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Abstract: Sign language is mainly utilized in communication with people who
have hearing disabilities. Sign language is used to communicate with people hav-
ing developmental impairments who have some or no interaction skills. The inter-
action via Sign language becomes a fruitful means of communication for hearing
and speech impaired persons. A Hand gesture recognition system finds helpful for
deaf and dumb people by making use of human computer interface (HCI) and
convolutional neural networks (CNN) for identifying the static indications of
Indian Sign Language (ISL). This study introduces a shark smell optimization
with deep learning based automated sign language recognition (SSODL-ASLR)
model for hearing and speaking impaired people. The presented SSODL-ASLR
technique majorly concentrates on the recognition and classification of sign lan-
guage provided by deaf and dumb people. The presented SSODL-ASLR model
encompasses a two stage process namely sign language detection and sign lan-
guage classification. In the first stage, the Mask Region based Convolution Neural
Network (Mask RCNN) model is exploited for sign language recognition. Sec-
ondly, SSO algorithm with soft margin support vector machine (SM-SVM) model
can be utilized for sign language classification. To assure the enhanced classifica-
tion performance of the SSODL-ASLR model, a brief set of simulations was car-
ried out. The extensive results portrayed the supremacy of the SSODL-ASLR
model over other techniques.

Keywords: Sign language recognition; deep learning; shark smell optimization;
mask rcnn model; disabled people

1 Introduction

Recently, the population of deaf-dumb victims has raised due to birth defects and other problems. A deaf
and mute individual may not able to interact with ordinary people by relying certain kinds of transmission
mechanisms [1]. The gesture displays certain physical actions of the hand which conveys a part of
information. Gesture recognition was the analytical clarification of movement of a person via information
processing mechanisms. Verbal communication offers the most effectual conversation platform for mute
person for speaking with ordinary people [2]. Only some individual realizes the meaning of sign. Usually,
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deaf person was deprived of usual contact with other typical individuals in the society. Human computer
interface (HCI) was an exciting system amongst devices and individuals. This was an exciting research
area which aims at the usage and formation of computer technology and particularly, combined
communications amongst devices and humans. HCI structure was amazingly protracted and enhanced by
the technical transition [3]. On the basis of fruitful usability, evolving technologies apply modern user
lines like Speech recognition, Non-Touch, and Gesture. It is a complex and expensive technology to
reach [4,5]. This newly applied technology was after combined as implying particular applications on the
basis of cost-effectiveness and demand. For addressing the complexities, numerous authors were
attempting for developing such interferences with regard to robustness, performance, and accessibility [6].
The optimum model could have several standard features like scalability, simplicity, flexibility, and
precision. Nowadays, the human gesture turns to be an extensive HCI application, and the usage of
human gestures, that fulfils all such standards, was rising quickly [7,8].

Sign language (SL) always considered the main way of verbal interaction amongst individuals who were
both dumb and deaf [9]. Whereas interacting such people is very helpless and therefore were only depends on
hand gestures. Visual signs and gestures were an energetic part of automated sign language (ASL) which
offers deaf individuals reliable and easy communication [10]. It has well-defined code gestures in which
every sign carries a specific meaning relating to communication. There were several methods to seek
gestural data. But limiting to only major kinds there were 2 significant familiar kinds they are Vision-
related and Sensor-related techniques [11]. The sensor-related technique gathers data from the glove
produced by hand movement. In the vision-related technique, the image was considered by using cameras
[12]. This technique indulges the image qualities like texture part and coloring which was necessary to
the specific hand gesture.

In [13], a comparative analysis of different gesture recognition methods including convolutional neural
network (CNN) and machine learning (ML) procedures has been deliberated and verified for realistic
performance. A hierarchical neural network, pre-trained VGG16 with fine-tuning, and VGG16 with
transfer learning were analyzed according to a trained parameter count. The model was trained on a self-
developed datasets comprising images of Indian Sign Language (ISL) representation of each twenty-six
English alphabet. In [14], the authors shows that a later fusion technique to multi-modality in sign
language detection increases the entire capacity of algorithm when compared to singular approach of
Leap Motion data and image classification. Using a larger synchronous dataset of eighteen BSL gestures
gathered from different subjects, two deep neural networks (DNNs) were compared and benchmarked for
deriving an optimal topology. The Vision model was carried out by a CNN and optimized artificial neural
network (ANN), and the Leap Motion mechanism is carried out using an evolutionary search of ANNmodel.

Kumar et al. [15] developed the usage of graph matching (GM) to allow three dimensional motion
capture for Indian sign language detection. The sign recognition and classification problems to interpret
three dimensional motion signs are taken into account an adoptive GM (AGM) problems. But, the
existing model to solve an AGM issue have two most important disadvantages. Firstly, spatial matching
is implemented on a number of frames with a definite set of nodes. Then, temporal matching splits the
whole three dimensional datasets into a definite set of pyramids. In [16], the authors conducted a
complete systematic mapping of translation-assisting techniques to the provided sign language. The
mapping has regarded the primary guideline for systematic review that is, pertains software engineering
because it is necessary to take responsible for multidisciplinary fields of education, accessibility, human
computer communication, and natural language processing. A continuous improvement of software tools
named SYstematic Mapping and Parallel Loading Engine (SYMPLE) enabled the construction and
querying of a base set of candidate studies. Parvez et al. [17] related the gap among conventional
teaching and the technology-based methods that are employed to teach arithmetical concepts.

1654 IASC, 2023, vol.36, no.2



The participant was separated into developed mobile applications and conventional approaches (board and
flash cards). The variance in the performance these groups is assessed by accompanying quizzes.

This study introduces a shark smell optimization with deep learning based automated sign language
recognition (SSODL-ASLR) model for hearing and speaking impaired people. The presented SSODL-
ASLR technique majorly concentrates on the recognition and classification of sign language provided by
deaf and dumb people. The presented SSODL-ASLR model encompasses a two stage process namely
sign language detection and sign language classification. At the first stage, the Mask Region based
Convolution Neural Netwokr (Mask RCNN) model is exploited for sign language recognition. Secondly,
SSO algorithm with soft margin support vector machine (SM-SVM) model was utilized for sign language
classification. To assure the enhanced classification performance of the SSODL-ASLR model, a brief set
of simulations was carried out.

2 Design of SSODL-ASLR Model

In this study, a new SSODL-ASLR technique was introduced for the recognition of SL for hearing and
speaking impaired people. The presented SSODL-ASLR technique majorly concentrates on the recognition
and classification of sign language provided by deaf and dumb people. The presented SSODL-ASLR model
encompasses a two stage process namely sign language detection and sign language classification.

2.1 Sign Language Detection: Mask RCNN Model

In the first stage, the Mask RCNN model is exploited for sign language recognition. Mask RCNN was a
DNNmainly focused on solving instance segmentation issues in computer vision or ML [18]. In other words,
it can separate different objects in an image or a video. The feature pyramid network (FPN) to object
detection, a 1st block structure of Mask RCNN is accountable for extracting features. The regional
proposal network (RPN), the 2nd part of Mask RCNN, and shares whole image convolutional features
with detection network thus approximately assisting cost-free RPN. Once the extended Fast RCNN
processes the Mask RCNN with added a branch to forecast an object mask from equivalent with the
suggested branch to bound box recognition. The RPN is carried out from Mask RCNN instead of
selective search and thus RPN shares the convolution features of entire map with detection network. It
forecasts fused boundary location and objects score at each place, and it is fully convolution network
(FCN). Based on the Mask RCNN, it presented an algorithm to improve the speed using side fusion
feature pyramid network (SF-FPN) with Resnet-86 and enlighten the performance. In such cases, the
dataset, FPN architecture, and RPN variable setting were improved. The improved method developed in
such cases is appreciating the segmentation, recognition, and detection of target at the same time. Fig. 1
illustrates the infrastructure of Mask RCNN method.

Figure 1: Structure of mask RCNN
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During the multitasking, loss function is carried out by trainable Mask R CNN with three segments
namely classification locate regression loss of bounding box, loss of mask, and loss of bounding box as
follows.

L ¼ Lcls þ Lbox þ Lmask (1)

Lcls ¼ � log pi�pi þ 1� p�i
� �

1� pið Þ� �
(2)

Lbox ¼ r ti � t�i
� �

(3)

Lmask ¼ Sigmoid Clskð Þ (4)

From the expression, pi indicates the notable probability for ROI in classifier loss Lcls as well as p�i
employed to ground truth as one that ROI was taken into account as zero or foreground. ti represents the
vector of accurate control to identify bounding boxes and t�i characterize the ground truth in location
regression loss whereby r denotes the loss function to estimate the regression mistake. Each ROI detects
the outcomes of K�m2 dimension via mask branch and encoded K mask alongside resolution of m�m.
The loss of mask Lmask is regarded by Average Binary Cross-entropy Loss to carry out sigmoid function
on each pixel from ROI. In class k Clskð Þ, mask loss was illustrated in above equation.

2.2 Sign Language Classification: SM-SVM Model

In this study, the SM-SVMmodel is utilized for sign language classification. SM-SVM aim is to expand
the Maximal Separating Margin SVM (hard margin SVM), such that the hyperplane enables a noisy dataset
to exist. In the event, a variable ni, called Slack factor was presented to accountable for the number of
violations of classifier [19].

Wxi þ b � 1� ni; 8yi ¼ þ1; (5)

Wxi þ b � �1þ ni; 8yi ¼ �1;

That is,

yi Wxi þ bð Þ � 1� ni; i ¼ 1; 2; . . . ; n: (6)

The Primal Problem is defined by

min
W ;b

1

2
kWk2 þ C

Xn
i¼1

ni (7)

s:t: yi Wxi þ bð Þ � 1� ni;

ni � 0; i ¼ 1; 2; . . . ; n:

The Dual Problem Function of soft margin was equated by

max
a

W að Þ ¼
Xn
i¼1

ai � 1

2

Xn
i¼1

Xn
j¼1

aiajyiyjx
T
i xj

s:t:
Xn
i¼1

aiyi ¼ 0 (8)
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0 � ai � C; i ¼ 1; 2; . . . ; n:

KKT complementary conditions in inseparable instance are represented as follows

ai yi Wxi þ bð Þ � 1þ ni½ � ¼ 0; i ¼ 1; 2; . . . ; n; (9)

bini ¼ 0; i ¼ 1; 2; . . . ; n; (10)

From the expression, bi denotes the Lagrange Multipliers respective to ni that was presented for
enforcing the non-negativity of ni: Where derivative of Lagrange function for primitive problem
regarding ni is zero, the computation of the derivative produces. Fig. 2 showcases the overview of SVM
hyperplane.

ai þ bi ¼ C: (11)

At the same time considered (10) and (11), we obtain;

ni ¼ 0 if ai,C: (12)

Figure 2: SVM hyperplane
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As a result, the optimum weight W � is formulated by:

W � ¼
Xn
i¼1

a�i yixi: (13)

The optimum bias b� is attained using samples xi; yið Þ in the trainset set where 0, a�i ,C and ni ¼ 0, as
follows

b� ¼ 1� ni �
X
sv

a�i yixixs; 8ys ¼ þ1: (14)

2.3 Parameter Tuning: SSO Algorithm

To optimally modify the SM-SVM parameter values, the SSO algorithm has been exploited in this study.
As the optimum hunter by their nature, the sharks are foraging nature that rotate and drives frontward which
is very effectual from determining prey [20]. An optimized approach for simulating shark foraging is most
effectual optimized approach. To certain places, the shark transfers at speed to particles that take intensive
scent, so initial velocity vector is formulated as:

V 1
1 ; V

1
2 ; . . . ; V 1

NP

� �

The sharks take inertia once it swims, so velocity equation of every dimensional is provided under,

Vk
i;j ¼ gk � R1 � @ OFð Þ

@xj

����
xki;j

þak � R2 � vk�1
i;j (15)

In which j ¼ 1; 2; . . . ; NDð Þ; i ¼ 1; 2; . . . ; NPð Þ, and k ¼ 1; 2; . . . ; kmaxð Þ; ND implies the
count of dimensional; NP signifies the count of velocity vectors (size of shark populations); kmax denotes
the count of iterations; OF signifies the objective function; gk 2 0; 1½ � demonstrates the gradient co-
efficient; ak implies the weighted co-efficient, therefore it can be random value amongst 0 and 1, as well
R1 & R2 represented the 2 arbitrary values from range of zero’s and one’s. The speed of sharks is needed
for preventing boundary and particular speed limitation as given below:

vki;j

���
��� ¼ min vki;j

���
���; bk � vk�1

i;j

���
���

h i

whereas bk denotes speed limit factors of kth iteration. The sharks take a new place Ykþ1
i because of moving

forward, and Ykþ1
i is determined as the previous place and speed which is provided as:

Ykþ1
i ¼ X k

i þ Vk
i � Dtk (16)

In which Dtk denotes the time interval of kth iteration. Also the moving forward, sharks commonly rotate
along its path for seeking strong scent particles and improve its direction of motion that is actual direction of
moving.

The rotating shark moves from the closed range which could not fundamentally a circle. During the view
of optimized, the shark executes local searching at all the phases to determine optimum candidate solutions.
The searching equation to this place was provided under as:

Zkþ1;m
i ¼ Ykþ1

i þ R3 � Ykþ1
i (17)

whereas m ¼ 1; 2; . . . ; Mð Þ signifies the amount of points at all the phases of place searches; R3

denotes the random value from the range of −1 and 1. If the shark determines a strong odor point from
the rotation, it moved towards the point and endures the search direction. The position search procedure
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was provided from the subsequent formula,

X kþ1
i ¼ arg max OF Ykþ1

i

� �
; OF Zkþ1;1

i

� �
; . . . ; OF Zkþ1;M

i

� �n o
(18)

As aforementioned, Ykþ1
i has been obtained in the linear motion and Zkþ1;M

i has reached in the rotational
motion. The shark is choosing the candidate solution with higher computation index value as shark following
place X kþ1

i . For boosting the convergence rate of SSO technique, the OBL model was utilized and so
improves the quality of primary population solutions. It discovers either opposite or original direction
solutions. The opposite number x is represented as a real value from the range of x 2 lb; ub½ �. The
opposite number of x is determined as ~x:

~x ¼ lbþ ub� x (19)

The aforementioned formula endures normalized if it obtains executed to search region with many
dimensional. For normalizing it, the search agent and the respective opposite solution is demonstrated as:

x ¼ x1; x2; x3; . . . xD½ � (20)

~x ¼ ~x1; ~x2; ~x3; . . . ; ~xD½ � (21)

The value of every component from ~x is represented as:

~xj ¼ lbj þ ubj � xj where j ¼ 1; 2; 3; . . . ; D (22)

At this point, the fitness function can be f :ð Þ. When the fitness value f ~xð Þ of opposite solutions surpass
f xð Þ the original solution x, then x ¼ ~x; else x ¼ x.

3 Simulation Results and Discussion

The proposed model is simulated using Python 3.6.5 tool. The proposed model is experimented on PC
i5-8600k, GeForce 1050Ti 4GB, 16GB RAM, 250GB SSD, and 1TB HDD. In this section, the sign language
recognition performance of the SSODL-ASLR model is tested using a dataset comprising 3600 samples with
36 classes as illustrated in Tab. 1. A few sample American Sign Language Code images are displayed in
Fig. 3.

Table 1: Dataset details

Label Description No. of samples

1 A 100

2 B 100

3 C 100

4 D 100

5 E 100

6 F 100

7 G 100

8 H 100

9 I 100

10 J 100
(Continued)
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Fig. 4 implies the confusion matrix formed by the SSODL-ASLR model on the applied 70% of training
(TR) data. The figure indicated that the SSODL-ASLR model has proficiently recognized all the 36 class
labels on 70% of TR data.

The classifier output of the SSODL-ASLR model is derived on 70% of TR data in Tab. 2. The
experimental outcomes demonstrated the SSODL-ASLR method has resulted in effectual outcomes over
other models. For instance, on class label 1, the SSODL-ASLR model has provided ACCY of 99.29%.
Moreover, on class label 10, the SSODL-ASLR model has offered ACCY of 99.09%. Eventually, on class
label 20, the SSODL-ASLR algorithm has rendered ACCY of 99.01%. Meanwhile, on class label 36, the
SSODL-ASLR algorithm has presented ACCY of 99.13%.

Table 1 (continued)

Label Description No. of samples

11 K 100

12 L 100

13 M 100

14 N 100

15 O 100

16 P 100

17 Q 100

18 R 100

19 S 100

20 T 100

21 U 100

22 V 100

23 W 100

24 X 100

25 Y 100

26 Z 100

27 0 100

28 1 100

29 2 100

30 3 100

31 4 100

32 5 100

33 6 100

34 7 100

35 8 100

36 9 100

Total number of samples 3600
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Figure 3: Sample American sign language code images

Figure 4: Confusion matrix of SSODL-ASLR approach under 70% of TR data
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Table 2: Result analysis of SSODL-ASLR approach with distinct class labels under 70% of TR data

Training set (70%)

Labels Accuracy Sensitivity Specificity F1-score MCC

1 99.29 88.89 99.55 86.15 85.83

2 98.81 84.62 99.26 81.48 80.93

3 99.25 89.04 99.55 87.25 86.88

4 99.17 81.97 99.59 82.64 82.22

5 99.21 88.16 99.55 87.01 86.61

6 99.25 84.38 99.63 85.04 84.66

7 99.25 88.73 99.55 86.90 86.53

8 98.45 67.12 99.39 71.53 70.90

9 98.81 82.61 99.27 79.17 78.63

10 99.09 81.94 99.59 83.69 83.24

11 98.97 83.56 99.43 82.43 81.91

12 99.29 88.16 99.63 88.16 87.79

13 98.85 80.56 99.39 80.00 79.41

14 98.81 80.82 99.35 79.73 79.12

15 99.40 79.31 99.88 85.98 86.00

16 99.05 80.77 99.63 84.00 83.58

17 99.25 86.76 99.59 86.13 85.75

18 99.01 76.47 99.63 80.62 80.24

19 99.17 86.11 99.55 85.52 85.09

20 99.01 84.51 99.43 82.76 82.27

21 99.29 88.41 99.59 87.14 86.78

22 98.85 74.63 99.51 77.52 76.99

23 99.21 88.73 99.51 86.30 85.93

24 99.21 80.30 99.71 84.13 83.82

25 98.77 79.41 99.31 77.70 77.08

26 98.69 78.12 99.23 75.19 74.57

27 98.93 88.46 99.26 83.64 83.22

28 98.85 80.00 99.39 79.43 78.84

29 98.89 69.74 99.80 79.10 79.30

30 99.29 86.89 99.59 85.48 85.13

31 98.93 82.09 99.39 80.29 79.76

32 98.89 78.26 99.47 79.41 78.85

33 99.01 84.29 99.43 82.52 82.03

34 98.93 82.35 99.39 80.58 80.04
(Continued)
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Fig. 5 exhibits average classifier outcomes of the SSODL-ASLR model on 70% of TR data. The figure
reported that the SSODL-ASLR model has reached effectual classification outcomes with average accuy of
99.05%, sensy of 82.82%, specy of 99.51%, F1score of 82.81%, and Mathew Correlation Coefficient (MCC)
of 83.28%.

Fig. 6 portrays the confusion matrix formed by the SSODL-ASLR method on the applied 30% of testing
(TS) data. The figure signifies the SSODL-ASLR technique has proficiently recognized all the 36 class labels
on 30% of TS data.

The classifier output of the SSODL-ASLR approach is derived on 30% of TS data in Tab. 3. The
experimental outcomes established the SSODL-ASLR technique has resulted in effectual outcomes over
other models. For example, on class label 1, the SSODL-ASLR approach has offered ACCY of 98.24%.
Further, on class label 10, the SSODL-ASLR approach has presented ACCY of 98.70%. Eventually, on
class label 20, the SSODL-ASLR model has granted ACCY of 99.17%. At the same time, on class label
36, the SSODL-ASLR model has offered ACCY of 99.35%.

Table 2 (continued)

Training set (70%)

Labels Accuracy Sensitivity Specificity F1-score MCC

35 99.52 92.11 99.75 92.11 91.86

36 99.13 83.10 99.59 84.29 83.85

Average 99.05 82.82 99.51 82.81 82.38

Figure 5: Average analysis of SSODL-ASLR approach under 70% of TR data
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Figure 6: Confusion matrix of SSODL-ASLR approach under 30% of TS data

Table 3: Result analysis of SSODL-ASLR approach with distinct class labels under 30% of TS data

Testing set (30%)

Labels Accuracy Sensitivity Specificity F1-score MCC

1 98.24 72.97 99.14 73.97 73.07

2 98.61 77.27 99.05 69.39 69.06

3 99.26 81.48 99.72 84.62 84.30

4 98.98 82.05 99.62 85.33 84.88

5 98.98 79.17 99.43 77.55 77.05

6 98.43 72.22 99.33 75.36 74.63

7 98.61 79.31 99.14 75.41 74.79

8 99.35 85.19 99.72 86.79 86.48
(Continued)
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Fig. 7 displays an average classifier outcome of the SSODL-ASLRmodel on 30% of TS data. The figure
reported that the SSODL-ASLR model has reached effectual classification outcomes with average accuy of
98.97%, sensy of 81.48%, specy of 99.47%, F1score of 81.37%, and MCC of 80.91%.

Table 3 (continued)

Testing set (30%)

Labels Accuracy Sensitivity Specificity F1-score MCC

9 98.89 83.87 99.33 81.25 80.72

10 98.70 78.57 99.24 75.86 75.24

11 99.07 81.48 99.53 81.48 81.01

12 98.98 75.00 99.53 76.60 76.09

13 98.61 78.57 99.14 74.58 73.97

14 98.61 74.07 99.24 72.73 72.03

15 98.70 78.57 99.52 82.50 81.94

16 99.72 95.45 99.81 93.33 93.22

17 99.35 90.62 99.62 89.23 88.91

18 99.44 93.75 99.62 90.91 90.67

19 99.07 78.57 99.62 81.48 81.07

20 99.17 79.31 99.71 83.64 83.34

21 98.80 77.42 99.43 78.69 78.08

22 98.98 87.88 99.33 84.06 83.62

23 99.44 82.76 99.90 88.89 88.86

24 98.61 79.41 99.24 78.26 77.55

25 99.07 81.25 99.62 83.87 83.44

26 99.07 86.11 99.52 86.11 85.63

27 99.07 81.82 99.43 78.26 77.87

28 99.26 86.67 99.62 86.67 86.29

29 98.89 70.83 99.53 73.91 73.42

30 98.70 79.49 99.42 81.58 80.94

31 99.07 81.82 99.62 84.38 83.94

32 98.98 80.65 99.52 81.97 81.45

33 99.07 90.00 99.33 84.38 84.07

34 98.70 84.38 99.14 79.41 78.89

35 99.07 79.17 99.53 79.17 78.69

36 99.35 86.21 99.71 87.72 87.40

Average 98.97 81.48 99.47 81.37 80.91
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The training accuracy (TA) and validation accuracy (VA) acquired by the SSODL-ASLR method on test
dataset is established in Fig. 8. The experimental outcome inferred the SSODL-ASLR technique has
achieved maximal values of TA and VA. Predominantly the VA is greater than TA.

Figure 7: Average analysis of SSODL-ASLR approach under 30% of TS data

Figure 8: TA and VA analysis of SSODL-ASLR approach
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The training loss (TL) and validation loss (VL) attained by the SSODL-ASLR approach on test dataset
are established in Fig. 9. The experimental outcome implied the SSODL-ASLR algorithm has exhibited least
values of TL and VL. In specific, the VL is lesser than TL.

Tab. 4 exemplifies a comparative assessment of the SSODL-ASLR model with recent models [21].
Fig. 10 reports a brief comparison study of the SSODL-ASLR model with latest methods interms of
ACCUY . The results pointed out that the SSODL-ASLR model has offered higher ACCUY of 98.97%
whereas the SVM, decision tree (DT), k-nearest neighbour (KNN), DNN, LeNet, and multilayer
perceptron (MLP) models have exhibited ineffectual performance with lower ACCUY values.

The results highlight the SSODL-ASLR model has granted higher Sensy and Specy of 81.48% and
99.47% whereas the SVM, DT, KNN, DNN, LeNet, and MLP models have displayed ineffectual
performance with lower Sensy and Specy values. These results and discussion reported that the SSODL-
ASLR model has shown effectual performance over other ML and DL models.

Figure 9: TL and VL analysis of SSODL-ASLR approach

Table 4: Comparative analysis of SSODL-ASLR approach with recent methodologies

Methods Accuracy Sensitivity Specificity

SSODL-ASLR 98.97 81.48 99.47

SVM 93.28 79.45 96.07

Decision tree 89.92 76.59 93.15

KNN 88.07 75.03 96.30

DNN 91.52 77.72 93.23

LeNet 92.14 74.64 92.90

MLP 93.72 77.63 97.90
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4 Conclusion

In this study, a new SSODL-ASLR technique was introduced for the recognition of sign language for
hearing and speaking impaired people. The presented SSODL-ASLR technique majorly concentrates on
the recognition and classification of sign language provided by deaf and dumb people. The presented
SSODL-ASLR model encompasses a two stage process namely sign language detection and sign
language classification. Primarily, the Mask RCNN model is exploited for sign language recognition. In
the next stage, the SSO algorithm with SM-SVM model is utilized for sign language classification. To
assure the enhanced classification performance of the SSODL-ASLR model, a brief set of simulations
was carried out. The extensive results portrayed the supremacy of the SSODL-ASLR model over other
techniques.
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