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Abstract: Prediction of the nutrient deficiency range and control of it through
application of an appropriate amount of fertiliser at all growth stages is critical
to achieving a qualitative and quantitative yield. Distributing fertiliser in optimum
amounts will protect the environment’s condition and human health risks. Early
identification also prevents the disease’s occurrence in groundnut crops. A convo-
lutional neural network is a computer vision algorithm that can be replaced in the
place of human experts and laboratory methods to predict groundnut crop nitro-
gen nutrient deficiency through image features. Since chlorophyll and nitrogen are
proportionate to one another, the Smart Nutrient Deficiency Prediction System
(SNDP) is proposed to detect and categorise the chlorophyll concentration range
via which nitrogen concentration can be known. The model’s first part is to per-
form preprocessing using Groundnut Leaf Image Preprocessing (GLIP). Then, in
the second part, feature extraction using a convolution process with Non-negative
ReLU (CNNR) is done, and then, in the third part, the extracted features are flat-
tened and given to the dense layer (DL) layer. Next, the Maximum Margin clas-
sifier (MMC) is deployed and takes the input from DL for the classification
process to find CCR. The dataset used in this work has no visible symptoms of
a deficiency with three categories: low level (LL), beginning stage of low level
(BSLL), and appropriate level (AL). This model could help to predict nitrogen
deficiency before perceivable symptoms. The performance of the implemented
model is analysed and compared with ImageNet pre-trained models. The result
shows that the CNNR-MMC model obtained the highest training and validation
accuracy of 99% and 95%, respectively, compared to existing pre-trained models.
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1 Introduction

Groundnut is an important cash crop cultivated all over the world. The top three groundnut producing
countries are China, India, and Sudan. The presence of chlorophyll is a crucial sign for determining the level
of nitrogen in a crop, because the two variables are directly proportional. Timely monitoring of groundnut
chlorophyll concentration (CC) can facilitate farmers’ knowing the field condition and providing an
appropriate amount of fertilizer. Human observation will not be sufficient to identify the different
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categories of nutrient deficiency of crops before visible or tangible symptoms. Providing fertiliser after
noticing severe symptoms may not work, which leads to an irrecoverable stage. Traditionally, the CC of
any plant had been determined using a laboratory method, which was time-consuming [1]. In the case of
finding more than one plant or leaf, it is costly, labor-intensive, and can only be measured in a destructive
way. Hence, it is difficult to use in a real-time field during all growth periods of a crop. In recent decades,
several portable devices have been developed and introduced by several researchers, such as the Soil
Plant Analysis development (SPAD) Meter, which measures the relative chlorophyll content of plant
leaves; atLEAF CHL PLUS, which measures the chlorophyll, Leaf Absorptance Meter measures white
light reflectance and absorption on plant leaves. An oxygen metre measures the amount of oxygen
present in plant soil samples. Quantum Sensor Meter-quantify the light intensity and A pyranometer
measures a portion of the solar spectrum to measure the plant’s health or growth factors. These metres
can measure the plant’s crop factors in a non-destructive way. However, it requires a high cost; therefore,
smallholder farmers could not adopt these devices. In India, 82% of farmers are marginal or sub-marginal
farmers. Apart from that, each portable metre has some demerits like coverage of a small area, not
measurable with all sizes of leaves, and cannot be used in certain environmental conditions.

Satellite remote sensing is used to monitor large-scale crop fields and determine crop growth factors [2].
Nevertheless, weather conditions impact satellite-based remote sensing. Furthermore, it shows the resolution,
time limitation, difficulty of serving in small fields, and cost of building. As an alternative option to remote
sensing, Unmanned Aerial Vehicles (UAV) could be used to assess crop growth. One of the vital key
parameters in UAV monitoring is the light source, which helps to estimate the growth factors of the crop
[3]. Digital image analysis could be performed from the collected crop field images to determine the
health condition of the crop. For image collection, the most commonly used cameras by researchers are
hyperspectral, multispectral, and Red-Green-Blue (RGB). A hyperspectral camera with a high spectral
band could furnish a rich source of information from crop fields [4]. But all the furnished information
might not be necessary to identify the crop's health status, and determining the necessary information
itself is a complex task. Further processing of the entire obtained information requires high resources and
may lead to computational issues. As an alternative, a multispectral camera could be used for crop
growth monitoring to extract features with a low number of spectral bands. But there is a high possibility
of omitting the necessary information. Both cameras' main purpose is to extract the necessary features
from the collected images, but they are too expensive for all types of farmers to use. While comparing
both types of cameras with RGB cameras, the RGB camera is cheap and could be adopted by all types of
farmers [5]. Rich source features can also be extracted from RGB images using advanced techniques like
image processing, feature extraction, and convolutional neural networks. Therefore, it was feasible to use
RGB images of groundnut crop leaves to determine the CC range. Smart Nutrient Deficiency Prediction
System (SNDP) is proposed to detect and categorise the chlorophyll concentration range with the help of
the RGB images and advanced techniques. So far, much research has been done to identify and classify
the deficiency of crops with the help of advanced techniques. In most of the work, the data collection
process is done using an RGB camera and a portable handheld device. A detailed explanation of those
works is discussed in the literature survey section.

2 Literature Survey

Hydroponic experiments done by Xu et al., in rice crop [6], the total number of rice leaf images collected
was 1818. From that, ten multi-nutrient deficiencies of the rice crop, such as nitrogen (N), potassium (P),
phosphorus (K), calcium (Ca), magnesium (Mg), sulphur (S), manganese (Mn), iron (Fe), zinc (Zn), and
silicon (Si), were diagnosed. Then the data was evaluated with four different deep convolution neural
network (DCNN) state of the art techniques, including ResNet-50, Inception-v3, DenseNet-121, and
NasNet-large, with a fine-tuning process. Among them, densenet121 performed best, with a validation
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accuracy of 98.62%. But they have not used outdoor images and the collected images are also not that
extensive. Six categories of tomato leaf datasets were taken from the plant village website to assess the
crop's health with four deep learning-based algorithms, including Resnet-50, VGG-19, Xeception, and
Inception-v3. Among them, five are diseased classes and one is a healthy class. The factors considered
for evaluating model performance by Prakruti et al., are inference time, memory utility, accuracy, and
model size. In terms of accuracy, ResNet-50 obtained the highest training accuracy of 99.7%. But the
same model was tested with a different dataset, which was collected under uncontrolled conditions and
achieved an accuracy of 65.12%. This implies the importance of the data collection environment. In
terms of memory utility, model size, and inference time, their results showed that VGG-19 was high as it
extracted the maximum number of features [7]. Twelve different colour features were extracted from
immature tea leaf images and they had been correlated with the chlorophyll level of those leaves, which
had been measured using a SPAD meter. The extracted colour feature given as input to three different
models is K Nearest Neighbour (KNN), MLR (Multi Logistic Regression), and 1-D CNN. The 1-D CNN
model achieved the highest R-squared value of 81% and had a lower error rate compared to other
machine learning models. The author has performed a comparative analysis with some existing leaf
chlorophyll prediction models [8]. From that analysis, it can be observed that the compared models'
performances are high in terms of accuracy, except for Yadav et al., model [9]. The ResNet-50 deep
learning algorithm was used to detect red grapevine's potassium deficiency and achieved a test accuracy
of 80%. The used dataset contains six varieties of 50 red grapevine leaf images. The performance of the
model was compared with the Support Vector Machine (SVM) algorithm for which the leaf features were
extracted with the Histogram of Oriented Gradients (HOG) descriptor and the obtained accuracy was
66.67% [10]. The authors have used limited leaf images. As a suggestion, increasing the number of
images through the image preprocessing technique could provide even better performance with a model
like ResNet-50.

A combination of old and young blackgram plants' datasets was used to find out the six different types of
nutrient deficiency, such as Ca, Fe, P, K, Mg, N, and complete nutrients. The pre-trained ResNet-50 model
was applied to the dataset to extract the features, and those features were given to three different machine
learning models: Multi-Layer Perceptron (MLP), Logistic Regression (LR), and SVM. Among them,
MLP model performance was superior, with an accuracy of 88.33% [11]. Eleven different vegetation
indexes (VIS) were extracted from the rice images, which had been collected using a UAV during all
growth periods. Then the nitrogen nutrient index (NNI) was calculated with the help of critical N
concentration and above-ground biomass from rice fields. Zhengchao Qiu et al. discovered the strongest
correlation between NNI and UAV-VIS during a specific growth period. Thus, the NNI of rice plants is
predicted in various growth periods using VIs with the help of distinct machine learning algorithms
including artificial neural network (ANN), partial least squares (PLSR), random forest (RF), KNN, SVM,
and adaptive boosting (AB). Among them, RF obtained optimal coefficient of determination (R2) and
Root Mean Square Error (RMSE) values ranging from 0.88–0.97 and 0.03–0.07, respectively. They also
predicted the high correlation between NNI and yield in certain growth stages. Further, a stable
correlation was found between soil available nitrogen and NNI [12].

A model was developed to estimate the chlorophyll measurement of the soya bean crop using machine
learning and image processing techniques. The experimental analysis was performed with various vegetation
colour indices and found that the Dark Green Colour Index (DGCI) had a high correlation with the
chlorophyll handheld metre SPAD. The correlation range was further improved by the colour calibration
method. Various colour scheme inputs are tested with simpler statistical models which accept a single
independent variable and other advanced models which accept multi-independent variables. They found
that the SVM model produced the best output with different colour schemes such as RGB, DCGI, and
random pixel count (RPC) [13]. An approach with twenty-three layered Convolutional Neural Network
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(CNN) was introduced to measure the sorghum plant shoot stress level due to lack of nitrogen and achieved
an accuracy of 0.84. Remove the unwanted portion of sorghum plant shoot images’ background has been
subtracted with the use of image patching technique during preprocessing through GNU Image
Manipulation Program software (GIMP). The twenty-three layered architecture has 8 to 128 2d
convolution (3*3 kernel with stride 1), subsequently, with the same size of batch normalization, Rectified
Linear Unit (ReLU) activation, and max pooling (2*2) followed by a Softmax activation function in the
output layer. In Scale-invariant feature transform (SIFT) and Histogram of orientated gradients (HOG),
the average time of the feature extraction process for input images with and without background is
reduced from 4.0866 to 1.3788 s and 1.4485 to 1.0758 s, respectively [14].

Chlorophyll sufficiency levels were assessed with the help of hyperspectral remote sensing in 12 and 14-
year old oil palm trees’ fronds using the Jenks Natural Breaks (JNB) method. This approach diminished the
variance within the classes and increased the variance between the classes. The Synthetic Minority
Oversampling Technique (SMOTE) method is used to generate synthetic instances in classes that have
very low instances. It helped to obtain the highest accuracy of 98% through the Random Forest (RF)
classification process. Further, they found that the frond-age factor can be considered to assess the
sufficiency level [15]. Sorghum leaves CC estimated using machine learning and derivative calculus with
hyperspectral data. Fractional derivative orders are calculated from raw features such as leaf spectral
reflectance (LSR) and VI in a certain range (0.2 to 2.0) with fixed intervals (0.2). The calculated fifty-
three VI was assessed with LSR to find out the relationship between both. Three feature selection
methods were assessed, including Pearson correlation coefficient (PCC), variable importance in the
projection (VIP), and mean decrease impurity (MDI). The MDI and PCC feature selection methods were
found to be effective in wavelength and vegetation-based analysis, respectively. The four machine
learning (ML) techniques investigated to predict CC were partial least squares regression (PLSR), support
vector regression (SVR), extreme learning regression (ELR), and random forest regression (RFR). The
SVR performed well in wavelength-based analysis, and ELR produced a better result in vegetation index-
based analysis. Although increasing derivative order improves model performance, they concluded that
state-specific order is inconclusive for estimation [16]. Asmita Mahajan et al., developed an ensemble
model for the prediction of infectious diseases. Mahajan et al., stated that amalgamation of multiple
models provides better performance than using a single model [17].

Furthermore, there has yet to be a verifiable result and extensive review for predicting the CC range of
groundnut crops using outdoor images. This stimulates the interest in developing an effective CNNmodel for
groundnut leaves for recognising and classifying the CC ranges. Therefore, the objectives of this study are
Collect the groundnut leaf dataset throughout the growth period, apart from this work, which can be used for
different research purposes. Develop an effective automation model with the help of the activation function
to predict and classify the CC of groundnut crops. Compared the predicted result with transfer learning
techniques.

3 Smart Nutrient Deficiency Prediction System (SNDP)

The amount of nitrogen nutrients in the groundnut leaf can be calculated with the measurement of
chlorophyll level, which has a positive correlation with nitrogen level. Predicting nutrient deficiency
before noticeable symptoms and providing the required amount of fertiliser can improve the plant's
growth in quality and quantity. Distributing an appropriate amount of fertiliser preserves environmental
conditions and is less toxic to human health. To develop a smart nutrient deficiency prediction system for
the groundnut crop, it is essential to collect leaves with chlorophyll measurement. The collected image
dataset from the groundnut crop field is given for preprocessing. The workflow of the SNDP system is
shown in Fig. 1.
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Different image processing techniques were applied to the groundnut leaf dataset to obtain the dataset in
the required format. Consequently, the preprocessed data is given to the convolution process for extracting
the rich source features from the groundnut leaf dataset. Then the extracted features are given to flatten the
layer to reduce the dimension of the input. After that, the flattened features are given to the fully connected
layer as input for the MMC model for classifying the CC range of groundnut crops.

3.1 Data Collection and Annotation

Leaf images of groundnut crop were collected using an RGB camera in Sivagangai district, Tamil Nadu,
to implement the SDNP system. Instantly, the captured leaves' chlorophyll level is measured using an
atLEAF chlorophyll metre (FT Green LLC, US). The data collection step-by-step process is shown in Fig. 2.

Figure 1: Workflow of SDNP system

Figure 2: Data collection and annotation
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The acquired images fn(x,y) are classified into three classes based on chlorophyll metre measurements:
fll(x,y), fbsll(x,y), and fal(x,y). fll-Low level (LL) ranges from 20 to 30, fbsll-beginning stage of low level
(BSLL) ranges from 30 to 40, and fal-appropriate level (AL) ranges from 40 to 60 respectively. The total
number of collected images is 573, of which 59 images from LL, 115 images from BSLL, and
399 images from AL. The data collection step-by-step process is shown in Fig. 2.

3.2 GLIP-Groundnut Leaf Image Pre-processing

GLIP is necessary to preprocess the groundnut leaf image (fn(x, y)) before running the model. It helps to
check for inconsistencies present in fn(x,y) and procure the dataset in the required format [18]. Image
annotation has been done on the entire groundnut dataset. Initially, the raw dataset size was 1164.6 MB
with a 2352 × 4160 dimension. In the first step of preprocessing, image compression is carried out in a
lossless way using Huffman [19] coding to reduce the size of the dataset and storage space, which helps
to decrease the processing time. The Compression ratio (CR) is mathematically defined as follows:

CR ¼ IC
I0

(1)

IC denotes the dimension of the compressed image and Io denotes the dimension of the original image.
Then image downscaling is performed to reduce the dimension of all images in the same dimension. The
scale factor (SF) is defined as follows:

SF ¼ ISID
ILID

(2)

ISID denotes a scaled-down image dimension and ILID denotes IC dimension. After compression and
scaling, the entire dataset’s reduced size is 19.074 MB and its dimension is 235 × 416, respectively.

The dataset was collected during the daytime from the crop field. There is a chance of impulse noise
occurrence in the original image due to environmental factors. It may damage or change the texture and
colour of the images, which are important at the time of feature extraction. Applying a filtering technique
can be a solution to avoid these issues. Hence, a median filter [20] is applied to the entire dataset to
eliminate the impulse noise from the images. The mathematical expression of the median filter is defined
in Eq. (3).

median s;tð Þ2Sxy g s; tð Þf g (3)

where g(s, t) represents the compressed and scaled-down image and Sxy denotes the rectangular sub-image
with the window size m� n which is centred at x; y. To check the quality of original and preprocessed
images, the Peak signal-to-noise ratio (PSNR) value is measured for some images. Mainly, the higher
PSNR value provides high image quality of the reconstructed image. The PSNR is expressed in decibels
(dB) and is calculated as follows:

MSE ¼ 1

mn

Xm�1

x¼0

Xn�1

y¼0
f x; yð Þ � K 0 x; yð Þ½ �2 (4)

20 log10
max k x; yð Þð Þffiffiffiffiffiffiffiffiffiffi

MSE
p

� �
(5)

RS ¼ 1:0=255:0 (6)

PSNR is defined by MSE (Mean square error) which is denoted in Eqs. (4) and (5). Where m and n
represent the image dimensions, x and y denote the index of a specific row and column, f X ;Yð Þ
represents the captured image and k 0 x; yð Þ represents the degraded image. Next, oversampling, also
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known as data augmentation is used to increase the size of the dataset, so that it can learn with more features
at the time of the training phase. The different augmentation techniques used are rotation, shift, height, shear,
zoom, flip, and nearest. Then cross-validation is applied to analyse and fix the data split ratio. Finally, data
normalisation is applied to each image to transform the pixel value from 0 to 1. The data normalisation
equation is mentioned in Eq. (6).

3.3 CNNR for Feature Extraction

In digital image processing, the Convolution operation combines images and filters to highlight certain
important features. In the first step, padding operation is done on pre-processed images to avoid shrinkage
which leads to data loss on convolution outputs. Padding process joins pixels around the input images, which
increases the images’ size. Two ways of filling Pixel values around images are zero padding and apply
neighbour pixel value padding. The zero padding technique utilized in this work with padding value 1.
Number of rows and columns are added around the images based on the padding value. Subsequently, a
convolution operation is performed in the first layer to obtain the convolution outputs. With its fixed size
kernels also known as filters applied on padded images to analyse features. To instruct the kernels’
position and direction on images, stride techniques is used. Each kernel’s weights are filled by using He
weight initialization technique which calculates random number with Gaussian probability distribution.
Then the outputs are given to activation function. It has two types such as linear and non-linear.

For multidimensional data non-linear activation function is suitable, which helps to obtain feature maps
from convolution outputs, after reducing the computational complexity by transforming the pixel values
based on certain conditions and learned complex features by introducing nonlinearity. Then in the fourth
step, max-pooling kernels were applied on feature maps to get high contrast features, through which the
dimension of images got reduced. Max-pooling kernels Weights initialized using He weight initialization
technique. The sixth step, the feature maps with prominent features (pooled feature maps) are given to the
next layer as input to proceed with the above-mentioned steps. Afterward, the extracted multi-
dimensional features flattened as a single long linear vector. Those flattened features are given to a fully
connected layer (hidden layer 1). Then those features have given to MMC classification technique with a
kernel trick for classifying the chlorophyll concentration range. To obtain the generalized model kernel
trick method utilized. This method transforms data from high dimensional space to low dimensional
space. Three different kernel tricks such as sigmoid, polynomial and radial basis function [21] are
analysed and compared. Among them polynomial kernel selected because of its best performance. The
architecture of CNNR-MMC model is shown in Fig. 3.

While using CNN for feature extraction, the convolution operation with the padding (P) equation is
defined in Eq. (7). Then the convolution process outputs (CPO), also known as feature maps, are given to
the activation function f (CPO). The major role of the activation function is to squash the real number
into fixed intervals. The existing activation functions are sigmoid, tanh, and ReLU, etc., the sigmoid
derivative range is 0 to 0.25, which transforms the CPO between 0 to 1. tanh derivative range is 0 to 1,
which transforms the CPO between −1 to 1. ReLU transforms the negative value to 0 and keeps the
positive value the same. However, these functions face issues such as the vanishing gradient problem, the
dead neuron problem, and the leaky relu problem.

Vanishing gradient problem occurs during the back propagation process. It represents the very negligible
updated weights. For this reason, multi-layered networks (more than three layers) were not developed two
decades ago.
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nin þ 2p� f

s
þ 1

� �� �
;

nin þ 2p� f

s
þ 1

� �
; Ncf (7)

nout-output feature map, nin-input matrix features, f-kernel size, s-strides

While using ReLU, if one of the derivative values is negative, then it will become zero, and then the
updated weight will be equal to the old weight. It represents the dead activation issue. While using leaky
ReLU, this issue can be solved, but again it faces a vanishing gradient problem.

To overcome these drawbacks, a novel activation function proposed here is Non-negative Rectified
Linear Unit (NNR). It has potential of learning complex patterns and solves the vanishing gradient
problem. If the derivative values are positive or greater than 0, it keeps that as same. If the derivative
values are negative or less than zero, it converts them to positive values and multiplies them by the fixed
learning rate (g ¼ 0:01) and n is fixed as constant in the proposed NNR, which can be expressed as
follows:

f CPOð Þ ¼ g� x� n� x CPO ¼ �ve
CPO ¼ CPO CPO ¼ þve

�
(8)

Then, the extracted features are flattened to insert them into a dense layer which has M1 to Mn neurons
belonging to an M number of neurons. Those features have been provided by M to perform classification.

3.4 Maximum Margin Classification (MMC)

MMC is a machine learning classification algorithm that classifies the training data (input features) with
the help of support vectors and marginal planes. These support vectors pass through marginal planes that
exist on both sides of the hyperplane at the same distance. If the features are linearly separable, then with
the help of hard margin, a hyperplane is generated. Here, it is non-linear separable features. The extracted
Positive and negative features are separated using a soft margin to generate a hyperplane with a miss

Figure 3: Architecture of CNNR -MMC
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classification ratio. The distance between support vectors is calculated while subtracting the marginal planes
(yi). That marginal plane equation is denoted as follows:

wTxþ b ¼ þ1 (9)

wTxþ b ¼ �1 (10)

yi belongs to −1 and +1

wT

k w k x2 � x1ð Þ ¼ 2

k w k (11)

The distance of the marginal needs to be maximized with the mentioned condition as shown in
Eq. (12).

w�; b�ð Þ max 2

k w k or w�; b�ð Þ min k w k
2

yi � wTxi þ bi � 1 (12)

The miss classification ratio is measured using the L2 regularisation parameter (total number of miss
classifications) when it is multiplied by the summation of error values. Finally, the cost function is
calculated using the squared hinge loss function. The cost function expression is denoted as follows:

L y; ŷð Þ ¼
Xb

i¼1
max 0; 1� yi : byið Þð Þ2

� 	
(13)

b denoted as batch size, y and ŷ represent the actual and predicted value respectively.

To reduce the loss ratio, the used optimizer is mini-batch Stochastic Gradient Descent (SGD). It takes a
fixed number of records (K) for each epoch, and its resource utility is less when compared to SGD. It reduces
the loss ratio, concerning the filters’ pixel value. Depending on the loss ratio, the convolution Filters’ values
and max-pooling filters’ values will be updated during back propagation to proceed further until it reaches the
global minima.

Wtþ1 ¼ Wt � g
1

n

X
xEB

rl x;Wtð Þ (14)

Wt represents the originated weight value and B denotes the fixed batch size, which is a subset of the
total number of leaf samples (x). The Number of iterations in each epoch is derived by dividing the total
number of records by batch size.

Then the classification performance of the proposed model is evaluated with performance metrics such
as Positive predicted value (Ppv), True positive rate (Tpr), and F1 score (F1s).

Ppv ¼ Tp
Tp þ Fp

(15)

Tpr ¼ Tp
Tp þ Fn

(16)

F1s ¼ 2 � Ppv � Tpr
Ppv þ Tpr

(17)
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Tp-true positive, it indicates the correctly categorised groundnut leaf samples in all three classes. Fp-
False positive, it denotes the total number of miss-categorised groundnut leaf samples of the predicted
class. Fn-False negative describes the total number of miss classified groundnut leaf samples of true
class.

Mpr ¼ Tpr

Tpr þ 1

2
Fp þ Fn


 � (18)

Mavg ¼
Xi�1

i¼0
F1si (19)

Wavg ¼
Xi�1

i¼0

Xj�1

j¼0
F1si � Sj (20)

The equalised performance of all leaf samples, all classes and specific classes is calculated using
averaging methods such as micro precision (Mpr), micro average (Mavg), and weighted average (Wavg). In
Mpr CC range of groundnut, leaf samples are equally contributed to finding the final averaged metric, In
the Mavg CC range of groundnut leaf classes are equally contributed to finding the final averaged metric.
The Wavg contribution is averaged by the number of leaf samples in each class.

4 Result and Discussion

The CNNR-MMC model implemented experiments were performed in the TensorFlow platform and
executed on a system with configuration as developed using Geforce GTX Super_16 GB,
Cuda_core_2048 per GPU-1 GHz and clock speed 1 GHz. As discussed in Section 3.1 groundnut dataset
in each class is not distributed equally, it is skewed towards the AL class. Initially, the CNNR-MMC
model is trained with that imbalanced dataset and analysed the results. The model contains 3 convolution
layers, flattened layer and a fully connected layer with 128 neurons. Each convolution layer has
32 convolution filters with kernel size 3 × 3 and max-pooling filter with pool size 2 × 2 and strides 2.
The input image dimension is 64 × 64 × 3, 3 represents the depth of the image with red green, and blue
colours. The fixed train spilt ratio is 80:20. The used activation function in the convolution layers and
dense layer is NNR and in the classification process MMC technique with L2 regularization. The fixed
regularization learning parameter is 0.01. The utilized optimizer is SGD with a learning rate of 0.3.
During feature extraction the extracted parameter in the first convolution layer is 896, the second
convolutional layer is 9248, and in the third convolutional layer is 9248. The extracted parameters from
the dense and classification layer are 66,051. The total number of the extracted parameter using CNNR-
MMC is 85,443. It provides zero non-trainable parameters.

As shown in Figs. 4a and 4b, with an imbalanced dataset, the model’s obtained training accuracy and
loss are 0.83% and 0.84%, respectively, and the validation accuracy and loss are 0.73% and 1.03%,
respectively, in the 100th epoch.

Based on the loss observations as shown in Table 1 with the imbalanced dataset, and inconsistent
predictions as shown in Figs. 5a and 5b, the model has high variance and low bias. Hence, it implies that
which comes under the overfitting problem.
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The augmentation technique is applied to all three classes to balance the dataset, and balance the
observed reducible error (bias and variance). The increased number of samples in the LL, BSLL and AL
classes is 341, 285, and 1 respectively. After augmentation, the total number of samples is 1200. While
training the CMPO-NNSR-MMC model with the balanced dataset, as shown in Figs. 4c and 4d, the
model achieved training and validation accuracies of 0.99% and 0.95%, respectively, in the 100th epoch.
Figs. 5c and 5d show the confusion matrix with true positive samples and miss-classified samples of each
class.

Figure 4: Graph of CNNR-MMC model’s accuracy and loss. Imbalanced dataset-(a) training accuracy and
validation accuracy, (b) training loss and validation loss. Balanced dataset-(c) training accuracy and
validation accuracy, (d) training loss and validation loss

Table 1: Accuracy and loss performance of the CNNR-MMC model

CNNR-MMC

Groundnut
dataset

Training Validation

Accuracy Loss Accuracy Loss

Imbalanced 0.8870 0.8415 0.7345 1.0341

Balanced 0.9927 0.6801 0.9500 0.7352
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The loss percentage of training is 0.68% and validation is 0.73%. As shown in the Table 1 after
augmentation, the loss percentage reduced from 0.84% to 0.68% and 1.03% to 0.73% during training and
validation, respectively. Therefore, with the imbalanced dataset, the model prediction is consistent, low-
bias, and well balanced. To know the performance of the NNR activation function in the CNNR-MMC
model, it is analysed and compared with existing activation functions including ReLU, Leaky ReLU,
PReLU (parametric relu), and ELU (exponential linear unit) using precision, recall, and f1 score. The
obtained results show that the proposed model with the NNR activation function provided better results
when compared to other activation functions, as shown in Table 2.

Figure 5: Confusion matrix of CNNR-MMC model. Imbalanced dataset-(a) training, (b) validation.
Balanced dataset-(c) training, (d) validation

Table 2: The performance analysis of NNR activation function with existing activation functions

Activation
function

Validation

Precision Recall F1 Score Mpr Mavg Wavg

LL BSLL AL LL BSLL AL LL BSLL AL LL BSLL AL LL BSLL AL

ReLU 0.90 0.78 0.69 0.59 0.78 0.91 0.71 0.78 0.79 0.76 0.79 0.76 0.76 0.79 0.76 0.76

Leaky
ReLU

0.73 0.79 0.87 0.76 0.69 0.90 0.74 0.73 0.90 0.8 0.79 0.80 0.79 0.79 0.80 0.79

PReLU 0.89 0.73 0.89 0.61 0.86 0.91 0.73 0.79 0.92 0.82 0.84 0.83 0.82 0.84 0.83 0.82

ELU 0.85 0.81 0.92 0.79 0.89 0.92 0.82 0.85 0.92 0.87 0.87 0.87 0.87 0.87 0.87 0.87

NNR 0.90 0.96 0.93 0.90 0.96 0.93 0.90 0.96 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95
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The proposed model’s performance on the groundnut dataset was compared to that of pretrained
imagenet models with depths of 16, 19, 55, 81, 103, and 105, respectively, from the VGG 16 and VGG
19 by Simonyan et al. [22], MobileNet by Google researchers [23], Xception by Francois Chollet [24],
ResNet50V2 He et al. [25], and MobileNetV2 [23]. These models alone are selected for comparison
analysis, because of their less complex structure compared to other pre-trained deep CNN models with
different versions. These models are well trained using the ImageNet dataset with over 1000 categories. A
transfer learning approach is applied to each model by changing the output layer with three classes. In this
work, the groundnut dataset with three categories is trained using those ImageNet models with pre-trained
weights. All the pre-trained models obtained good accuracy in the 100th epoch, as shown in Table 3.
While observing the error ratio during training and validation of each model, it shows high variance. The
graphical visualisation of all the pre-trained models’ output for training and validation is shown in Fig. 6.

Table 3: Training and validation performance of transfer learning models

Pre-trained
models

Training Validation

Loss Accuracy Loss Accuracy

VGG 16 4.7506 1.000 0.470 0.9833

VGG 19 4.8258 1.0000 0.0346 0.9917

MobileNet 0.0425 0.9979 0.000e+00 1.0000

Xeception 0.0625 0.9958 0.3985 0.9875

ResNet50V2 2.4335 1.0000 0.2817 0.9833

MobileNetV2 0.0031 0.9990 0.3336 0.9750

Figure 6: (Continued)
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Therefore, to visualise the actual and predicted classification ratio in each class confusion matrix as
shown in Fig. 7, which clearly shows the missclassified samples of all models in each class.

Accuracy alone will not be an accurate measure when the models’ results show high variance. Apart
from accuracy, other performance metrics are calculated such as precision, recall, F1 score, micro-
precision, macro average, and weighted average. These performance metrics results are very low and
range from 0.28% to 0.38% in all pre-trained models, as they have more miss-classification samples in
the confusion matrix. But with the CNNR-MMC model, better results ranged from 0.90% to 0.95%. It
implies that though the selected pre-trained models are less complex compared to other pre-trained
models, they have not performed well to predict chlorophyll concentration of groundnut leaf images with
smaller dataset, and all models faced overfitting problems.

While observing the number of trainable parameters in each model, it varied as each model has a
different depth. The extracted trainable parameter count is shown in Table 4, though the VGG models’
parameters are less when compared to the CNNR-MMC model, they do not perform well and show a
high variance in loss ratio during training and validation.

Then training time for all models is noticed. However, MobileNet and Inception have more layers, when
compared to the VGG model, but both take less time for training. But compared to all models, CNNR-MMC
takes less training time.

As shown in Table 5, the CNNR-MMC model achieved high accuracy when compared with existing
literature work.

Figure 6: Training and validation graph of transfer learning models
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Figure 7: Confusion matrix of all pre-trained models

Table 4: Pre-trained models with trainable parameters and training time

Models Trainable
parameters

Approximate training
time per epoch

VGG16 75,267 15 s 48 ms

VGG 19 75,267 16 s 534 ms

MobileNet 150,531 13 s 425 ms

Xception 301,059 14 s 475 ms
(Continued)
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5 Conclusion

Chlorophyll deficiency represents a major constraint for groundnut crop production, it could not be
identified before visible symptoms, particularly in the early stage. Therefore, the CNNR-MMC model is
implemented to identify and classify the CC range of groundnut crops. The GLIP performed before
deploying the dataset into the model reduced the processing time, provides enhanced feature extraction,
and will help further improve the model’s classification performance. The same dataset is trained and
evaluated with different transfer learning models. The attained result shows that the CNNR-MMC
outperformed well and obtained the highest accuracy with less training time while comparing to
ImageNet pre-trained models. The achieved CNNR-MMC model’s training accuracy and validation
accuracy are 99% and 95% respectively. This scalable and cost-effective SNDP system can be adopted by
all types of farmers to predict the CC range of groundnut crops in a real-time field. In the future work,
the model will be improved to predict other macro and micro nutrients with a fertiliser recommendation
system.
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