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Abstract: Landslides are a natural hazard that is unpredictable, but we can prevent
them. The Landslide Susceptibility Index reduces the uncertainty of living with
landslides significantly. Planning and managing landslide-prone areas is critical.
Using the most optimistic deep neural network techniques, the proposed work
classifies and analyses the severity of the landslide. The selected experimental
study area is Kerala’s Idukki district. A total of 3363 points were considered
for this experiment using historic landslide points, field surveys, and literature
searches. The primary triggering factors slope degree, slope aspect, elevation (alti-
tude), normalized difference vegetation index (NDVI), and distance from road,
lithology, and rainfall are considered. A landslide susceptibility map was gener-
ated using the Arc geographic information system (GIS) tool for all the triggering
factors using frequency ratio method, Shannon entropy method, Relative effect
method, and fuzzy logic method. A new Deep Neural Network (DNN) framework
has been developed for the multiclass classification and prediction of landslide
hazard zones as low, moderate, high, and very high. Existing works are only uses
statistical methods, but the proposed work has used DNN to predict landslide
severity at four different level even for semi data with over accurately. The train-
ing data for deep learning model are generated using the Sentinel Satellite images
and field survey. The label for training the data are generated from the Landslide
Susceptibility Index which are generated from statistical method. Among all the
statistical method generated data the Shannon Entropy data is the most accurate
of the four statistical methods achieves 99.16%, accuracy. The frequency ratio
method based data achieves 97.08% accuracy, the relative effect method based
data achieves 92.72% accuracy, and the Fuzzy logic method based data achieves
86.60% accuracy.
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1 Introduction

Landslides can occur as a result of natural characteristics that influence slope stability, as well as
subsequent and triggering factors that can be caused by either natural or anthropogenic factors [1]. There
appear to be significant regional and global impacts, such as decreased agricultural productivity, increased
soil eroding, habitat destruction and death tolls, and infrastructure damage due to landslides [2]. An
avalanche is the result of a slope spreading due to gravity; however, the development can be caused by a
variety of factors such as precipitation, quakes, and disintegration. The southern region of India,
particularly Kerala, has long been a center of landslide research. An overview of current research into
landslide analysis and prediction using satellite images and other Artificial Intelligence approaches are
presented. The article focuses [3] on creating a landslide inventory dataset for Kerala’s 2018 rainfall
patterns occurrence using visual interpretation of pre-and post-event data on Google Earth Engine. The
potential triggering factors for landslides in Kerala are thoroughly discussed. The article [4] focused on
the importance of having a distinct training and testing ratio when creating a model for landslide
susceptibility mapping. Various train and test ratios were used, including 50:50, 60:40, 70:30, and 80:20.

The Landslides Inventory, according to Martha et al. [5], is required to determine the extent of the
damage. It is critical for estimating hazards and prioritizing recovery and relief efforts. The affected area
can be mapped and assessed using high-resolution satellite images.

Amatya et al. [6] gives us a glimpse of landslide detection. As the first stage of quick risk assessment and
mitigation, this detection is required. When using landslide mapping, the landslide vulnerability region is
retrieved using open-source tools. Landslide areas are classified based on their spectral characteristics.
Image segmentation is used, then non-susceptible areas are removed using an object-based approach to
detect the change, and the output is extracted and classified using an unsupervised algorithm to cluster
the objects in an image.

The GIS-Based Slope Unit Approach is used by Baeza et al. [7]. In a landslide inventory, k represents a
cluster that splits the region into landslides and non-landslides. As training data for the landslide prediction
modeling, the segmented data with the corresponding sample dimension are chosen randomly.

Dikshit et al. [8] gives a concise explanation of the diverse phase of landslides as well as the parameters
that influence landslide incidence. Identification, prediction, and patterned classification are important steps
in pre and post landslide investigation [9]. Researchers have attempted to clarify landslides and their
outcomes using advanced image processing techniques in earth science and made it easy to access high
spatial and multi-temporal satellite images. Pre and post-landslide image Transformation detection, image
comparison, and the digitization of Digital Elevation Model (DEM) generation is the essential technique
for identifying landslides. The existing work focuses on the development and preparation of slope
instability in order to calculate landslide estimation, which ultimately reduces risk.

The existing research has not analyzed the major triggering factors that cause landslides, nor has it
detailed the severity of the landslide, which is the most important factor in risk assessment and
mitigation. There is a massive disconnect between landslide susceptibility mapping and risk assessment.
Using satellite images and field survey data, the proposed work classifies and analyses the severity of the
landslide. The proposed work emphasizes the development and anticipation of landslide hazards to
quantify landslide estimation, eventually reduces the risk.

The following describes the general layout of the research article. Section 2 describes the Study area
selection for the experimental work. Section 3 explains the overall architecture of the proposed work
Section 4 confines the collection of dataset and preparation of spatial database. Section 5 explains an
extensive view of various statistical modeling approaches for landslide susceptibility mapping, and
Section 6 specifies the DNN model, parameters tuning and their results. The paper concludes with
Section 7 with key findings and future scope of the work.
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2 Study Area Selection

Devikulam, Idukki located in Kerala, India has been chosen as the study region for this proposed work
due to the following reasons.

� Due to persistent torrential rainfall, the Idukki district experienced unfavorable incidents during the
2018 Kerala landslides.

� The study area’s geographic structure is hilly, with undulating roads. This region’s loose red soil and
steep surface would then result in debris flow.

� Anthropogenic exercises, which have been expanding and causing uncultivated inclines to fluctuate,
are aggressively growing in the study area.

As a result, there is a need to prepare a landslide powerlessness map for the area that organizers and risk
managers can use.

Geospatial computation and a vulnerable range map were used to perform a landslide risk zonation
analysis in a portion of the Idukki area. The Geography Survey of India lists 5191 notable landslides in
Kerala, with 3363 landslides known in the Idukki geographical area by itself. After the 2020 landslide
disaster, a total of eight major landslide areas were identified and field observations were conducted in
April 2022. The primary causes of these landslides were unusually severe storms, unplanned structural
developments, and urbanisation. Before proceeding with the classification process, these field data were
compared with the satellite image to determine data compatibility. The field research documents the
Landslides, which include debris flows, debris slides, subsidence, creep, and so on. According to press
reports, the Idukki district was the worst affected, with over 500 landslides on profitability land and over
1000 landslides within tropical forests [10]. The satellite image of the research area is shown in Fig. 1.
with some field observation images.

In this selected study area, the research work is carried out for landslide detection and classification with
the following contribution.

1. Using statistical methods such as the frequency ratio method, Shannon entropy method, relative
effect method, and fuzzy logic method, the Landslide susceptibility index are computed and
incorporated into the map using ArcGIS tool for visualisation.

Figure 1: Idukki district (highlighted) from Kerala.1 a) Field survey image for debris flow, b) rock fall, c) A
long view of 2018 landslide and d) tension crack in the surface
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2. To classify and predict the severity ranges of the landslide, a DNN model is built with optimal
parameter using parameter tuning.

The next section with various statistical method used for Landslide Susceptibility Indexing (LSI)
generation is discussed.

3 Methodology

The spatial database generates a landslide susceptibility mapping using a variety of techniques. This
proposed work employs the frequency ratio method, Shannon entropy method, Relative effect method,
and fuzzy logic method. The proposed work flow Fig. 2. is depicted in the architectural diagram. The raw
data is gathered from satellite images and combined with the field survey data. The primary triggering
factors for landslides were chosen for the study area based on the survey. All parameter maps were
collected, pre-processed, and raster values were extracted using the ArcGIS tool. The spatial databases
compute the relative weightage of all triggering factors using the Frequency Ratio method, Shannon
Entropy method, Relative Effect method, and fuzzy logic method. The weight values of all parameters
were entered into a raster calculator to generate the LSI. The DNN model uses the LSI values and
parameter tuning as input data to classify and predict the occurrence of landslides.

3.1 Frequency Ratio Method

According to the frequency ratio (FR) method, each of the landslide susceptibility stimulating factors
has a distinct landslide frequency and intensity. The relationship connects the location of landslides to the
factors that determine landslides in the study region [11]. The factors values are classified into 5 classes
based on natural break sorting technique. The frequency ratio of each class in a geographical zone was
calculated. The frequency ratio method was used to obtain the proximity of their affinity. In addition, the
FR model succeeded in scoring best-suited triggering causes based on their ability to manage landslide
occurrences. As a result, the number of landslide incidence pixels (parameter values) in the area must be
calculated using a combination of triggering factors. These parameter values are calculated using

Figure 2: Architectural diagram of the landslide classification and prediction
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Geological information system image maps from Bhuvan website. All the individual parameter maps with
landslide values are downloaded from this website and fetch together into ArcGIS tool for calculating the
landslide incidence pixel. The ArcGIS tool has in built function for combining all the triggering factor
pixel values and produces the number of landslide incidence pixels (parameter values). This ArcGIS tool
utilised for determining the landslide parameter values using historic landslide values.

The correlation was estimated for every factor by dividing the landslide occurring ratio by the ratio for
every class of supposed trigger factors. A ratio for each class identifies the extent of correlation assigned to
landslide incidences by the individual aspects. The pixel of the landslide occurrence factor GIS layer is
considered landslide susceptible. The pixel values are in the 0 to 1 range. The value 0 denotes a non-
landslide area while the value 1 denotes a landslide area. The below Eq. (1) calculates the frequency ratio
values.

FR ¼ ðXi=X Þ
ðYi=yÞ (1)

The Xi represents the Percentage of Landslide Pixel in Class and Yi represents percentage of Pixel in
Class. X represents total number of landslide in the Idukki district, Y represents the no. of total pixels in
the Idukki district. The landslide susceptibility value implies the general risk of a landslide.

3.2 Shannon’s Entropy Method

Shannon’s entropy (SE) assess the effect of driving factors on the occurrence of landslides [12]. In
landslide vulnerability estimation, SE assumes to mitigate the impact of parameter interpretation within
the prescribed zone based on empirical weights assigned to sub-categories of the various parameters [13].
It only considers the weight value of the frequency ratio method to generate the value of the Shannon
entropy. Landslide susceptibility index is figured by adding the Shannon entropy values of the
7 considered parameters. The greater the weight of Shannon entropy’s LSI, the greater the effect of
parameters in triggering landslides [14]. Shannon’s entropy determines the parameter that has the greatest
impact on the possibility of a landslide. Fig. 3 represents the LSI of the Shannon entropy method. It is
acquired through the ArcGIS tool by adding all the parameter maps of the study area. The following Eqs.
(2)–(4) is used to calculate the weightage of factors responsible.

Pij ¼ FRPMj
j¼1 FR

(2)

Eij ¼ Pij � log Pij

� �
(3)

Wj ¼ 1� EjPM
i¼1 1� Ej

(4)

The Pij is the probability density for each class. Mj is the number of landslide occurrence, Ej is the
entropy value, Wj is weightage of causative factors. Using this Wj we should calculate the individual
weight of all parameters. The FR values is calculated using the above Eq. (1) represents the frequency
ratio which can be utilised to calculate the probability density of each class in Eq. (2). It is required to
calculate the entropy value which shows the amount of information present in the every individual
parameter. These information can be used as amount of contributing element to make accurate
classification. Using this entropy weight of each parameter is calculated according to amount of
contribution. More weight values are assigned for more information contributing (entropy) triggering
factor. Less weight values are assigned to less information contributing (entropy) triggering factor.
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3.3 Relative Effect Method

This model depicts the spatial relationships between the landslide event (E) occurring region and the
triggering factors (F) that lead to the occurrence of landslides. Each parameter thematic maps are layered
together to find LSI [15]. For each parameter, a unit area and landslide points will be considered to
calculate the relative effect (RE). The below Eq. (5) defines the RE.

RE ¼ log
E

F
þ 2

� �
(5)

E ¼ a

A
; F ¼ sld

SLD

The ɛ is a value between 0 and 1 added to the logarithmic function frequency ratio. The ‘a’ represents a
unit area and ‘A’ depicts the whole study area. The ‘sld’ represents no. of points in the unit area and the total
number of points in the whole study area is denoted by ‘SLD’ [16]. The landslide susceptibility index (LSI)
value is calculated by adding all the weight values of RE by using the Eq. (6) and all the parameter thematic
layers are added together to generate the LSI of Relative effect method.

LSI ¼
X

RE (6)

3.4 Fuzzy Logic Model

The pixel of the Geographic information System (GIS) layer of the landslide vulnerability component is
supposed to be likely to be exposed to landslide in the fuzzy logic model [17]. The fuzzy logic weight values
range between 0 and 1. The value 0 denotes ‘less vulnerable to landslide’ and 1 indicates ‘highly sensitive
and prone to landslide’. The degree of membership of an individual cluster can be respective values scaling
from 0 to 1. Subjective judgement will be used to approximate the degree of membership of an individual

Figure 3: LSI map using frequency ratio model on ArcGIS tool
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cluster [18]. These values can also be derived using Frequency ratio model in this case. We can also derive
from multi-criteria decision analysis methods. Using Eq. (1), the frequency ratio weights for each class of the
triggering factor were calculated. The historic landslide event occurring zone dataset was treated as a
conditional variable, while geographical location factors with precipitation values (which have an impact
on the landslide event) were treated as emancipated parameters [19].

3.4.1 Fuzzy Interpretation
The fuzzy logic model is built with seven input data points, and the output is described by three

membership functions, namely low, moderate, and high, using the triangular membership function. Fuzzy
rules are used to infer the model. A set of rules are developed to assess the severity of the landslide. For
this model, 195 rules were created. Some sample rules are listed below.

Fuzzy rule based Interpreting Algorithm

Input: Slope, Aspect, NDVI, Elevation, Road, Lithology, Rainfall

Output: landslide range (low, moderate, high)

Procedure of interpretation:

1. If (Slope is low) then (landslide_range is moderate)

2. If (Aspect is high) then (landslide_range is high)

3. If (NDVI is moderate) then (landslide_range is high)

4. If (Elevation is moderate) then (landslide_range is high)

5. If (Road is low) then (landslide_range is high)

6. If (Road is very_high) then (landslide_range is low)

7. If (Lithology is high) then (landslide_range is high)

8. If (Rainfall is low) then (landslide_range is moderate)

9. If (Slope is low) and (Road is low) then (landslide_range is high)

10. If (Aspect is low) and (Rainfall is low) then (landslide_range is moderate)

11. If (Elevation is low) and (Road is low) then (landslide_range is high)

12. If (Road is low) and (Rainfall is low) then (landslide_range is high).

3.4.2 Parameter Fuzzification
To fuzzify the landslide causes conflict, the Frequency ratio values with each class of landslide

occurrence factors are regularised in [0,1] to address their enrolment rates degrees using Eq. (7).

FMij ¼ FRij �Min FRij

� �
Max FRij

� �� Min FRij

� � Max FMij

� ��Min FMij

� �� �� �þMin FMij

� �
(7)

The FM is the fuzzy model value; the minimum Frequency ratio value of the triggering factor is Min
(FRij); the maximum Frequency ratio value of the triggering factor is Max (FRij); and the maximum and
minimum normalisation limits are Max ((FMij)) and Min ((FMij)) [20]. As a result, membership functions
for all triggering factors are obtained, and membership functions are assigned to each class of landslide
occurrence factor [21]. To find the correlation between the factors chosen and the degree of membership
in the landslide and non-landslide zones, membership functions were used [22]. The fuzzy triangular
membership function is used to generate the membership function for landslide susceptibility mapping.
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3.4.3 Fuzzified LSI
A fuzzy overlay approach can combine several reclassified triggering elements to assess the landslide

hazard. Fuzzy Sum, product, AND, OR, and Gamma are types fuzzy operators used for incorporating the
triggering elements [23]. The operator function ‘Fuzzy Sum’ is used to integrate the membership
functions of the triggering elements in order to obtain the fuzzified susceptibility index, which represents
the high probability of a landslide occurring or not. The use of the ‘Fuzzy Sum’ operator to integrate the
membership functions was driven by the desire to obtain the largest value at each point in order to assess
the persuasiveness variables distinguishing the likelihood of a landslide occurring. The ‘Fuzzy Sum’

operator is used in this proposed work to incorporate all of the membership functions of the landslide
triggering components. The Eq. (8) was used to calculate the defuzzified landslide susceptibility index.

LSIfuzzy ¼ Slope angle � langle
� �þ Aspect � laspect

� �þ Elevation � lElevð Þ þ NDVI � lNDVIð Þ
þ Road � lRoadð Þ þ Lithology � lLithology

� �þ Rainfall � lRainfall
� �

:
(8)

The µ {Slope angle, aspect, elevation, NDVI, Road, Lithology, Rainfall} is the weightage of the Fuzzy
logic model. The Fig. 4 illustrates the LSI for the study area using fuzzy logic model. The fuzzy membership
function for uncertainty is works between the factor accuracy and the landslide classification. It differs in
terms of the membership function [24]. Before classification, the fuzzy logic method computes the
uncertainty membership function for each landslide point in proportion to the total number of
occurrences. In contrast to other algorithms that classify landslides without considering the uncertainty
value or each category, this relationship is critical in determining the triggering factor.

4 Data Generation

The presence of triggering factors data in a study area were extracted from Sentinel satellite images
which are used to generate landslide susceptibility maps. For this experiment, seven major factors were
considered: slope degree, slope aspect, elevation (altitude), normalized difference vegetation index
(NDVI), distance from road, lithology, and rainfall. The parameters were chosen depending on the spatial
aspects of the study area and the findings of scholarly articles. The United States Geological Survey
(USGS) website is used to obtain satellite images. Create a geospatial database for all the parameters to
identify landslide impacts using ArcGIS tools.

Figure 4: LSI map using shannon entropy model, relative effect model and fuzzy logic model on ArcGIS
tool
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A 7-layer graph representing the parameter considered in the proposed work is downloaded and fed into
the ArcGIS tool from the Geographical Survey of India. Around 3300, historical landslide points are
randomly taken into account, and this information was fed into the ArcGIS tool. To extract parameter
values for 3300 points, the slide points and 7-layer graph are layered stacked together. The parameter
values are calculated using raster values and it is separated into various classes.

The slope degree, slope aspect, and elevation are obtained from a 30 m × 30 m Digital elevation model
(DEM). All of the other parameters were obtained from the Landsat satellite. Rainfall is a major causative
factor [25]. The Indian Metrological Department (IMD) portal was used to obtain average yearly rainfall
data. ArcGIS tool is used to retrieve numerical data for all class values to create a geospatial database.
The database was pre-processed and a landslide susceptibility map was created [26]. To incorporate the
relationship between landslides and their factors, the parameters were classified into various classes. The
database is organized as a table with all of the parameters needed to calculate the weightage for statistical
methods.

5 Statistical Methods Results and Analysis

The four statistical methods are used to calculate LSI values for all 7 factors with 5 classes of every
factor. The calculations are carried out using Eqs. (1)–(5) and tabulated in Table 1.

Table 1: LSI values calculated from various models for landslide triggering factors

Factor Classes
(ranges)

No. of
pixels in
class

% of pixel
in class

No. of landslide
pixels in class

% of landslide
pixel in Class

LSI values

FR SE RE Fuzzy

Slope
degree (°)

0–16 883601 44.971 115 31.680 4.736 0.053 0.157 0.157

17–32 858085 43.673 214 58.953

33–49 195754 9.963 32 8.815

50–65 23923 1.218 1 0.275

66–82 3447 0.175 1 0.275

Slope
Aspect

0–71 431595 21.966 93 25.620 4.927 0.017 0.185 0.185

72–143 294482 14.988 63 17.355

144–215 481269 24.494 117 32.231

216–287 377770 19.227 50 13.774

288–359 379694 19.325 40 11.019

Elevation
(m)

0–450 601124 30.595 49 13.499 4.439 0.157 0.132 0.132

451–985 477983 24.327 200 55.096

986–1,520 344447 17.531 85 23.416

1,521–2,055 444080 22.602 28 7.713

2,0561–2,590 97176 4.946 1 0.275

NDVI 0–0.05 38133 1.941 1 0.275 2.939 0.115 0.144 0.144

0.06–0.18 66438 3.381 4 1.102

0.19–0.32 598230 30.447 141 38.843

0.33–0.45 1149521 58.505 213 58.678

0.46–0.58 112488 5.725 4 1.102

(Continued)

IASC, 2023, vol.36, no.2 1265



The number of pixel, percentage of pixel values in the Table 1 are extracted as described in data
generation section using satellite images and field study. Using the LSI values from the Table 1 visual
maps are generated using ArcGIS tool.

In frequency ratio method, the Landslide susceptibility index is figured by adding the frequency ratio
values of each parameter. In ArcGIS, all of the parameter maps were combined to express the graphical
representation of the study area’s Landslide susceptibility index. Rainfall shows 47% in the range of
1,211 to 1,683 mm precipitation with a frequency ratio of 12.553, according to the frequency ratio model.
Similarly, the low frequency ratio value of 0.028 is recorded as the distance to the road factor. The LSI
for the study area, calculated using the Frequency ratio method and map is generated ArcGIS mapping
tool which is presented in Fig. 3.

Similarly, for Shannon entropy method, Relative effect method, fuzzy logic method LSI maps were
generated which is illustrated in Fig. 4 respectively.

6 Deep Learning Modelling and Result Analysis

With 3363 historic landslide points, a DNN model is developed using fine-tuned parameters. The DNN
model uses the outcome of the frequency ratio method, Shannon entropy method, Relative effect method, and
fuzzy logic method. The DNN architecture uses 7 parameter values as input data for training. The output
layer categorises the landslide range as low, moderate, high or very high based on the predominant
triggering factors. Choosing the best hyper parameter while maintaining a consistent strategy to improve
the model’s reliability and efficiency is one of the most difficult ways of developing deep neural networks
models. The set of data has been trained with a diverse distribution of parameter ranges, which are listed
in below Table 2. To attain the highest accuracy with the minimum loss, this design tries various
parameter which is listed in Table 2 and select the best optimal parameter values were selected by trial

Table 1 (continued)

Factor Classes
(ranges)

No. of
pixels in
class

% of pixel
in class

No. of landslide
pixels in class

% of landslide
pixel in Class

LSI values

FR SE RE Fuzzy

Road (m) 2–7.6 1171679 59.633 317 87.328 2.531 0.213 0.127 0.127

7.601–13.2 233562 11.887 32 8.815

13.201–18.8 195232 9.936 1 0.275

18.801–24.4 271342 13.810 12 3.306

24.401–30 92995 4.733 1 0.275

Lithology 1–1.8 132480 6.777 52 14.325 6.078 0.122 0.143 0.143

1.9–2.6 147276 7.534 1 0.275

2.7–3.4 264276 13.520 119 32.782

3.5–4.2 495108 25.328 76 20.937

4.2–5 915624 46.841 115 31.680

Rainfall
(mm)

1,211–1,683 73787 3.775 172 47.383 17.19 0.323 0.112 0.112

1,684–2,154 203451 10.408 146 40.220

2,155–2,626 931497 47.653 30 8.264

2,627–3,098 641486 32.817 4 1.102

3,099–3,570 104543 5.348 11 3.030
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and error procedure. The optimal values are selected such that the selected values will achieve the highest
accuracy.

The algorithm explains how to hyper-tune the DNN model for maximum accuracy. The model is
designed with 5 hidden layers, Adamax optimizers, Relu activation function with 800 Epochs, and
SoftMax output function. The model’s hyper parameters have been iterated for the number of iterations
specified to perform classification and prediction accuracy. The parameters are a learning rate in the range
of 0.001 to 0.1. Batch sizes of 10 to 35 are considered, with dropout values ranging from 0.1 to 0.5.

Algorithm for hyper parameter tuning

Input: Learning Rate-values lif gnli¼0:001

Batch Size-values bif gnbi¼10

Dropout-values dif gndi¼0:1

n-runs for cross-validation.

Output: Optimal l*, b* and d*

Begin

for j ←1 to n do

for x ← 0.001 to nl do

for y ← 10 to nb do

for ← z 0.1 to nd do

Perform DNN-Model with l(x), b(y) and d(z) and save the accuracy.

end

end

end

Table 2: DNN hyper parameter settings

Model
parameters

Range distribution

Hidden layers 3, 5, 7

Drop out 0.1–0.5

Learning rate 0.001–0.1

Optimizers Adam, Stochastic gradient descent (SGD), Root Mean Squared Propagation
(RMSprop), Adamax,

Activation
function

tanh, sigmoid, softmax, rectified linear activation unit (ReLU).

Training epochs 50–800

Number of
nodes

16, 32, 64, 128

Batch size 10, 15, 20, 25, 30, 35

Output function Softmax

(Continued)
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end

for x ← 0.001 to nl do

for y ← 10 to nb do

for z ← 0.1 to nd do

Average the accuracy over n-runs.

end

end

end

Estimate the maximum accuracy average and corresponding l*, b* and d*.

return l*, b*, d*.

Various learning rates ranging through the algorithm from 0.001 to 0.1 were used in this work. A low
learning rate increases the likelihood of seeing a base landslide classification. With the various learning rates,
we attempt to find the best-fit model by utilising all of the available streamlining agents such as Adam, SGD,
RMSprop, and Adamax with epochs of 50 to 800. Less number of epochs result in misclassification because
the neural network did not have enough time to train. An increase number of epochs, on either hand, will
result in over fitting, in which the framework can accurately predict the information but not new
information. To achieve the best results, the epoch total number must be adjusted. Hidden layers have a
diverse range of layers with node counts ranging from 16 to 128.

6.1 Result and Discussions

The DNN framework evaluates the mathematical models and forecasts the landslide severity. The
primary evaluation process involves developing a model for mapping landslide susceptibility. It is
accomplished through the use of mathematical models such as the frequency ratio method, Shannon
entropy method, relative effect method, and fuzzy logic method. A total of 3363 points were used to
identify the location of the landslide as well as its severity. Where 70% of the data is used to train the
model and the rest 30% is used for test the model. Train the dataset with every possible optimizer at each
learning rate. It is observed as the relu activation function, it achieves the highest accuracy in the
Adamax optimizer. Accuracy, precision, recall, F-measure were calculated using true positive, true
negative, false positive, and false-negative values as performance measure for the DNN model. The
Fig. 5. Shows the performance measure for the DNN model in which Shannon entropy model could
obtain optimum performance in precision, recall and F-measure. In Fig. 5 the F–measure value is
represented in percentage. Shannon Entropy gives the best performance when compared to all the other
method with the precision of 95%, recall of 95.07 % and F–measure value of 95 %.

The accuracy value of the training and testing data are evident in Fig. 6. The epoch value ranges from
0 to 800 on the X-axis, while the accuracy levels are represented on the Y-axis.

The Shannon Entropy method achieves the highest accuracy with optimal hyper parameter values of
Adamax optimizer, an optimal learning rate of 0.001, batch size of 30 and 800 epochs. The Shannon
Entropy Method is the most accurate with 99.16%, followed by the FR method with 97.08%, the RE
model with 92.72%, and the Fuzzy logic model with 86.60%.

Algorithm (Continued)

1268 IASC, 2023, vol.36, no.2



0

20

40

60

80

100

Frequency ratio Shannon entropy Relative effect Fuzzy logic

Performance Measures

Precision Recall F Measure

Figure 5: Performance measure obtained for the landslide severity prediction

Figure 6: The accuracy curve for statistical methods
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The accuracy value obtained from the four statistical methods in classifying the severity of the landslide
occurrence is described in Table 3. The DNN model was trained using statistical methods, and it was able to
classify low susceptible landslide areas with 99% accuracy using the frequency ratio method, moderate
landslide areas with 97% accuracy using the relative effect method, and high landslide zones with 97%
and very high landslide zones with 96% accuracy using the Shannon entropy method. All of the models
performed superlatively in classifying the stages of landslide occurrence in the study area.

7 Conclusion

Landslides are a serious threat in Kerala and the Western Ghats. Natural disasters are rarely predictable,
but they can be avoided in most cases. In a highland region, a landslide occurs when rocks and soils are
displaced in mass. Due to urbanization, roadway development, and pressure from triggering factors, this
hazard will become more prevalent in the future. Rainfall is clearly the primary triggering factor in the
study area, as evidenced by field surveys. A spatial database is created by inferring satellite image data
from field survey data, and 3363 landslide points from the study are used for experimental purposes. In
this proposed work, various methods such as frequency ratio, Shannon entropy method, relative effect,
and fuzzy logic method are used to generate input for DNN framework. To evaluate the methods, a DNN
model is created. The Shannon entropy methods provides the highest accuracy of 99.16% with the lowest
loss value compared to other methods as could it classify and predict accurately well for high and very
high severity range of landslide occurrence by 97% and 96% . In landslide susceptibility mapping, the
DNN framework is still being used for model evaluations. It is proposed that a DNN model be used in
this field of research, with the results being especially in comparison to bivariate quantitative methods to
enhance performance by taking into account more input parameters and conducting a field survey.
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