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Abstract: In today’s digital era, e-healthcare systems exploit digital technologies
and telecommunication devices such as mobile devices, computers and the inter-
net to provide high-quality healthcare services. E-healthcare decision support sys-
tems have been developed to optimize the healthcare services and enhance a
patient’s health. These systems enable rapid access to the specialized healthcare
services via reliable information, retrieved from the cases or the patient histories.
This phenomenon reduces the time taken by the patients to physically visit the
healthcare institutions. In the current research work, a new Shuffled Frog Leap
Optimizer with Deep Learning-based Decision Support System (SFLODL-DSS)
is designed for the diagnosis of the Cardiovascular Diseases (CVD). The aim
of the proposed model is to identify and classify the cardiovascular diseases.
The proposed SFLODL-DSS technique primarily incorporates the SFLO-based
Feature Selection (SFLO-FS) approach for feature subset election. For the pur-
pose of classification, the Autoencoder with Gated Recurrent Unit (AEGRU)
model is exploited. Finally, the Bacterial Foraging Optimization (BFO) algorithm
is employed to fine-tune the hyperparameters involved in the AEGRU method. To
demonstrate the enhanced performance of the proposed SFLODL-DSS technique, a
series of simulations was conducted. The simulation outcomes established the
superiority of the proposed SFLODL-DSS technique as it achieved the highest
accuracy of 98.36%. Thus, the proposed SFLODL-DSS technique can be exploited
as a proficient tool in the future for the detection and classification of CVD.

Keywords: E-healthcare; decision support system; cardiovascular disease; feature
selection; deep learning

1 Introduction

The prevalence of non-communicable chronic diseases has drastically increased across the globe since
the lifestyles of people have changed dramatically in the past few years due to technological advancements
[1]. According to the World Health Organization (WHO), chronic obstructive lung illness, Ischemic Heart
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Disease (IHD), lower respiratory infection, and stroke are the top most diseases that contribute to a high
mortality rate over the past few decades in both developed as well as the developing countries [2]. In
recent times, Artificial Intelligence (Al) techniques have been widely applied in the healthcare industry,
especially in the following domains such as prevention, diagnosis, medical payment systems, treatment
and so on [3]. Mobile internet networks, big data and other innovative information technologies are also
leveraged in healthcare-based Al applications. Thus, the Al-related Medical (M)-healthcare and electronic
(E)-healthcare solutions have gained much attention to obtain information, develop processes and offer a
clear output for different types of audiences such as the caregiver, physician and patients. Al-related
M-healthcare and E-healthcare solutions are also helpful in achieving the objectives and the needs of
medical treatments in an efficient manner [4]. Being a data-driven technology, the Al technique brought a
paradigm shift from information domain to application domain in intelligent drug research and
development, intelligent health management and diagnosis-related applications, intelligent treatment and
diagnosis, intelligent payment, etc. [5]. In the domain of Information and Communication Technology
(ICT), several authors have investigated the applications of Al in healthcare industry.

Cardiovascular Disease (CVD) is one of the critical health problems with a high mortality rate in both
developing as well as developed countries [6]. Some typical symptoms of CVD include body weakness,
swollen feet and shortness of breath. In literature, various researchers attempted to develop an effective
method that can diagnose cardiac disease at its early stages. This is because the existing diagnostic
methods for heart diseases are either inaccurate or not fast enough to predict the onset of the disease or
its progression [7]. Both prognosis as well as the treatment of cardiac diseases are highly challenging to
accomplish, especially in the absence of modern technology and highly-experienced medical specialists.
Some common reasons behind the occurrence of CVD include the intake of high-calorie diet, sugars,
saturated fats and physical inactivity. Further, these causes are linked with atherosclerosis development
and other metabolic disturbances, too, like hypertension, metabolic syndrome and Diabetes Mellitus
(DM). CVD patients mostly suffer from the above-mentioned conditions over the course of their life [8].
Machine Learning (ML) prediction methods require proper data for both trainings as well as testing
purposes. The performance of ML methods can be improved only if a balanced data set is used for
training and testing purposes. Moreover, the prediction abilities of a model can be enhanced further with
the help of the appropriate features relevant to the data [9,10]. Hence, Feature Selection (FS) and the data
balancing processes are crucial phases that enhance the performance of a model.

In the current study, a new Shuffled Frog Leap Optimizer with a Deep Learning-based Decision Support
System (SFLODL-DSS) is designed to diagnose Cardiovascular Disease (CVD). The proposed SFLODL-
DSS technique primarily incorporates SFLO-based Feature Selection (SFLO-FS) approach for feature
subset election. For the purpose of classification, the Autoencoder with Gated Recurrent Unit (AEGRU)
model is exploited. Finally, the Bacterial Foraging Optimization (BFO) algorithm is employed to fine-
tune the hyperparameters involved in the AEGRU technique. To demonstrate the enhanced performance
of the proposed SFLODL-DSS technique, a series of simulations was conducted.

2 Literature Review

In the study conducted earlier [11], five selection strategies were implemented for multi-label active
learning. These strategies were utilized to mitigate the labelling costs via an iterative selection of the most
appropriate data and by querying the labels. The hyperparameters of the feature selection techniques, with
ranks for each label, were maximized with the help of the grid search. This was accomplished to execute
the prediction models for every scenario in the heart disease dataset. In literature [12], an intelligent
healthcare structure was devised to predict the occurrence of heart diseases based on the Swarm-Artificial
Neural Network (Swarm-ANN) approach. The presented Swarm-ANN approach arbitrarily produced a set
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of pre-defined Neural Network (NN) numbers to evaluate and train the structures related to the solution’s
consistency. At last, the weight of the neuron got altered by sharing the global optimum weight with the
rest of the neurons. Then, the accuracy of the heart disease prediction was estimated.

In literature [13], the researchers compared the performance of the conventional mechanisms against the
presented system that predicts cardiac disease with the help of traditional ML classifier. The mechanism
modelled in this study was helpful in fine-tuning the hyperparameters for the five classification methods
considered in this study, with the help of grid search method. The authors in literature [14] introduced an
ML-related prediction method for the prediction of multiple-and binary-classification heart disease
datasets concurrently. Initially, the researchers devised a Fuzzy-GBDT approach by integrating Gradient
Boosting Decision Tree (GBDT) and Fuzzy Logic (FL) techniques to reduce the complexities in the data
and increase the generalization of the binary classifier’s prediction. Then, the Fuzzy-GBDT was compiled
with bagging to avoid the issue of overfitting.

A web-related decision support structure was presented in the study conducted earlier [15]. This
structure was able to generate a pre-guidance report based on the decisions taken from the Bayesian
network analysis results on disease dataset. Further, the report was produced in adherence to the mined
disease paradigms over medical and non-medical factors of the patients. The mined disease paradigms
were retrieved from the patient’s past medical reports. The outcomes of the report inferred the likelihood
of getting affected by a disease for the provided health metrics. In the study conducted earlier [16], a
comparison was made among various computational intelligence methods in terms of heart disease
identification. In this study, two computational intelligence approaches such as the k-Nearest Neighbour
(KNN) and Decision Tree (DT), were compared and contrasted. Further, the Autoencoder (AE) feature
extraction method was used in this study to reduce the number of attributes required to describe the heart
disease dataset.

3 The Proposed Model

An intelligent SFLODL-DSS technique is designed in this study to diagnose the CVD. The proposed
SFLODL-DSS technique primarily incorporates the SFLO approach for feature subset election. For the
purpose of classification, the AEGRU model is exploited. Finally, the BFO algorithm is employed to fine-
tune the hyperparameters involved in the AEGRU technique. The overall processes involved in the
proposed model are shown in Fig. 1.

| Data Pre-processing |4—{ Input: Training Dataset |

& Feature Selection Process
using
Shuffled Frog Leap Optimizer \

Hyperparameter Tuning Process Classification Process
using o using
Bacterial Foraging Optimization Autoencoder with GRU Model
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Figure 1: Working process of the SFLODL-DSS method
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3.1 Data Pre-Processing

In this study, the Min-Max scaler is exploited to scale the dataset in the range of [0,1]. This range
guarantees fast convergence for gradient learning techniques and is formulated using the following equation.

f_fmin
fmax _fmin

Here, fmin and f.x represent the lower and higher limits of the features, correspondingly.

(1

ﬁcaled =

3.2 Processes Involved in Feature Selection Technique

In this stage, the SFLODL-DSS technique primarily incorporates the SFLO approach for feature subset
election [17]. SFLO, a memetic metaheuristic technique, is generally applied to find a global solution by
executing an informed heuristic search via a heuristic function. The SFLO technique is a population-
based algorithm inspired from frogs of similar characteristics. In this technique, all the frogs are regarded
as the solutions. The overall population of the frogs is categorized under several subclasses called
‘memeplex’. Further, different subcategories are appreciated as disparate frog memes. The whole set of
the memeplexes is held accountable in case of a constrained exploration. In every memeplex, the frogs
tend to affect the activities of the other frogs, whereas the memeplex progresses via memetic growth
procedure. After achieving several memetic growth phases, the memeplexes are forced to combine. This
phenomenon results in the generation of novel memeplexes due to the shuffling technique. The shuffling
procedure promotes unbiased traditional progress in the direction of a certain interest. The end condition
is met when the shuffling procedure and the local search alternate are chosen.

(1) This process contains a population ‘p’ that corresponds to a possible number of solutions and is
constrained by a collection of virtual frogs (n).

(2) The population is divided into subsections known as ‘memeplexes’ (m). Here, a memeplex is
regarded as a group of the corresponding frog cultures that try to accomplish certain objectives.

(3) Frog i is demonstrated as X; = (X1, Xp, ..., Xj) in which the value S corresponds to the
number of variables.

(4) Within every memeplex, the frog culture searches for a space in dissimilar directions and
independently exchanges ideas. The frog with the worst fitness value is represented by Xj,
whereas the frog with the best fitness value is denoted by X;,.

(5) The frog with the global optimum fitness is recognized as X,.

(6) The frog with the worst fitness value is determined as follows.

D; = rand (Xp — X,,) ()
Xneww — AoldW +Di (_D max < Di < Dmax) (3)

Now, the rand function produces an arbitrary value in the range of [0, 1], while D; denotes the leaping
step size of the frog i and D ,,x shows the maximal value allowed if the location of the frog is altered. Once
the fitness value X, becomes highly efficient than the present value of )X,,, it is accepted. If the fitness is not
adapted, then the computation is iterated by replacing X, with X,. In case there is no prospect for
improvement, X,, is arbitrarily generated. Both local searches as well as shuffling processes continue until
the convergence conditions produce suitable outcomes [68, 70, 71].

In FS problem, all the solutions are constrained to binary numbers such as 0 and 1. In the SFLO
application algorithm, the SFLO-FS approach is developed by originating a binary form that was
determined earlier. In the SFLO-FS technique, a solution is described through 1D vector, whereas the
length of the vector depends on the count of the features in the new dataset. All the cells in a vector have
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separate values, i.e., either 1 or 0. The value ‘1’ signifies that the resultant features are carefully chosen;
otherwise, the value is defined by 0.

1 if X,,>0.5
Zmn - .
0  otherwise

“)

Here, Z,,,, represents a dissimilar form of the solution vector X, whereas X, specifies the continuous
position of the searching agent m at dimension #.

The FS process is modelled as a multi-objective optimization problem, in which two conflicting
objectives are fulfilled, such as high classification performance and low FS quantity. Here, the
classification performance is applied as a Fitness Function (FF) value to assess the efficacy of the entire
searching agent. To create a balance between classification performance and the number of FS for every
solution, the FF value is applied in both SFLO algorithm as well as the whole approach to determine the
searching agents.

|F]

Fitness = pErr(D) + p—; 7]

6))

In Eq. (5), Err (D) signifies the classification error rate, p and ¢ are constants that are used to control the
reduction feature and classification accuracy respectively, |F| characterizes the size of the known feature set
and |T| symbolizes the overall quantity of the features.

3.3 Classification Using Optimal AEGRU Model

In current study, the AEGRU model is exploited for the purpose of classification. The GRU model is a
specific case of Long Short Term Memory (LSTM) model and is established to reduce the extended training
time taken by LSTM [18]. In comparison with LSTM, the GRU model is too simple since it encompasses
only two gates as update gate and the reset gate that control the flow of the data inside the unit. The
modification function amongst the GRU neurons is given herewith.

r(n) = o(wpx(n) + uh(n — 1)+ b,) 6)
2(n) = o(w.x(n) + wh(n — 1) + b.) 7)
h(n) = o(wix(n) + up(r(n) h(n — 1)) + by,) ®)
h(n) = (1 —z(n))"h(n — 1) + z(n)"h(n) ©)

Now r(n) indicates the reset gate, z(n) represents the update gate and w and u imply the variable matrices
of the GRU model. Further, /(n), h(n), and b correspondingly denote the candidate output, output and bias
[18]. The activation function is denoted by o.

The structure of the GRU model is shown in Fig. 2. The suggested AEGRU technique is similar to AE
with LSTM (AELSTM) method. Here, the AE technique is leveraged to shrink the medical data by
describing the architecture of the information and attaching the encoder information for GRU network.
The encoders of the medical data and its past data are given to GRU model for the purpose of training
and to make the neuron fit into the model. This phenomenon results in the prediction of the desired
output. Particularly, the AEGRU methodology is trained using a collection of past encoder medical
datasets. In this final stage, the BFO algorithm is employed for optimal fine-tuning of the
hyperparameters involved in the AEGRU approach. The conventional BFO method is initialized as two
major phases that are briefed herewith.
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Xt
Figure 2: GRU model

1) Initiation of the solution space: The spatial dimension D, range and the mapping function f'(x) are
employed.

2) Initiation of the bacteria: The bacterial count is designated as S. The position of the i-th bacterium in
optimization space is specified as P;(j, k, [), which corresponds to the finest parameter of the
solution, i.e., Pi(j, k, 1) =[my, my, ..., mp).

Therefore, the fitness of the i-th bacterium in optimization space is specified as J;(j, &, [) and is
determined by the function of bacterium’s location.

Ji(jv ko l) :f(Pl(]7 k7 l)) :.fi,j,k,l(ml’ mp, ..., WlD). (10)

Now, if the function has a low value, it denotes high fitness. i represents the i-#h bacterium, whereas j, £,
and / are related to the centralized method of the BFO technique in terms of reproduction, dispersal,
elimination, and chemotaxis, respectively.

Chemotaxis

The Chemotaxis process comprises a massive number of flipping and swimming motions [19]. In j-th
chemotaxis technique, the motion of the i-#4 bacterium is represented by Eq. (11).

P(+1, k )=P(, k )+ Clin, (11)

The swimming step length of the i-#k bacterium is classified based on the amount of swimming » and a
single swimming step size, C(i). Here, (i) denotes the vector direction of the -t bacterium in p dimensional
optimization space. Each component of (i) is a mathematical value in the range of [—1, 1] in which initiation
is set as an arbitrary number. When the i-#4 bacterium distinguishes the highest fitness position from a
favourable environment in j-th chemotaxis, it moves in the same direction according to the time. Instead,
(1) selects a novel arbitrary direction.

Swarming

The bacteria are classified into attractive and repulsive bacteria, for which the numerical relationship is
established as follows.

: (12)

Dy
i=1

p
hrep eXp <_wrep Z(le - P_m)
m=1
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In Eq. (3), du signifies the depth at which the attracted material is produced by the i-#4 bacterium and
. characterizes the width of the attracted material. Since two bacteria cannot co-exist in parallel positions,
the repulsion is adopted by both 4,,, and w,.,. Subsequently, the swarming process and the fitness of the i-th
bacterium are shown below.

JGL kD=0, kD)4 JePG, K D) (49

Reproduction

The bacteria tend to replicate once it accomplishes an optimal environment; otherwise, it dies.
Consequently, after swarming and chemotaxis techniques, the fitness of the whole bacteria is calculated
and sorted as defined below.

Nc
ineatn =) S, kD). (14)

. . S )
Here, one half of the bacteria reaches the optimal state S, = (§> and are selected to survive, whereas

the rest of the bacteria are left to die. The bacteria that survive this environment reproduce via two colonies
that are located in the corresponding regions and retain the total number of bacteria i.e., S set.

Elimination and Dispersal

After reproduction, each bacterium is disseminated through the possibility of P,;, though the total
amount of bacteria remains unchanged. As soon as a bacterium gets detached, it is distributed arbitrarily
toward the original location.

r = random [0, 1];

. Pi(ja k, l) r> Py,
Pij, k, 1) = {m’l, my, ...m; r <Py (15)
Now, the removal process is followed when r; < P,;. The novel position of the i-th bacterium P; is
replaced using an original position, P} = (m|, m), ..., m}p). As a result, the m optimal parameter is

upgraded towards an m’ arbitrary parameter since it can be solved during optimization phase.

4 Experimental Validation

In this section, the performance of the proposed SFLODL-DSS method was experimentally validated
using a dataset sourced from UCI repository. The dataset holds 303 samples, and the proposed model
selected seven features, as shown in Table 1.

Table 1: Dataset details

Class No. of samples (attributes =303)
Absence 164
Presence 139

Total no. of samples 303

Fig. 3 shows the confusion matrices generated by the proposed SFLODL-DSS method using distinct
Training (TR) and Testing (TS) datasets. With 80% of TR data, the proposed SFLODL-DSS method
classified 123 and 105 samples under absence and presence classes, respectively. Moreover, with 20% of
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TS data, the SFLODL-DSS method segregated 32 and 28 samples under absence and presence, respectively.
In parallel, with 70% of TR data, the proposed SFLODL-DSS method categorized 116 and 82 samples under
absence and presence classes correspondingly. Similarly, with 30% of TS data, the SFLODL-DSS method
recognized 48 and 41 samples as absence and presence classes, correspondingly.

Training Phase (80%) - Confusion Matrix Testing Phase (20%) - Confusion Matrix
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Figure 3: Confusion matrix of SFLODL-DSS method
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Table 2 and Fig. 4 provide the overall classification results accomplished by the proposed SFLODL-DSS
method on the applied dataset. With 80% of TR data, the proposed SFLODL-DSS method achieved average
accuy, prec,, recaj, Fyore and Gegsure values such as 94.21%, 94.10%, 94.32%, 94.18% and 94.20%
respectively. At the same time, with 20% of TS data, the proposed SFLODL-DSS method gained average
accuy, prec,, reca;, Fyore and Geusure values such as 98.36%, 98.48%, 98.28%, 98.35% and 98.37%
correspondingly. In addition, with 70% of TR data, the SFLODL-DSS algorithm attained average accu,,
precy, reca, Fyoe and Gegsuwre values such as 93.40%, 94.62%, 92.71%, 93.22% and 93.44%
correspondingly. At last, with 30% of TS data, the proposed SFLODL-DSS approach acquired average
accuy, prec,, recaj, Fgore and Gpeqaure values such as 97.80%, 98%, 97.67%, 97.79% and 97.81%
correspondingly.

Table 2: Overall classification outcomes of SFLODL-DSS method

Labels Accuracy Precision Recall F-Score G-measure

Training phase (80%)

Absence 94.21 96.09 93.18 94.62 94.63
Presence 94.21 92.11 95.45 93.75 93.76
Average 94.21 94.10 94.32 94.18 94.20
Testing phase (20%)

Absence 98.36 96.97 100.00 98.46 98.47
Presence 98.36 100.00 96.55 98.25 98.26
Average 98.36 98.48 98.28 98.35 98.37
Training phase (70%)

Absence 93.40 89.23 100.00 94.31 94.46
Presence 93.40 100.00 85.42 92.13 92.42
Average 93.40 94.62 92.71 93.22 93.44
Testing phase (30%)

Absence 97.80 96.00 100.00 97.96 97.98
Presence 97.80 100.00 95.35 97.62 97.65
Average 97.80 98.00 97.67 97.79 97.81

Testing Phase (30%)
98.1

98.0 -

97.9 4

97.8

97.7 1

Avg. Values (%)

97.6

97.5 1

97.4 -

Accuracy Precision Recall F-Score G-Measure

Figure 4: Average classification results of the SFLODL-DSS method
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Both Training Accuracy (TA) and Validation Accuracy (VA) values, obtained by the proposed
SFLODL-DSS method on test dataset, are demonstrated in Fig. 5. The experimental outcomes imply that
the proposed SFLODL-DSS approach attained the maximal TA and VA values whereas the VA values
were higher than the TA values.

Training and Validation Accuracy

== Training
=== \/alidation

0.98

0.96

0.94

0.92 §

Accuracy

0.90 4

0.88

0.86 4

0.84

T T T T T T T
0 5 10 15 20 25 30

Epochs

Figure 5: TA and VA analyses results of the SFLODL-DSS method

Both Training Loss (TL) and Validation Loss (VL) values, gained by the proposed SFLODL-DSS
method on test dataset, are shown in Fig. 6. The experimental outcomes implicitly explain that the
proposed SFLODL-DSS algorithm exhibited the minimal TL and VL values whereas the VL values were
lower than the TL values.
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Figure 6: TL and VL analyses results of the SFLODL-DSS method
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A clear precision-recall study was conducted upon the proposed SFLODL-DSS method using the test
dataset and the results are shown in Fig. 7. The figure signifies that the proposed SFLODL-DSS method
produced enhanced precision-recall values under all the classes. Fig. 8 shows the detailed ROC analysis
results achieved by the presented SFLODL-DSS algorithm on test dataset. The results infer that the
proposed SFLODL-DSS method exhibited its supreme capability in terms of categorizing the test dataset
under distinct classes.
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Figure 7: Precision-recall analyses results of the SFLODL-DSS method
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Figure 8: ROC analysis results of the SFLODL-DSS method
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Table 3 and Fig. 9 show the comprehensive comparison analysis outcomes accomplished by the
proposed SFLODL-DSS model and other recent models such as Random Forest (RF), Bidirectional Long
Short Term Memory (BiLSTM), Inception v3, Extreme Gradient Boosting (XGBoost), Deep Belief
Network (DBN), Support Vector Classification (SVC) and Iterative Dichotomiser 3 (ID3). The
experimentation outcomes showcase the overall improvements achieved by the proposed SFLODL-DSS
model. With respect to accu,, the proposed SFLODL-DSS model offered a maximum accu, of 98.36%,
whereas RF, BiLSTM, Inception v3, XGBoost, DBN, SVC and ID2 models reported low accu, values
such as 95.52%, 96.38%, 95.78%, 94.19%, 94.28%, 94.00% and 96.53% respectively. Also, with respect
to prec,, the proposed SFLODL-DSS model rendered a maximum prec, of 98.48%, whereas other
models such as RF, BiLSTM, Inception v3, XGBoost, DBN, SVC and ID2 reported the least prec,
values such as 96.11%, 96.04%, 94.57%, 94.87%, 96.26%, 96.57% and 95.39% correspondingly. In
contrast to these, with respect to reca;, the proposed SFLODL-DSS model accomplished a maximum
reca; of 98.28%, whereas RF, BiLSTM, Inception v3, XGBoost, DBN, SVC and ID2 models reported the
least reca; values such as 97.52%, 96.15%, 94.70%, 97.32%, 95.59%, 97.86% and 97.81%
correspondingly. Moreover, with respect to Fice, the SFLODL-DSS model attained a maximum Fi.,,. of
98.35%, whereas RF, BiLSTM, Inception v3, XGBoost, DBN, SVC and ID2 models achieved the least
Fycore values such as 97.04%, 95.43%, 94.88%, 94.43%, 96.67%, 95.10% and 96.46% correspondingly.

Table 3: Classification outcomes of the proposed SFLODL-DSS method and other existing models

Methods Accuracy Precision Recall F-Score
SFLODL-DSS 98.36 98.48 98.28 98.35
RF Algorithm 95.52 96.11 97.52 97.04
Bi-LSTM Model 96.38 96.04 96.15 95.43
Inception-V3 algorithm 95.78 94.57 94.70 94.88
XGBoost 94.19 94.87 97.32 94.43
DBN model 94.28 96.26 95.59 96.67
SVC model 94.00 96.57 97.86 95.10
ID3 algorithm 96.53 95.39 94.81 96.46
I SFLODL-DSS XGBoost
mmm RF Algorithm DBN Model
100 4 m Bi-LSTM Model SVC Model
I Inception-V3 Algorithm ID3 Algorithm
99
3 98-
s
96
95 -
94
93 : . . .
Accuracy Precision Recall F-Score

Figure 9: Comparative classification results of the proposed SFLODL-DSS method
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Finally, the SFLODL-DSS model was compared with existing models in terms of Execution Time
(EXET) and the results are shown in Table 4 and Fig. 10. The experimental values imply that the rest of
the models such as RF, XGBoost and DBN demanded high EXET such as 2.230, 2.040 and 2.100 s
respectively.

Table 4: EXET of the proposed SFLODL-DSS method and other existing models

Methods Execution time (sec)
SFLODL-DSS 0.012
RF algorithm 2.230
Bi-LSTM model 0.560
Inception-V3 algorithm 1.660
XGBoost 2.040
DBN model 2.100
SVC model 1.990
ID3 algorithm 1.770
2.5
g 2.0
g 151
£
[
S 1.0
=
@
X 05
0.0 ; . . .
0 £ ) £ v ] ] £
s £ 2 £ @ 3 3 =
A T
9 2 E 2 . a > ]
- ° 3
[ c -
2
3
£
Methods

Figure 10: Comparative EXET results of SFLODL-DSS method

However, the Inception v3 and SVC models required slightly lesser EXET values such as 1.660 and
1.990 s respectively. Though the BILSTM model demanded a reasonable EXET of 0.560 s, the proposed
SFLODL-DSS model achieved a superior outcome with the least EXET of 0.012s. Based on the
analytical results and discussions made above, it is evident that the proposed SFLODL-DSS model is an
excellent performer than the existing models.
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5 Conclusion

In this article, an intelligent SFLODL-DSS has been designed for the diagnosis of Cardiovascular
Diseases. The proposed SFLODL-DSS technique primarily incorporates the SFLO approach for feature
subset election. For the purpose of classification, the AEGRU model is exploited. At the final stage, the
BFO algorithm is employed for optimal fine-tuning of the hyperparameters related to the AEGRU
approach. To demonstrate the enhanced performance of the proposed SFLODL-DSS technique, a series
of simulations was conducted and the results established the superiority of the proposed SFLODL-DSS
technique over other techniques. Thus, the SFLODL-DSS technique can be exploited as a proficient tool
in the future for detection and the classification of CVD. Further, the performance of the SFLODL-DSS
technique can be improved in the future using outlier detection models.
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