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Abstract: The finite element method is a key player in computational electromag-
netics for designing RF (Radio Frequency) components such as waveguides. The
frequency-domain analysis is fundamental to identify the characteristics of the
components. For the conventional frequency-domain electromagnetic analysis
using FEM (Finite Element Method), the system matrix is complex-numbered
as well as indefinite. The iterative solvers can be faster than the direct solver when
the solver convergence is guaranteed and done in a few steps. However, such
complex-numbered and indefinite systems are hard to exploit the merit of the
iterative solver. It is also hard to benefit from matrix factorization techniques
due to varying system matrix parts according to frequency. Overall, it is hard to
adopt conventional iterative solvers even though the system matrix is sparse. A
new parallel iterative FEM solver for frequency domain analysis is implemented
for inhomogeneous waveguide structures in this paper. In this implementation,
the previous solution of the iterative solver of Matlab (Matrix Laboratory) employ-
ing the preconditioner is used for the initial guess for the next step’s solution
process. The overlapped parallel stage using Matlab’s Parallel Computing Toolbox
is also proposed to alleviate the cold starting, which ruins the convergence of early
steps in each parallel stage. Numerical experiments based on waveguide structures
have demonstrated the accuracy and efficiency of the proposed scheme.

Keywords: Computational electromagnetics; numerical simulation; finite element
method; parallel processing; iterative solvers

1 Introduction

The analysis of electromagnetic structures requires solving the Maxwell equation according to structural
specialties; however, obtaining an analytical solution is usually limited to particular cases with strong
symmetry [1]. Therefore, numerical electromagnetism for designing and simulating RF (Radio
Frequency) components is indispensable. Among these RF components, a particular device for efficiently
transmitting electromagnetic waves through a specific path is collectively referred to as a guided
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structure, and the waveguide structure may be classified mainly into two types; transmission lines and
waveguides. One of the waveguides, a hollow rectangular tube surrounded by a conductor, that is, a
rectangular waveguide structure, may reduce attenuation in a high-frequency band, thereby enabling
efficient energy transmission in the band [2]. However, it is not easy to obtain an analytical solution
when an inhomogeneous block is located in these rectangular waveguides, and it must be helped by
computational techniques.

Representative electromagnetic numerical techniques include a finite difference time domain (FDTD), a
method of moment (MoM), and a finite element method (FEM). FDTD is a method of interpreting Maxwell’s
equations using differential equations in the time domain, which can easily handle the anisotropy and
inhomogeneity of the medium and is known to be simple to generate meshes but challenging to model
curved surfaces [3]. MoM is a method of interpreting the Maxwell equation using an integral equation
using a green function. Since the computational domain is limited to the surface, it does not require the
interpretation of a large domain [3]. However, native MoM is known to be challenging to interpret
inhomogeneous media, and it also has the disadvantage of complicated calculations because it deals with
a full matrix [1,3].

Contrary to the techniques described above, FEM is a type of electromagnetic analysis method based on
differential equations and is based on dividing the region of interpretation into finite elements. Although this
technique is known to be more mathematically complex than other numerical methods, it is possible to model
complex structures and curves using meshes such as triangles and tetrahedrons. Furthermore, the matrix to be
solved becomes a sparse matrix; hence it can effectively adopt iterative solvers [4]. In addition, it has the
advantage of being suitable for parallel operations by applying a domain decomposition algorithm [5].

However, in the analysis of the frequency domain of FEM, the systemmatrix subject to the solution becomes
a complex matrix with an indefinite property [6]. In addition, since these system matrices vary with frequency, it
is not easy to take advantage of the matrix factorization techniques, and due to the above characteristics, they
show very slow convergence for iterative solvers. Since the solution time is dominant in the overall analysis
time, reduction in the solution time is the key to improve the simulation performance [7,8].

This paper presents the analysis results of the S11 parameter of the inhomogeneous rectangular
waveguide using the edge element of FEM. The simulation was implemented using the gmres solver
(generalized minimum residual method; GMRES) of Matlab and the spmd (single program multiple data)
of the Parallel Computing Toolbox [9]. More specifically, First, for fast convergence of gmres, we use the
solution result of the previous step frequency as the initial guess of the subsequent step to improve
the convergence rate. Second, we implement parallel processing that deals with the existence of
the dependency between the previous step and the subsequent step. We also propose a method to alleviate the
low convergence due to the initial cold starting of each parallel stage.

This paper consists of the following. Section 2 describes the fundamentals of finite element method and
iterative solvers, Section 3 demonstrates the implementation of parallel iterative FEM solvers for waveguide
analysis, Section 4 shows simulation results and performance evaluation, and finally, Section 5 concludes the
paper.

2 FEM Formulation and the Solution of FEM Linear Systems

2.1 FEM Formulation of Waveguide Structure

In this paper, we employ a completely self-coded FEM to analyze the reflection coefficient
S11 parameter for the waveguide structure. At the early stage, the boundary value problem of the
waveguide begins with the quadratic differential equation such as Eq. (1) [4,10].
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Applying a variational principle to an electric field with the differential equation on a waveguide leads to
the functional form of Eq. (2) [4,10].
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In addition, Eq. (2) is expressed in the same form as Eq. (3), and the elemental matrix, which is a
component of Eq. (3), is expressed in the form of Eq. (4) [4]. The equation in Eq. (3) can be formulated
using the FEM technique to obtain the electric field (E).
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In Eq. (3),M is the number of volume elements, andMS is the number of the surface elements along the
S1 and S2 planes.MS1 is the number of the surface elements in the S1 plane. Also, in Eq. (4), NS is the vector
basis function and SS ¼ n̂� NS . The P in Eq. (4) matrix will be used as a preconditioner for the GMRES in
the proposed algorithm.

Finally, the reflection coefficient S11 can be obtained by substituting the derived electric field in Eq. (5)
using the orthogonality of modes [4].

R ¼ 2e�jkz10z1
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2.2 Solution of FEM Linear Systems

The system matrix generated from the FEM technique in the frequency domain has a sparse property. In
addition, if edge numbering, that is, connectivity, is efficiently woven in the process of creating a mesh,
matrix bandwidth can be narrowed, making it a better environment to apply the iterative solver compared
to the direct solver [11].

2.2.1 GMRES and Bicg
‘bicg’ (biconjugate gradients) can be used when the matrix is positive definite and symmetric, and it is

possible to have a solution without satisfying these properties. However, the above matrix properties must be
satisfied for faster convergence and accurate results [12]. On the other hand, GMRES, proposed by Saad &
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Schultz in 1986, allows linear system solution of square matrices without being restricted to diagonal,
positive definite, and symmetric properties [13]. In addition, for conventional iterative solvers, the
convergence rate varies depending on how the initial guess is set. In this paper, the solution from the
previous frequency step is used as the initial guess for the next step.

2.2.2 Matlab’s Backslash
The backslash command is a representative direct solver used in Matlab. For example, if the system to be

analyzed is an upper or lower triangular matrix, backward/forward substitution can be applied. For another
example, if a matrix is a symmetric or Hermitian matrix, Cholesky factorization can be applied. Other
examples of backslash are shown in Tab. 1 [7].

3 Proposed Scheme

3.1 Description of Cold Start and Its Solution

Fig. 1 is the results of interpreting S11 of the same inhomogeneous rectangular waveguide problem
using different solvers. Fig. 1a is exact, and Fig. 1b is the result from GMRES with a good initial guess
which is the solution from the previous computation stage [14]. The early stage of Fig. 1b shows a notch
because there is no accurately referenced previous value in the beginning. Thus, we call it a ‘cold start.’
Fig. 1c demonstrates the result from bicg with a good initial guess strategy, but its accuracy is not
satisfactory. Thus, we adopt GMRES with a good initial guess, not bicg solver.

Several strategies can be applied to solve the ‘cold start’ problems. First, increasing the number of
iterations for the solver convergence is one solution. Rather than the increasing number of iterations for
convergence throughout the whole range, the number of iterations can be increased only in the early
stage. Another solution is starting the simulation as early as the bias in order to alleviate the accuracy
issue that occurs in the early stages of the analysis. In this case, it is unavoidable to take redundant
computation for the bias. Also, it can combine with parallel processing techniques to compensate for
redundant simulation time. Since the number of iterations for solver convergence has a direct influence
on the simulation time, it will be necessary to rationally adjust the iteration number for each step.

3.2 Implementation of Parallel Processing Using Matlab

When applying parallel processing to the above-mentioned gmres with a good initial guess method, the
cold start problem still occurs, as shown in Fig. 2. A cold start occurs in the several beginning steps allocated

Table 1: Matlab’s backslash command [7]

Matrix type Solve technique

Upper or lower
triangular matrix

Backward/Forward substitution

Permutation of
triangular matrix

Permuted back substitution

Symmetric or Hermitian
matrix

Cholesky factorization

Hessenberg matrix Reduce to upper triangular

Square matrix PA = LU (P is a permutation matrix. A is a square matrix. L is a lower triangular
matrix. U is an upper triangular matrix.)

Not square matrix Householder QR (Q is an orthogonal matrix Q. R is an upper triangular matrix.)
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to each thread. To solve this cold start problem, as shown in Fig. 3, biased (redundant) steps are employed to
obtain acceptable start values for the normal stage. For the biased steps, the number of iterations for the
convergence is increased intentionally. A good initial guess solver and preconditioner matrix P in Eq. (4)
is basically employed to expect performance improvement. Again, it is crucial to choose balanced bias
step numbers, initial iterations for the bias stage, and iterations for the normal stage to achieve good
performance with acceptable accuracy.

The parallel processing is implemented using Matlab’s Parallel Computing Toolbox. A typical parfor
(parallel for-loops) command is relatively easy to use, but this requires completely independent loops. If
this constraint satisfies, then Matlab automatically divides the entire loops into small parallelized loops.
However, the processes or threads of the proposed scheme are not independent because even inside the
tread, the following solution needs the previous solution as a good initial guess. That is why we adopt
Matlab’s spmd command to implement parallel processing with the bias stage.

(a) Exact (b) GMRES w/ good start

(c) bicg w/ good start

Figure 1: S11 parameter for inhomogeneous rectangular waveguide
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4 Simulation and Discussion

In this paper, the analysis was conducted on the inhomogeneous waveguide structure, as shown in Fig. 4,
using the 3-D edge-based FEM technique, and the simulation code is completely in-house. For the in-house
code, it was run based on the Matlab R2022a version, and commercial software (Ansys HFSS (High-
Frequency Structure Simulator) 2021 R1) was also used for accuracy result comparison. In addition, the
number of threads for applying parallel processing is 8, and the simulation setting is specified in Tab. 1.

Fig. 4a is a waveguide structure used in the analysis, with a size of 20.0 mm × 10.0 mm × 24.0 mm and
an internal dielectric size of 8.88 mm × 3.99 mm × 8.0 mm with dielectric constant 6. Fig. 4b is also a
waveguide with a size of 10.0 mm × 5.0 mm × 24.0 mm, and an internal dielectric size of 2.0 mm ×
3.0 mm × 8.0 mm with dielectric constant 3. In addition, the plane-wave impinges on the front face (XY
plane) and propagates to the back face (XY plane) is analyzed, and the entire E-field of the waveguide is

Figure 2: Parallel processing with cold start without bias stage (thread #: 4)

Figure 3: Parallel processing with bias stage (thread #: 4)
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obtained at the frequency range from 8 to 13 GHz and from 18 to 23 GHz, respectively. Then, the S11 can be
obtained by postprocessing via Eq. (5). In addition, RMSE (Root Mean Square Error) and RMSPE (Root
Mean Square Percentage Error) for accuracy comparison are shown in Eq. (6). Also, simulation
environments are listed in Tab. 2.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
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s
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4.1 Simulation Settings

The test setting is as follows; The number of samples used in the simulation is 1,000, 5,000, and 10,000,
the bias is 10 and 25, and iterations for the early stage are 40, and iterations for the normal stage are 20, 15,
and 10. The number of samples affects the frequency interval, and the more samples, the shorter the analysis
interval. ‘Bias’ refers to the interval of the front part that is calculated in advance to alleviate the problem that
the early stage solution fluctuates; for example, in the case of bias 10, the actual simulation starts as early as
the interval of 10 samples. In addition, the ‘early stage iterations’means the number of iterations for iterative
solver convergence during the early stage, and the higher the number of iterations, the higher the accuracy.
The ‘normal stage iterations’ refers to the number of iterations for iterative solver convergence in the actual
section after the early stage. Early stage iterations are chosen higher (that is, 40) than the normal stage to
alleviate the convergence issues in cold-start situation. Since the normal stage corresponds to most of the
simulation, the setting of the normal stage directly affects the analysis speed. The smaller the value of
iterations, the faster the simulation speed but the lower the accuracy. The normal stage does not require a
large iteration for a convergence compared to the early stage, so pre-determined values 10, 15, and

Table 2: Simulation environments

Component Specification

Processor 11th Gen Intel(R) Core(TM) i9-11900 K @ 3.50 GHz 3.50 GHz

RAM 128 GB

Operating system Windows 10 Pro 64bits

Graphics card NVIDIA GeForce RTX 3080 Ti

Figure 4: Waveguide structure description (b ¼ 10mm)
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20 were adopted. An example of proposed solver implementation under Matlab is E = gmres(K, b, [], [],
iteration, P, I, E).

The analysis was conducted by changing the number of edges that directly affect accuracy when
analyzing FEM. The purpose of this simulation test is to find the most efficient parameter setting, and the
simulation setting for the above conditions is listed in the following Tabs. 3 and 4.

4.2 F Simulation Results and Discussion

Figs. 5 and 7 are S11 parameters for structure 1. On the other hand, Figs. 6 and 8 are absolute errors
between in-house code results and HFSS results. As the number of sampling points and normal iterations
increases, the in-house results become similar to those of HFSS. In Tab. 4, it can be seen that in-house
code using GMRES is more advantageous than Matlab’s backslash in terms of simulation speed when it
is more than 5,000 samples and less than 15 normal iterations. For the accuracy, all of the in-house cases
show acceptable accuracy in terms of an engineering perspective.

Table 3: Simulation parameters for structure 1

Algorithms # of samples Solver Edges Bias
(Sample)

Early Stage
(Iteration)

Normal Stage
(Iteration)

GM11-1 1,000
5,000
10,000

GMRES 1,427 10 40 20

GM12-1 GMRES 1,427 10 40 15

GM13-1 GMRES 1,427 10 40 10

SR1-1 Matlab[\] 1,427 - - -

GM21-1 GMRES 5,112 25 40 20

GM22-1 GMRES 5,112 25 40 15

GM23-1 GMRES 5,112 25 40 10

SR2-1 Matlab[\] 5,112 - - -

Table 4: Simulation parameters for structure 2

Algorithms # of samples Solver Edges Bias
(Sample)

Early Stage
(Iteration)

Normal Stage
(Iteration)

GM11-2 1,000
5,000
10,000

GMRES 626 10 40 20

GM12-2 GMRES 626 10 40 15

GM13-2 GMRES 626 10 40 10

SR1-2 Matlab[\] 626 - - -

GM21-2 GMRES 4,312 25 40 20

GM22-2 GMRES 4,312 25 40 15

GM23-2 GMRES 4,312 25 40 10

SR2-2 Matlab[\] 4,312 - - -
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Similar to the previous case, Figs. 9 and 11 are S11 parameters for structure 2. On the other hand, Figs.
10 and 12 are absolute errors between in-house code results and HFSS results. Like the previous case, it can
be seen that as the number of samples, edges, and basic iterations increases, the in-house result becomes
similar to that of HFSS. Unlike the previous results, when analyzed using 626 edges, it can be seen that
in-house code using GMRES is more advantageous in simulation speed than Matlab’s backslash in all
cases. For 4,312 edges, in-house code using GMRES is more advantageous than Matlab’s backslash
when more than 5,000 samples and less than 15 normal iteration cases.

It can be observed that the more sampling intervals and the fewer edges, the stronger the proposed
scheme is. For the case of GM13-2, the simulation speed is about 2.7 times faster even though the same
RMSE as the Matlab’s backslash is shown. Also, all cases demonstrate good accuracy. RMSE, RMSPE
and elapsed time for structure 1/RMSE, RMSPE and elapsed time for structure 2 are shown in Tabs. 5
and 6, respectively.

(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 5: S11 parameter for structure 1 (edge #: 1,427)
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(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 6: Absolute error for structure 1 (edge #: 1,427)
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(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 7: S11 parameter for structure 1 (edge #: 5,112)
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(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 8: Absolute error for structure 1 (edge #: 5,112)
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(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 9: S11 parameter for structure 2 (edge #: 626)
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(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 10: Absolute error for structure 2 (edge #: 626)
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(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 11: S11 parameter for structure 2 (edge #: 4,312)
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(a) 1,000 samples (b) 5,000 samples

(c) 10,000 samples

Figure 12: Absolute error for structure 2 (edge #: 4,312)

Table 5: RMSE, RMSPE and elapsed time for structure 1

Algorithms # of samples

1,000 5,000 10,000

RMSE RMSPE time (s) RMSE RMSPE time (s) RMSE RMSPE time (s)

GM11-1 0.283 7.698 10.59 0.273 15.049 43.81 0.271 16.861 86.67

GM12-1 0.288 7.772 8.81 0.274 15.085 35.03 0.272 16.881 67.35

GM13-1 0.297 7.937 7.16 0.276 15.161 26.28 0.273 16.933 50.42

SR1-1 0.270 7.474 8.31 0.270 14.963 41.55 0.270 16.812 81.92

GM21-1 0.131 3.828 129.59 0.106 6.502 505.14 0.102 7.155 983.95

GM22-1 0.136 4.142 110.11 0.109 6.681 409.96 0.104 7.252 783.55

GM23-1 0.154 4.540 91.13 0.115 5.817 315.39 0.109 7.462 591.75

SR2-1 0.099 3.072 80.78 0.099 6.209 404.58 0.099 6.981 814.99
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5 Conclusion

In this paper, a new parallel iterative FEM solver for the S parameter is implemented for 3-D
inhomogeneous waveguide structures. Previous conventional iterative solvers are hard to be applied
because the frequency domain system matrix is complex-numbered and indefinite. The proposed scheme
allows applying a gmres solver with a good initial guess and a preconditioner over parallel processing
(spmd) to this type of FEM system. Simulations were conducted by changing the number of sampling
intervals, edge, and normal stage iteration. The less the difference between the consecutive solutions and/
or the less the edge can be used, the more the proposed scheme shows its strength. In the normal stage,
the accuracy increases as the higher the iterations are used, but the simulation time increases proportionally.

It is also noted that parallelization was performed only on the proposed scheme, so Matalb’s backslash is
not parallelized in the paper. Thus, parallelized backslash is likely to show better performance than the
current proposed scheme. In the future, the variation of the previous solution input to the iterative solver,
e.g., the average of the previous two solutions, can be further tested to demonstrate the proposed scheme.
Also, we can further try larger unknown cases to deal with realistic on-chip structures.
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