg ¼ SðJ i; PjÞ (9)

For the entire super-pixel relative training process illustrated with respective parameter settings Pj

represented as Eq. (10).

Sj ¼ fSPijk8 k 2 1; . . . :Kij; i 2 1; . . . ::Tg (10)

The successful computation of these training parameters generate S value and the collective training
response shown in Eq. (11)

S ¼ ffsg1; fsg2; . . . :fsgj; . . . :fsgNg (11)

From the derived S ¼ ffsg1; fsg2; . . . :fsgj; . . . :fsggN superpixel, different features ðFÞ are extracted
using the training parameter settings Pj. The derived features for superpixel with g dimensionality are
defined in Eq. (12).

F j ¼ FðSPijkÞ8 k 2 1; . . . :Kij; i 2 1; . . . ::T (12)

Figure 4: Complexity feature extraction process
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Then the collective response of the feature set for the entire super-pixel is denoted as,

F ¼ fFg1; fFg2; . . . :ffFgj; . . . :fFgNg (13)

The extracted features F are overlapped with the super-pixel, if it has high overlap, then the region is
affected, and the value is labeled as 1 else 0. Then labeling Lj for every feature F j Is represented as Eq. (14).

L ¼ ffLg1; fLg2; . . . :fLgj; . . . :fLggN (14)

The derived features and labels are fed into the convolution network that uses the softmax activation
function to classify the tumor-affected region effectively. According to the above process, training is
performed with minimum computation complexity. The training process requires network parameter
updating, which is done by applying the genetic bee optimization algorithm—the network parameter
updating working according to the genetic and bee algorithm characteristics. The algorithm uses the
onlooker, employee, and scout bees that choose the optimized parameters. The parameters are selected in
a specific population space ðPSÞ and the limited number of parameters to select the network parameters.
In every layer, the network computes the optimized parameter to compute the output value. The solution
is derived using Eq. (15).

u ¼ umin
i;j þ rand½0; 1�ðumax

i;j � umin
i;j Þ (15)

Here, a solution is to get from minimum (umini;j Þ and maximum (umaxi;j Þ boundary values with decision
variable j and index i. The selected parameter, the objective function, is applied to get the network
parameter values. The chosen values are processed by the employee bee that is performed similarly to the
food searching behaviour. The estimated values are higher; it has been selected in memory for a further
network updating procedure. Then the searching process is increased to the next level to updating
searching process.

vi;j ¼ ui;j þ hi;jðui;j � uk;jÞ (16)

The selected solution probability value is computed to identify the best parameter, using Eq. (17).

pi ¼ fitiPPS
j¼1 fitj

(17)

This updating process reduces the binary optimization problem and the selected criteria defined in Eq. (18).

Ui : i ¼ 1; 2; . . . :: SN; uij ¼ 0 if Gð0; 1Þ � 0:5
1 if Gð0; 1Þ. 0:5

�
(18)

The choice principles are defined based on the uniformly distributed values of Gð0; 1Þ. Thus the
practical computation of each pixel, super-pixel, and image complexity features are more helpful to
identify the normal and abnormal regions from captured spinal MRI images. The discussed system
effectiveness was evaluated using experimental results and discussion.

4 Results and Discussions

The effectiveness of introduced Super-pixel analytics Numerical characteristics Disintegration Model
(SNCDM) based tumor region segmentation is discussed in this section. This work uses the Lumbar
Spine MRI Dataset information to apply the introduced SNCDM framework.
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4.1 Dataset Discussion

The dataset has a collection of MRI images captured from 515 patients who were having back pain. The
MRI images are scanned in axial view or sagittal view of vertebrae, and each patient is instructed to scan
many times. MRI images are taken in the axial view’s three most small vertebra details: one between the
last and sacrum vertebrae. In most cases, the orientation of the vertebra should be considered while
scanning the patient’s spine. The total number of slices is varied from 12 to 15; in most cases, it can vary
up to 20 slices. According to the instrumental setup and technical analysis, around 48345 MRI images
are scanned. The scanned images are 320*310 resolution. The pixels have a 12-bit pixel precision value
more significant than the standard greyscale images (8 bit). The straight and perpendicular pixel spacing
is 0.6875 mm, and the adjacent slice is 4.4 mm. The patients are clinically examined, and the MRI
images are recorded in the head-first supine position. In the resting stage, feet-first supine position related
MRI images is taken. Therefore, this clinical analysis uses has 15 to 45-minute duration to record patient
spinal details. Then the sample spinal cord images are illustrated in Fig. 5.

Figure 5: Sample spine MRI images

The collected images are processed by applying the above-discussed approaches, which recognize the super-
pixels from the image. Then various features are extracted to get the tumor details that help to predict the tumor
region. The identified region is more useful in post-processing. Then the created system effectiveness is evaluated
using different performance metrics such as Jaccard Index (JI), Dice similarity, sensitivity, specificity, accuracy,
recall, and precision metrics. These metrics are computed using the below equations.

Accuracy ¼ ðTP þ TNÞ=ðTP þ TN þ FP þ FNÞ � 100% (19)

Specificity ¼ TN þ FN

TN
� 100% (20)
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Sensitivity ¼ TP þ FN

TP
� 100% (21)

Precision ¼ TP

TP þ FP
(22)

Recall ¼ TP

TP þ FN
(23)

The Tab. 1 clearly illustrates that the introduced Super-pixel analytics Numerical characteristics
Disintegration Model (SNCDM) based tumor region segmentation attains higher accuracy (accuracy-98.9%,
specificity-98.7%, precision–98.7%, recall-99%, and specificity-99.4%). The obtained SNCDM approach
results are higher compared to the other existing methods discussed in related works. The introduced
method uses the training set that consists of a set of MRI images I ¼ fI1; J 2; . . . . . .J i . . . . . .J Tg,
parameters P ¼ fP1; P2; . . . :Pj; . . . :PNg and selected super-pixels fSPijkjk 2 1; . . . :Kijg ¼ SðJ i; PjÞ.
The entire process performed according to SPijk which helps to identify the tumor-affected region with
minimum deviation error. According to the training process, network label L ¼ ffLg1;
fLg2; . . . :fLgj; . . . :fLggN Therefore, the entire classification accuracy improved by reducing the
maximum error-rate classification problem. To the input images. Then the respective graphical analysis is
illustrated in Fig. 6.

Table 1: Segmentation efficiency

Methods Accuracy Specificity Precision Recall Sensitivity

In [16] 0.754 0.835 0.898 0.902 0.897

In [17] 0.856 0.876 0.902 0.923 0.902

In [18] 0.87 0.897 0.89 0.9321 0.912

In [19] 0.897 0.923 0.902 0.92 0.8925

In [20] 0.876 0.899 0.912 0.931 0.943

In [21] 0.86 0.902 0.934 0.942 0.94

SNCDM 0.989 0.987 0.987 0.99 0.994

Figure 6: Efficiency of segmentation techniques
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From the Fig. 6, it clearly shows that introduced SNCDM system attains the high efficiency while
classifying the MRI images. The successful identification of each pixels and relationship between the
pixels according to the properties. Here, the image descriptors are identified based on various image
directions with cosine ðp1 . . . p2Þ8pc helps to compute the sharp ROC model with maximum frequency.
The segmented regions are more useful while performing the post processing. The method uses the
optimization techniques for improving the network parameter updating process. Therefore, the deviation
between the identified pixels and actual tumor affected pixels are very low. This step is investigated using
error rate (MSE) and fit rate metrics.

Mean square error ðMSEÞ ¼
Pn

i¼1 ðAcual class i � Predicted class iÞ2
no: of class

(24)

Fit Rate ðFRÞ ¼ 1� RMSEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

number of samples
Pðactual class� predictedmeanÞ

r
0
BB@

1
CCA � 100% (25)

These metrics are utilized to perform the SNCDM approach is compared with various methods in terms
of number of superpixels and number of patients. The obtained results are illustrated in Fig. 7.

Fig. 7 illustrates that the error rate analysis introduced SNCDM approach with several existing
approaches. Here the comparison is made with the number of super pixels and number of patients. The
system consumes minimum error rate while analysing the super pixel on given MRI images. The method
continuously update the network parameters according to the genetic bee operators. The network utilizes

the pi ¼ fitiPPS

j¼1
fitj

probability value for every parameter computation process. In addition to this, uniform

distribution value helps to select the optimized network parameters. Then the network uses the
fSPijk jk 2 1; . . . :Kijg ¼ SðJ i; PjÞ in training process that helps to identify the extreme super
pixels from the MRI image. The continuous training process minimize the error-rate problem.

Figure 7: Error rate analysis of (a) # Superpixels (b) # Patients
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The identified superpixels are more helpful to extract the tumor related features F ¼ ffFg1;
fFg2; . . . :fFgj; . . . :fFgNg which identify the tumor region successfully. Therefore, it clearly shows

that extracted features and superpixel fit with this process and the obtained results are illustrated in Fig. 8.

Fig. 8 illustrated that the fit rate analysis of different segmentation process such as [16–21] and
introduced SNCDM. The method predicts the image coordinates with respective super pixel values
f 0ðPÞ ¼ P

SP2@P

USP:qsPðPÞ
P0 ¼ P

SP2@P

ISP:qsPðPÞ with their property and minimum loss function
P
P
distðf ðPÞ; f 0ðPÞÞþ

m
S kP � Pk02 value directly indicates that the system has high fit rate compared to the other methods. The
effective examination of image super pixel, complexity features, shape features and relationship between the
features recognize the tumor region with high recognition accuracy. Thus the system ensures high results on
number of super-pixels (98.043%) and number of patients 98.487%) while segmenting the spine tumors.
Further, the excellence of the system is evaluated using Jaccard index and dice score and the obtained
results are illustrated in Tab. 2 and Tab. 3.

Figure 8: Fit rate analysis of (a) # Superpixels (b) # Patients

Table 2: Comparative analysis for number of super-pixel

Metrics In [16] In [17] In [18] In [19] In [20] In [21] SNCDM

Jaccard index 0.7456 0.823 0.845 0.867 0.89 0.923 0.97

Dice score 0.83 0.845 0.87 0.923 0.94 0.965 0.978

Accuracy (%) 66.5825 73.681 77.714 81.427 92.421 95.7235 98.043
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The proposed SNCDM maximize the region identification accuracy (98.04%) on number of super pixel
identification from MRI images. The identified regions are more similar to the expected outcome that is
identified in Jaccard Index (0.978%) and Dice Score (0.97%).

According to the above discussions, the optimized Super-pixel analytics Numerical characteristics
Disintegration Model (SNCDM) algorithm successfully matches the trained tumor region with test tumor
region while predicting the spinal tumor. The effective recognition of spinal tumor manages the system
reliability, scalability and efficiency.

5 Conclusion

Thus the paper analyzing the Super-pixel analytics Numerical characteristics Disintegration Model
(SNCDM) based spinal tumor segmentation process. In this work uses the Lumbar Spine MRI Dataset
information which are processed by applying the introduced machine learning approach. The gathered
images are investigated in both axis to obtain the Fourier descriptors. The derived descriptors further
examined to obtain the super-pixels which match with other pixels presented in the image. Then, different
features such as complexity and shape related information extracted to classify the tumor relevant pixels
successfully. The segmentation performance improved because of effective training process with
respective labels. Then the efficiency of the system evaluated using experimental results in which system
attains high recognition accuracy and minimum error rate. In future, the effectiveness of the system
improved by applying the optimized segmentation techniques.
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