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Abstract: Smart internet of things (IoT) devices are used to manage domestic and
industrial energy needs using sustainable and renewable energy sources. Due to
cyber infiltration and a lack of transparency, the traditional transaction process
is inefficient, unsafe and expensive. Smart grid systems are now efficient, safe
and transparent owing to the development of blockchain (BC) technology and
its smart contract (SC) solution. In this study, federated learning extreme gradient
boosting (FL-XGB) framework has been developed along with BC to learn the
intrusion inside the smart energy system. FL is best suited for a decentralized
BC-enabled system to adapt learning models for trustworthy and reliable transac-
tions. Many features and attributes of the Third International Knowledge Discov-
ery and Data mining Tools Competition (KDD Cup 1999) dataset have been used
in this study to perform experimental analysis. The likelihood of intrusions in the
network is mathematically stated. The participant nodes run the BC based FL-
Smart Contract (SC) algorithms to detect network intrusions. FL provided aggre-
gated learning results from the experiment that was 99% accurate in predicting
network intrusion. The experimentally determined block storage gain and retrieval
gain were 97.5% and 95.4% respectively. The intrusion in the smart grid network
was evaluated, and the data indicated that there was 1.2% illegal access. More-
over, the learning system’s accuracy, retrieval and storage intrusions, legal access
and transaction processing times were considered for comparison. The proposed
system outperformed contemporary research-developed systems targeted for the
same application. Therefore, this study provides a guaranteed intrusion learning
system and secure transaction system for smart grids.

Keywords: Blockchain; federated learning system; intrusion detection; internet of
things; smart grids

1 Introduction

Energy systems include various sources of energy, such as solar systems, wind energy farms, and
traditional sources that are extracted and managed by government and private energy sectors in adherence
to energy policies. Nowadays, the energy sector is deploying IoT smart meters and sensors to simplify its
operations management [1]. However, smart meter measurement information is prone to cyber-attacks
because the information is shared through the internet to a remote site. Smart IoT sensors monitor the
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functioning of transformers, and the status of power lines, in real-time [2]. The existing energy systems meet
the need for IoT enabled smart systems for monitoring and controlling energy sources distributed throughout
the country. Smart energy data storage systems such as IoT smart meters, big data in smart grids and cloud
based active power-data-storage systems are storing energy consumption data, sensors data from
multisensory systems in the smart grid, data from smart grid heat-control systems. All these storage
systems are subject to various intrusion cyber-attacks, such as hijacking authentication and authorization,
distributed denial of service (DDos), malicious bot injection, and byzantine attacks [3]. In 2018, the
French smart energy network reported that malware affected power distribution to nearly
50000 consumers. In Tasnee, Saudi Arabia, a malware attack stopped many generators of the smart grid
system, and in Ivano-Frankivsk, Ukraine, a Trojan named “Black Energy” took control of the data server
of the national smart grid system. Critical information on systems such as power plants, power
distribution stations, power lines, and smart meters needs to be kept secret [4,5]. The serious issue with
existing smart energy systems is that it is possible to hijack the command operation of the server, which
leads to total system collapse and inaccessibility. Therefore, control system servers need to be secured
against intrusion. Numerous cyber security systems exist, however, blockchain (BC) technology is a
potentially strong cyber security system because it employs distributed computing and facilitates
resource-sharing between multiple destinations or servers. BC provides a permanent solution against
cyber threats by implementing a distributed consensus. The BC distributed consensus algorithm executes
smart grid transactions/operations through multiple authenticated peers/nodes in the smart grid network
[6,7]. The centralized cloud solution for sensitive data storage is replaced by a distributed multiple-data-
server storage system. The communications between servers/nodes are stored as communication history in
the distributed ledger of BC. This makes it easy to detect intrusive behavior in networks of nodes. BC
technology implements an inbuilt digital signature to authenticate all communications between service
providers and consumers throughout the network. Smart contract (SC) replaces third parties by
establishing trustful communication between the energy stockholders. In this study, BC and Federated
Learning (FL) systems have been combined to effectively detect and erase intrusions in the smart grid
network. FL is a mixture of distributed and machine learning models introduced by Google. It is meant
for high-level predictions to support any real-time application. In our proposed smart grid system, FL has
been introduced to learn the intrusion or malicious contents in the system. FL is best suited for adapting
machine learning models to a decentralized BC-enabled system to enable secure, reliable, and transparent
transactions for any system domain [8,9]. BC SCs are used to implement FL algorithms between service
providers and consumers in distributed smart grids for secure communication. FL has been applied to
predict intrusion based on payload signatures. The BC SC verifies the signatures and reports to the server
in case a cyber-intrusion signature is found [10]. The SC also maintains a history of the results using
distributed ledger technology (DLT). The history serves as a reference to all participant nodes in the
smart grid network and ensures transparency for all its stakeholders. Federated Machine Learning (ML)
models are written as SCs, and they are implemented in the cluster of participant nodes of the smart
energy network. In this study, the XGBoost ML algorithm is used to learn intrusions because it provides
a strong prediction model for the participant nodes. The prediction results from these nodes are
aggregated on the server. The aggregated result would be recorded using DLT, and necessary actions to
eradicate intrusions would be taken in a timely manner by the BC smart energy network. FL enables
global discovery of intrusion from the learning results of local participant nodes without affecting the
functionality of the network [11]. FL provides promising results in detecting intrusion signatures within
the network from scattered data samples in local nodes. A smart grid network trained using an FL
algorithm reduces the risk of intrusion in all possible ways in the distributed environment by invoking the
local training models to build a global model by proving and confirming the hidden intrusion payload
signatures. The following paragraph summarizes the key contributions of this study.
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The KDD dataset and SC modules are used to identify malicious intrusions in the network of
participating nodes. Using mathematical models in the sample space, the network’s numerous intrusion
cases are defined. The implementation includes scanning the vulnerabilities of the network using security
tools, establishing FL-SC modules to detect intrusion, testing FL-accuracy (%), installing Ethereum BC
tools on participating nodes and servers, and analyzing storage and retrieval operations by setting
threshold times to spot intrusions. Finally, to support the effectiveness of the proposed system, the
findings of this study are compared with those of current works.

2 Related Works

Hassan et al. [12] proposed the BC solution analysis of smart grid systems for various platforms, such as
Ethereum, Hyperledger, Tendermint, and the Energy Web Foundation with respect to several important
parameters of smart grid networks, such as data, automation, consensus, and networks. BC customization
for grid monitoring, security certificates, wholesale, and incentives is also considered for real-time smart
energy networks. Andoni et al. [13] proposed the study of 100 BC research projects for integration with
smart energy networks. They discussed the commercial market challenges for the mapping of BC
technology with smart grid networks, applied BC system taxonomies such as proof-of-work, distributed
consensus, and practical byzantine fault tolerance (PBFT) to various use cases of energy sectors. They
also discussed an IoT smart network and its automation with systematic energy asset management. Kong
et al. [14] proposed a linear network coding for FL systems to train image classifiers as shared learning
models from participant nodes to secure the private data of the system. This work compared the accuracy
of the proposed learning model with respect to FL clients and servers. The system was found to be best
suited for decentralized network systems and privacy-preserving network applications. Xia et al. [15]
proposed the federated XGBoost learning model to achieve security and privacy in network systems.
They compared the accuracy, number of communication exchanges among participants and throughput of
their method to those of standard machine learning approaches. The proposed model accepted the
possible dataset and features such as Acrene, Biodes, Credit and German to apply learning models and
analyze them with the fairness, accountability, transparency and ethics (FATE) model. Their study also
considered the security analysis of the system against passive attacks and private data attacks on central
servers and owners, and proved from the fixed threshold value of the proposed model that data was not
leaked. It also proposed a key exchange scheme for establishing trust with the users of neural networks.
The authors used FL to aggregate the results on the server and verified the correctness and efficiency of
the results produced by the server by leveraging a deep security analysis and verification scheme on
federated training sets. A novel optimization method for distributed multi-task learning (MTL) was
employed to learn models for related tasks [16]. Federated results were produced from k distributed
nodes {k1, k2,…, km}. The structures, modeling and relationships between generated learning results by
nodes were optimized with the help of the proposed MTL framework. Simulations were performed using
the Google glass dataset, vehicle sensors, and human activity recognition to prove the optimization
results. Table 1 illustrates whether the following parameters were considered (✓) or not considered (✗) in
the studies mentioned in the literature survey (1) application, (2) system security, (3) mathematical model,
(4) proof of efficiency and (5) analysis of privacy. The proposed federated XGBoost BC authentication
promises to fulfill all of these parameters.

Luo et al. (S. No 1) in Table 1 considered the application of a smart energy storage system, constructed a
mathematical model to determine the electrical energy storage potential of the system, and proved the energy
storage efficiency of the real-time system. This work did not consider the security of the system or analyze its
privacy. The actual security issues of smart grids are listed and described in Kim et al. [17]. The remaining
articles (S. No 2–6) in Table 1 are analyzed with respect to the analysis parameters. The proposed work is an
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experimental study that is discussed in Section 5 in which all analysis parameters are considered and shown
as the results of the experiment. The following are the key advantages of this work.

To combat malicious intrusion cyber-attacks on the crucial power grid system, the BC and FL systems
are combined. By combining the outcomes of several participant nodes in the distributed environment, FL
offers a robust prediction model. Energy data is stored and retrieved by the BC as blocks. We noticed that the
history of transactions for both store and retrieve operations was automatically documented when we used
Ethereum BC and its SC modules to secure sensitive data. Additionally, this document served as a log for the
analysis of storage and retrieval operations. Intrusions were purposefully initiated in the target system after
analysis of the documents in the BC logs that were used for storing and retrieving data. FL aggregation
correctly delivered all intrusions within the allotted period. The accuracy, intrusion rates, and transaction
processing times of the proposed system were compared to those published in contemporary studies. The
proposed system produced the best outcomes.

3 Federated XGB

The performance of various learning solutions has been expressed using various metrics. For example,
classification and regression tree, AdaBoost, random forest, and XGB have exhibited 96.74% accuracy,
97.5% specificity, 97.3% sensitivity, and 98.77% area under curve respectively [18,19]. Therefore, in this
work, the federated XGBoost system has been selected to model intrusion detection. Federated XGB
generates a strong prediction model by linearly combining small classifiers. It works under the federated
gradient boosting framework and creates a final prediction model tree through a set of earlier individual
prediction models obtained from the participant nodes. Consider that a set of input variables (p) and
output variables (q) are distributed uniformly but randomly to the scattered participant nodes in the smart
grid network. The set of inputs P = {p1, p2, p3,…, pn}, and the outputs are of the form {q, pi}, where i =
1, 2,…, n. The outputs have been obtained by mapping the training sample results to find intrusion
signatures from p to q. The set of input criteria such as p1, p2, p3,…, pn is analogous to a set of decision
trees used to determine whether a signature is found. The bagging process involves bootstrap aggregation
to combine all sets of input decision trees. Each step of the bootstrap aggregation in the server and the
votes are combined to form the final decision tree [20]. Meanwhile, the predictions in each round are
tested with the expected outcome. The difference between the predicted and expected outcomes
represents the error or loss of the training model. Thereafter, the gradient is calculated to describe the
depth of the error model through the loss function. The mathematical partial derivation is formed by the
loss function to minimize the error rate in the training model. The regression tree is a model for prediction.

Table 1: Literature survey

S. no Authors Journal & year 1 2 3 4 5

1 X. Luo et al., Journal of Applied Energy, 2015 ✓ ✗ ✓ ✓ ✗

2 M. Li et al., Journal of Pattern Recognition Letters, 2020 ✓ ✓ ✗ ✓ ✓

3 N. U. Hassan et al., IEEE Industrial Electronics Magazine, 2019 ✓ ✓ ✗ ✓ ✓

4 M. Andoni et al., Journal of Renewable and Sustainable energy, 2019 ✓ ✓ ✓ ✗ ✓

5 Y. Chen et al., Information Sciences, 2020 ✗ ✓ ✗ ✓ ✗

6 Proposed work - ✓ ✓ ✓ ✓ ✓
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The model is represented as a function f(x) as shown in Eq. (1) to minimize the depth of error or loss
function.

f xð Þ¼ min c
Xn
i¼1

L x; cð Þ
 !

(1)

where c-error factor, L(x, y)–Loss function, min–minimum

The Federated gradient boosting model is represented by

F xð Þ ¼
Pn

i¼1 x

n
(2)

where F(x) is the set of predictions of the first iteration as shown in Eq. (2).

The boost function B(x) is obtained by

B xð Þ¼ f xð Þ þ g xð Þ with error factor c at each step, it can be represented as shown in Eq. (3)

Bk xð Þ ¼ f k�1 xð Þ þ cgk xð Þ (3)

Here, the residual error is calculated as (x-f(x)) to form a regression tree from the previous iteration. It
can be represented as g(x). g(x) computes the mean of each decision tree from the previous model. It
optimizes the prediction models for malicious content by fitting the decision tree.

4 Proposed Federated BC Model

In general, the collaborative responses from multiple participant nodes or edge devices are collected and
aggregated on the BC server. As shown in Fig. 1, the requests to set up intrusion detection learning models
are distributed to multiple participant nodes (A, B, C, etc.) in the network from the BC server. The responses
or results from the participant nodes are optimized in the BC server by aggregation. The predictions of
intrusion or intrusions confirmed by signatures are sent as responses from the participant nodes. Though
the BC server is not a central server, it performs the optimization based on the results produced by the
participant nodes. The optimized or aggregated responses are observed as global model responses for
making further decisions. The participant nodes may be at geographically different locations in the
distributed environment, but all of them work on the same dataset signatures and divide problems
assigned by the server, according to the divide and conquer principle. In the BC server, FL divides the
problem (intrusion detection) and requests participant nodes to work on their own learning models and
expects the responses within stipulated times. As a result, the secured and shared prediction models, as
the aggregated outcome from the BC server, identify the malicious content in the smart grid network. All
the training and signature datasets are stored in the edge devices. The secured environments in participant
nodes are achieved by their local data storages. There is no need to exchange the dataset to the BC
server; instead, each node shares only its own responses through end-to-end encryption. The predictions
are in real-time within the specified time interval. The BC stores all the requests, responses and
summarized results as history of transactions using DLT. The BC DLT transaction is immutable because
any update or change requires approval from the distributed BC nodes. The actual steps of federated
intrusion detection operations are discussed in Algorithm 1.
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Algorithm 1: Federated intrusion detection

INPUT: Intrusion problem P(i), Signature dataset sig(i)

OUTPUT: List of malicious intrusions (M)

1: for each round i = 1, 2, 3, …, n do

2: c(i) = clients set

3: for each client c(i) do

4: c(i) = split(P(i))

5: c(i) = train_model(sig(i))

6: if match(sig(i)=P(i)) then

7: F = F U {sig, P(sig))

8: T = T U {t, P(t)}

9: end if

10: client_update(c, i)

11: done

12: M2 =M2 U {F,F(t)}

13: done

14: for local step j = 1, 2, 3, …, n do

15: M =M – Grad{F(P, t) for P

16: return M to server

17: done

18: END

Notations: P: Problem, Sig: Intrusion Signatures, F: File contains malicious content, T: Time at which
malicious content found, M2: Malicious intrusions include File and Time, Grad: Gradient of intrusion

Figure 1: System architecture
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As described in Algorithm 1, the set of clients (participant nodes) c(i) are selected at random for each
round of iteration in steps 1–2 and responses from the clients are sent back to the server in step 10. The
intrusion detection problem P(i) is split equally and assigned to each client c(i) in step 4. The intrusion
signature dataset sig(i) is used by prediction training models to identify the malicious signature present in
the network. The problem P(i) is considered as suspected content and compared with the signature dataset
sig(i). If a match is found, the confirmed problem signature P(sig) is recorded into a file F and the time at
which the match is found is recorded into a time file T, and these two files are updated to the client node
for each iteration in steps 5–9. Malicious intrusion (M2) is identified through the training dataset and
recorded as a signature file F and time T, as mentioned in step 12. The cumulative federated gradient
results for problem P are aggregated for all clients by the server and returned to the network administrator
in steps 14–16.

4.1 Smart Contract Execution

The SC was established for executing intrusion-learning code in response to the BC server’s request. The
SC made the execution transparent and provided immediate responses to the server. It also maintained logs
using DLT as transactions to store and retrieve all requests/responses. In this study, the FL-XGB modules
were written as an SC and executed in participant nodes as shown in Fig. 1. The federated intrusion
detection operation shown in Algorithm 1 was fully implemented as an SC in which train_model( ),
client_update( ), and the cumulative federated gradient function Grad {F( )} were sub modules of SC, as
depicted in Fig. 2.

4.2 Mathematical Model of Malicious Intrusion Behavior in the Smart Grid Network

Assume that the sample space is comprised of a set of nodes B, M, and N. If B has been identified for its
malicious intrusion behaviour, then operations associated with B, for example B1 + B2 are also malicious.
When B is malicious, the probability distribution associated with B is P(B).

Lemma 1: A node is malicious when all possible values lie within 0 ≤ P(B) ≤ 1. A random experiment to
find intrusion on two independent sets can be obtained by a joint distribution function. Bi is the collection of
discrete malicious events identified by the system that can be stated asX

P Bið Þ where i ¼ 1; 2; 3; . . . ; n

The mathematical experiment for the sample space is taken as S = {a1, a2, a3, …, an}. The distribution
function for the continuous events is F = ∫ P(Bi) where i = 1, 2, 3, …, n. In the distributed environment the
likelihood of intrusion occurring can be expressed as shown in Eq. (4)

Figure 2: Smart contract operation
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P Bð Þ ¼ n Bð Þ
n Sð Þ (4)

where P(B) is the probability distribution of node B, n(B) is the number of malicious nodes, and n(S) is the
total number of nodes in the distributed system.

Lemma 2: In a vector space, distributed nodes are both active and malicious. The subsets of malicious
nodes from the set of nodes span to a set of all linear combinations of r nodes.

When malicious node (a) exists in a vector space that can be defined as N = (n1, n2, n3, …, np), the set
becomes as shown in Eq. (5)

aN ¼ a n1; n2; n3; . . . ; np
� � ¼ ðan1; an2; an3; . . . ; anpÞ (5)

where N is the set of distributed nodes (n1, n2, n3, …, np), and a is a malicious node in the network.

Therefore, the malicious node can exploit and obtain the authorization of each node in the network.
While rectifying the negative effect of malicious nodes, the network shall switch back to normal mode.
This can be stated as,

N þ aþ �að Þ¼ N (6)

where N is a set of active nodes in the network, a is a malicious node, and (�a) is the deactivation of the
malicious node.

When a network contains two malicious nodes a; bð Þ, the intrusion of these nodes can affect all active
nodes in the distributed network. Eq. (7) illustrates the distributed nature of mathematics.

aþ bð Þnp ¼ anp þ bnp (7)

In this case, np is a set of active nodes, and (a; bÞ are malicious nodes in the network.

Eq. (6) is a closure property of a malicious node. While a closure property exists in a network, the nodes
in the network N are present in the complex network space. The trivial intrusion vector space B = [p] is the
property required to function and perform transactions in the network. If f(x) is the function of a valid or
legitimate node in the network g(x) is the function of an invalid or malicious node in the network and
they are in the same distributed vector space network, then, working on the specified time interval [t1, t2]
such that the time is a relatively non-zero constant q, while f(x) and g(x) are a part of same BC network,
then it can be defined as f(t1) = g(t2) = q since f(t) + g(t) = 2 q, whereas while f(t) + g(t) is not present in
the same network, q = 0.

5 Results and Discussion

5.1 Implementation

Tensorflow was developed by Google to support FL and machine learning computations. Keras a python
library, is used to define and train learning models. The Python distribution Anaconda was used to execute
program code and the CUDAToolkit 10.0 by NVIDIAwas used as the API to work with python to accelerate
the compilation process. Ethereum BC was installed to create BC user accounts, and Solidity was used to
write SC to be executed on top of Ethereum BC. Ganache-CLI was used as the command line interface
to execute all types of Ethereum BC transactions and the SC was deployed on Ethereum to implement
the FL algorithm for intrusion detection in the smart grid network.
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5.2 Network Scanning

The network scanning tool Network Mapper (NMAP) was used to scan network ports, internet protocol
(IP) addresses and applications running inside the network. NMAP finds and reports vulnerabilities in
network devices and applications. NMAP detects malware applications, hijacking vulnerabilities, blocks
trojan execution within the smart grid network, and safeguards smart meters from bot injection attacks. It
scans and protects the web servers, network applications, antivirus systems, domain name system (DNS)
servers, and operating systems through its timely reports to the administrator.

5.3 KDD Cup’ 99

The KDD Cup’ 99 dataset was used for the intrusion detection operation in our experiment. The dataset
has many attributes with associated features. The important attributes contained in KDD are transmission
control protocol (TCP) connections, traffic, attack vectors, etc. [21]. The KDD dataset contains
4898431 records out of which 93% are attack signatures. The proposed federated prediction models were
applied on this dataset to analyze the accuracy, prediction time, etc. The following Table 2 shows the
experimental support provided by the KDD dataset, the sample list of cyber intrusion classes, and their
corresponding cyber-attacks.

When U2R attacks are considered, the major cyber-attacks such as buffer overflow, LoadModule, PS
attack, and Xterm can be identified by the KDD dataset. A simple definition of these attacks is as
follows. The buffer overflow attack copies large volumes of data into program buffers causing system
overflow. The loadmodule attack dynamically loads multiple kernel modules for execution which kills the
system. The PS attack executes race conditions in programs, putting the system in one or more infinite
loops. The Xterm attack enables the attacker to execute commands in the server, providing complete
control of the system to the attacker.

5.4 Experimental Study

The problem P was divided into three parts that were assigned to Participants A, B, and C, and the results
were sent back to the server for aggregation. Tables 3.1 and 3.2 list the results from Participant nodes A, B,
and C. The extracted number of features and accuracy have been listed for the given record set (A–D)
containing between 1000 and 8000 records. The tables also list the aggregated or federated results of the
participant nodes (clients). It is clear from Table 3.2 that the accuracy (%) achieved by the federated
results is higher than that achieved by the results produced by Participant nodes A, B, and C.

5.5 Block Storage and Retrieval in BC

The BC contains a chain of blocks (Block 1, Block 2, Block 3,…, Block n) as shown in Fig. 3. A block
stores information such as energy information that includes source and units, transaction information, that
includes trades, and timestamp information that conveys the time at which the block was created or added

Table 2: Attack vectors provided by the KDD dataset

Class Sample attacks

Denial of Service (DoS) UDP, Storm, Worm, Back, Smurf

Remote to Local (R2L) Guess_Password, Spy, Imap, Xlock

Probe Satan, Saint, Mscan

User to Root (U2R) Buffer overflow, LoadModule, PS, Xterm
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to the chain. Block hashes start at 0000 for Block 1, and the remaining blocks store the hash of the previous
block to increase the difficulty of opening the block for an attacker/intruder.

The BC stores and retrieves energy information from the blocks. The blocks residing in the BC are
secured by its own secure hash algorithm (SHA-256) cryptographic hashing function. The transactions
such as retrieval and update are protected by its digital signature operation. Table 4 shows the storage
time and retrieval time of the respective number of blocks. The average time required to store 10 blocks
was 180 s, and the average time required to retrieve 10 blocks was 2.16 s according to the results
obtained from the simulation study.

Block storage time and retrieval time analyses were performed with respect to block size (number of
blocks) and time in seconds, as shown in Figs. 4a and 4b. As the block size increased, the storage and
retrieval times also increased. The average retrieval time of the blocks was lower than their average

Table 3.1: Learning results of participant nodes A, B

Record set Features Participant node-A accuracy (%) Participant node-B accuracy (%)

A–1000 20 96.20 95.50

B–3000 30 95.30 96.40

C–5000 35 97.10 97.90

D–8000 40 94.30 95.50

Table 3.2: Learning results of participant node C and server

Record set Features Participant node-C accuracy (%) Server aggregated accuracy (%)

A–1000 20 97.70 98.50

B–3000 30 95.30 97.50

C–5000 35 98.20 99.00

D–8000 40 96.70 98.80

Block 1

Block’s Hash- 00

Timestamp

Energy
Information 

Transaction

Block 2

Previous Hash

Timestamp

Energy
Information 

Transaction

Figure 3: Sample BC model
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storage time. This is because the storage operation involves block creation, transaction and cryptographic
operation, whereas the retrieval operation simply verifies and validates the credentials and keys, respectively.

As shown in Table 4, the average storage time for 10 blocks is 180 s and the average retrieval time is
2.16 s. The threshold time was set as per the results listed in Table 5 to perform intrusion analysis in the
network. The storage and retrieval threshold times for a block were 18 s and 0.216 s respectively. Table 6
compares the actual time taken and the corresponding threshold time counterpart for varying block sizes
of 15–350. Table 6 shows the confirmed intrusion by including time variation between the actual and
threshold times. The intrusion was confirmed for the block sizes of 25, 100, 200 and 350 respectively.
The actual storage time taken for the block of size 25 was 470.2 s which exceeded the threshold time of
450 s by +20.2 s. Therefore, storage intrusion (S.I) is confirmed. The actual retrieval time taken for the
block of size 25 was 6.2 s which exceeded the threshold time of 5.4 s by +0.8 s. Therefore, retrieval
intrusion (R.I) is confirmed. The existences of S.I and R.I and the corresponding time differences from
the threshold times are stated in Table 6.

The S.I and R.I analyses for the data presented in Table 5 are depicted in Figs. 5a and 5b. The threshold
time for each block size is depicted by a point and the actual times taken for storage and retrieval operations
for varying block sizes are depicted by lines. It is clear from the graphs for the storage and retrieval operations
that the actual time (line) above the threshold time (point) has been identified as the intrusion, as listed in
Table 6. Upon considering storage intrusion in the block of size 200 and retrieval intrusion in the block
of size 350, the actual time taken (line) is found to lie clearly higher than the threshold time (point).
Therefore, intrusion is verified.

Table 4: Block storage and retrieval time

No. of blocks Storage time (s) Retrieval time (s)

1 10 0.3

5 100 1.05

10 180 2.16

Figure 4: Block time analysis (a) storage time (b) retrieval time
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The S.I and R.I analyses for the data presented in Table 5 are depicted in Figs. 5a and 5b. The threshold
time for each block size is depicted by a point and the actual times taken for storage and retrieval operations
for varying block sizes are depicted by lines. It is clear from the graphs for the storage and retrieval operations
that the actual time (line) above the threshold time (point) has been identified as the intrusion, as listed in
Table 6. Upon considering storage intrusion in the block of size 200 and retrieval intrusion in the block
of size 350, the actual time taken (line) is found to lie clearly higher than the threshold time (point).
Therefore, intrusion is verified.

Table 5: Block storage and retrieval threshold time analysis

Block size Storage time (s) Storage threshold time (s) Retrieval time (s) Retrieval threshold time (s)

15 260.4 270 3.20 3.24

25 470.2 450 6.2 5.4

50 880.6 900 9.8 10.8

100 1950.4 1800 23.0 21.6

200 3900.5 3600 45.0 46.8

350 6460.3 6300 79.2 75.6

Table 6: Storage and retrieval intrusion analysis

Block size Storage time (s) Storage intrusion (S.I) (s) Retrieval time (s) Retrieval intrusion (R.I) (s)

15 260.4 0 (−9.6) 3.20 0 (−0.04)

25 470.2 S.I (+20.2) 6.2 R.I (+0.8)

50 880.6 0 (−19.4) 9.8 0 (−1.0)

100 1950.4 S.I (+150.4) 23.0 R.I (+1.4)

200 3900.5 S.I (+300.5) 45.0 R.I (+1.8)

350 6460.3 S.I (+160.3) 79.2 R.I (+3.6)

Figure 5: Intrusion analysis (a) storage intrusion (b) retrieval intrusion

2140 IASC, 2023, vol.36, no.2



6 Result Analysis

A list of the tests conducted and their analysis metrics and results is provided in Table 7. The individual
tests and their results are discussed in this section. According to the literature survey, the proposed
experimental work and its concept have improved the accuracy and gain. A possible intrusion of 1.2%
was found for every 350 blocks of storage and retrieval operations in the application system. Therefore,
this study has provided a clear vision of both vulnerability and gain in the smart grid system.
Furthermore, the experimental study has provided insight into possible intrusions into the smart energy
system. Table 8 compares the results of recent studies associated with smart grids, intrusion detection
operations, and BC.

Table 7: Result analysis of proposed work

Test Analysis metrics Results

Vulnerability
test

940 Ports analyzed 3 Ports are vulnerable

FL-Accuracy
test

5000 Record set
analyzed

FL-Aggregation accuracy is 99%

Storage gain
test

Total 350 blocks are
analyzed

Storage gain is 97.5%where actual storage time (6460.3 s) from the
threshold time (6300 s)

Retrieval
gain test

Total 350 blocks are
analyzed

Retrieval gain is 95.4%where actual retrieval time (79.2 s) from the
threshold time (75.6 s)

Intrusion test Total 350 blocks are
analyzed

Legitimate action: 98.8%

Intrusion action: 1.2%

Storage intrusion: 4 out of 350

Retrieval intrusion: 4 out of 350

Table 8: Comparison of results of contemporary studies

Author Literature study Proposed system

Shanmugapriya
et al. [22]

Deep learning precision and accuracy of
intrusion detection are high, but intrusion test
is not performed.

FL tested intrusion both at storage and
retrieval operations.

Yu et al. [23] Accuracy of ANN training is 98% FL-aggregation accuracy is 99%.

Intrusion test on AI based Gray-Wolf
optimization Intrusion on data injection:
maximum 90% legitimate action.

Maximum 98.8% accuracy achieved.

Mishra [24] BC based bifold intrusion detection system
obtained storage and retrieval intrusion results
for 100 blocks as 200 s and 5 s respectively.

Storage and retrieval intrusions for
100 blocks found at 150.4 s and 1.4 s
respectively.

Agung et al.
[25]

The processing time for 100 transactions was
approximately 12 s.

Required approximately 9 s for
100 transactions.
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The proposed system has comparatively given best performance with the current works associated with
the same domain and application.

7 Conclusion

The system developed in this study ensures the security of energy data, identifies hostile intrusion, and
verifies its functionality in the smart grid network. The IP addresses, network ports, and active applications of
the smart grid network were scanned using the network scanning tool NMAP. With the support of the BC
server, the proposed federated XGB architecture was able to detect network intrusion with an accuracy of
nearly 99%. In our investigation, intrusion detection was conducted using the KDD Cup’99 dataset. The
proposed system examined storage and retrieval intrusions by setting a threshold time that validated
harmful intrusions into the network. Energy information was built using the Ethereum BC as a series of
blocks. In the proposed design, a BC server was utilized to manage all operations, including information
block storage, retrieval operations, distribution and aggregation of federated models, history maintenance
in ledger, network and stakeholder operations safety. The findings of this experimental study are
presented in Sections 5 and 6, together with considerations for all analytical factors, including system
security, mathematical modeling, proof of efficiency by gain, and analysis of privacy by authentication.

8 Future Work

In our future studies, key-exchange mechanisms will be used for secure end-to-end communication, and
the responses from the edge devices will be further improved. An effective systematic technique can be
presented to quickly eliminate the intrusion. When the FL participant nodes respond to and communicate
their output results with the aggregate server, strong multi-level encryption/decryption can be used. The
size of the network can also be considered while evaluating the key network quality standards, such as
throughput and response time.
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