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Abstract: Existing firefighting robots are focused on simple storage or fire sup-
pression outside buildings rather than detection or recognition. Utilizing a large
number of robots using expensive equipment is challenging. This study aims to
increase the efficiency of search and rescue operations and the safety of firefigh-
ters by detecting and identifying the disaster site by recognizing collapsed areas,
obstacles, and rescuers on-site. A fusion algorithm combining a camera and three-
dimension light detection and ranging (3D LiDAR) is proposed to detect and loca-
lize the interiors of disaster sites. The algorithm detects obstacles by analyzing
floor segmentation and edge patterns using a mask regional convolutional neural
network (mask R-CNN) features model based on the visual data collected from a
parallelly connected camera and 3D LiDAR. People as objects are detected using
you only look once version 4 (YOLOv4) in the image data to localize persons
requiring rescue. The point cloud data based on 3D LiDAR cluster the objects
using the density-based spatial clustering of applications with noise (DBSCAN)
clustering algorithm and estimate the distance to the actual object using the center
point of the clustering result. The proposed artificial intelligence (AI) algorithm
was verified based on individual sensors using a sensor-mounted robot in an
actual building to detect floor surfaces, atypical obstacles, and persons requiring
rescue. Accordingly, the fused AI algorithm was comparatively verified.

Keywords: Three-dimension light detection and ranging; vision; risk
identification; damaged building; robot

1 Introduction

Despite the rapid development in technology, buildings collapse and related casualties caused by natural
or man-made disasters occur every year. Because buildings that are aged or not regularly maintained are
significantly affected by minor external environmental changes, it is difficult to determine the stability of
structures over time, which may lead to the collapse of buildings. A report by the American society
of civil engineers reported [1] that in the United States (U.S.), water pipes burst every two minutes, 43%
of public roads are in inferior conditions, and 7% of the bridges, which are used by millions of
commuters each day, are “structurally defective”. For example, the Hard-rock hotel in New Orleans
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collapsed during construction because of a lack of construction stability. Three construction workers were
killed, and dozens injured. In 2022, the floor of a building in Hackney Wick in the United Kingdom
(UK) collapsed, causing serious injuries to three people and minor injuries to 13 people [2]. In 2017, a
fire broke out in a high-rise building in Tehran, the Iranian capital, which caused the building to collapse,
thus killing 20 firefighters [3]. If firefighters are sent in for search and rescue operations without a prior
understanding of the disaster situation in a collapsed building, casualties may occur. It may also cause
inefficiencies in search and rescue operations. Most of the robots currently used in disaster situations can
only perform simple fire suppression and observe the inside of a disaster building using only cameras or
existing building drawings. However, it has difficulties in clearly assessing the disaster situation, and the
ineffective response at the disaster site may lead to enormous damage in the future. At disaster sites, it is
necessary to detect deformed and damaged obstacles and internal debris from building collapses rather
than identifiable objects. It is also necessary to allow firefighters to determine whether the space is
searchable and to detect rescue requests, which is the most important task at disaster sites. Therefore, this
study aims to identify obstacles and rescue requests and to understand disaster sites for efficient and rapid
search and rescue operations within buildings that have been destroyed by disasters.

To identify a disaster site, it is necessary to detect the collapsed areas, obstacles, and persons requiring
rescue in the disaster site and estimate the location of the detected objects in the disaster-hit building. In such
a case, obstacles at the disaster site refer to debris caused by the collapse and atypical obstacles that are
difficult to identify as they are deformed from the original shape of objects before the collapse. Research
on detecting atypical obstacles usable at disaster sites is necessary owing to the challenges of detecting
such obstacles with a conventional supervised learning method. To this end, an algorithm incorporating
the fusion of a camera and low-cost three-dimension light detection and ranging (3D LiDAR) [4] is
proposed. Although a camera can accurately detect obstacles and persons requiring rescue, it can be
difficult to use at actual disaster sites owing to the unique characteristics of a disaster environment,
including light and gas. Although 3D LiDAR is relatively less affected by the external environment, it
may still be difficult as it is an expensive device costing more than 10 thousand dollars. We conducted
this study using a low-cost, short-range 3D LiDAR of less than 2 thousand dollars. The point cloud data
collected by the high-cost long-range 3D LiDAR are composed of dense dots; thus, the shape of an
object can be recognized as an image. However, it is difficult to recognize the distinct shape of an object
from the point cloud data collected by the low-cost short-range 3D LiDAR. This study identified the
shape of an object based on the camera and improved the detection accuracy by fusing it with the object
detected by 3D LiDAR. Deep learning-based floor segmentation was then applied using the camera, and
obstacles were detected by analyzing the segmentation patterns in areas excluding the floor surface. To
reduce human casualties or key elements at a disaster site, this study detected obstacles and people
through a deep learning-based object detection algorithm. The 3D LiDAR detects clustering-based objects
and uses the central point of clustering to find the distance to an object. The camera and 3D LiDAR were
installed facing the same direction, and a label was given to the 3D LiDAR cluster by matching it with
the nearest cluster. Here, the accuracy of the algorithm for detecting an obstacle and the person seeking
rescue was 0.93. This study utilized a low-cost 3D LiDAR, camera, and entry-level robot, thus reducing
the replacement and repair cost burden in the field. The detected obstacles and persons seeking rescue
will enable safe, efficient, and rapid rescue and search operations when firefighters are sent into disaster-
hit buildings.

The remainder of the paper is organized as follows. Section 2 introduces various studies using cameras,
two-dimension light detection and ranging (2D LiDAR), and 3D LiDAR to identify disaster sites. Section
3 designs the proposed system and algorithm. Subsequently, a detection algorithm that determines the
feasibility of entering a disaster site and detects obstacles and persons in need of rescue is explained.
Additionally, the algorithm for estimating the location of a disaster site from the actual detection result by
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fusing the detection result with the LiDAR is explained in detail. Section 4 presents the results of experiments
conducted by installing sensors on actual robots. Section 5 summarizes the study and describes the direction
of future and related research.

2 Related Work

Research [5] is related to detecting an object using the Viola–jones [6] and you only look once version 3
(YOLOv3) [7] algorithms for image data obtained through a camera and tracking the object using the median
flow [8] and correlation tracking methods. In the image obtained by the front camera, an object is detected
every 10th frame through object detection algorithms, and in other frames, the location of the object detected
in the previous frame is tracked by the tracker. Research [9] proposed detecting an object using a stereo
camera and finding the distance to the object. It proposed a method of detecting an object using you only
look once (YOLO) and finding the distance to the object using the angle between the direction of the
object detected by each camera and camera lens axis. Using the proposed method, the distance to the
object can be obtained using only a camera and no LiDAR sensor. Research [10] designed a
convolutional neural network (CNN) based multi-view smart camera for real-time object detection. Using
a CNN utilizing a multi-field programmable gate array (multi-FPGA) accelerator architecture, the
recognition rate was shown to be equivalent even if the number of parameters is reduced in the existing
CNN. Furthermore, various studies [11–13] have been conducted using deep learning networks to detect
various objects by training the model based on the features of objects. Research [14] installed an
omnidirectional camera on a drone to detect an object in the air. The research used Ladybug5 [15] as the
omnidirectional camera. The processing region from the image acquired by the camera driver module
using the Region of interest (ROI) extractor module was extracted. Furthermore, the experimental results
showed that the detection performance was higher than that of faster regional convolutional neural
network (faster R-CNN) [16] because the Single shot multibox detector (SSD) method [17] was used for
object detection. The experimental results showed higher detection performance than faster R-CNN when
using the SSD method. Research [18] fused algorithms to capture fast-moving drones. The contiguous
outlier representation via online low-rank approximation (COROLA) algorithm [19] was used to detect
small moving objects present in the scene. The CNN algorithm was used to enable accurate drone
recognition in a wide range of complex scenes. Research [20] used a monocular camera to detect
obstacles and estimate the distance to the obstacles. The research separated the bottom surface after
image segmentation was completed through the mask regional convolutional neural network (mask R-
CNN) [21] algorithm. If the shape of image segmentation was normal, a specific point of the image was
designated as a point of interest to find a line for the point, and an obstacle was detected by analyzing the
pattern of the line. The height of the detected obstacle was estimated using image processing. The
distance to the obstacle was then estimated using the polynomial regression function obtained from
the pixel value of the line up to the obstacle and the actual value between the robot’s starting point and
the obstacle. Research [22] improved the performance of current state-of-the-art single-shot detection
networks using red, green, blue (RGB) and depth images fused with depth data on RGB image data for
camera-based object detection. A fuse layer architecture was constructed to fuse the two data sources.
The research proved that RGB and depth fusion increases both the conventional detection accuracy and
positioning performance of object detection regardless of the depth acquisition method.

Various studies have been conducted on the convergence of cameras and 2D LiDAR. There was a study
[23] that created a map containing more specific environmental information than a map created using the
existing 2D LiDAR by fusing the map obtained through the RGB image and its corresponding depth
image (RGB-D) camera and the map obtained through the 2D LiDAR. The map finally generated using
this method had similar results to those generated using 3D LiDAR. Another study combining 2D
LiDAR and a camera [24] proposed an algorithm to detect lanes in areas obscured by objects such as
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vehicles. Objects on the road were detected via the 2D LiDAR. A binary bird’s eye view (BEV) image was
acquired from the camera data, and a modified BEV image was generated by removing the noise generated by
the object. The algorithm increased the lane detection accuracy and robustness. Research [25] conducted road
detection by fusing a camera and 2D LiDAR based on a single conditional random field (CRF) framework
[26]. A dense result was obtained by upsampling the sparse LiDAR data in the camera image area. Road
detection via a camera was performed using previous research on semantic segmentation. Research [27]
used a 2D LiDAR and RGB-D camera to semantically detect objects. A grid map was generated and the
robot trajectory was obtained using laser-based simultaneous localization and mapping (SLAM). The
object point cloud was then fused with the creation result through camera calibration and mask R-CNN
based object detection. Research [28] fused a 2D LiDAR and camera to detect an object and display it on
a SLAM-generated map. Objects are found by implementing the SSD object detection algorithm to the
camera’s image data. The 2D LiDAR uses SLAM to create maps. Here, the detected object was added to
the map using the map update method proposed by the research. Research [29] used various sensors,
such as 2D LiDAR and home cameras, to detect people in abnormal situations. The movement patterns
of people in motion were analyzed through 2D LiDAR, and points were detected for both when they
were moving and not moving. Additionally, people as objects were detected through YOLOv4 in the
image data of home camera.

There are numerous studies on object detection by fusing a camera and 3D LiDAR. Research [30]
detected objects by segmenting the point cloud and image values of 3D LiDAR. The research proposed a
methodology for detecting a vehicle by fusing an object obtained through RGB-based CNN from an
image and a 3D LiDAR point cloud and localizing it through binary BEV point cloud projection. A study
[31] combining 3D LiDAR and a camera to detect an object, obtained an object from a point cloud to 3D
LiDAR through pointnet++, and fused it with the object information obtained through the camera to
achieve final 3D object detection through a region proposal network. Research [32] investigated the
unsupervised domain adaptation (UDA) methodology [33] based on the fact that modern detectors can
significantly degrade performance between domains. It proposed the semantic point generation (SPG)
method to identify the point cloud quality acting as a cause of domain performance degradation during
detection. Pointpillars [34], Pointvoxel regional convolutional neural network (PV R-CNN) [35], and
SPG were comparatively tested to verify their applicability in various weather conditions. Most LiDAR-
based 3D detections are hand-crafted. Hand-crafting is limited by a bottleneck that prevents the effective
use of data required for three-dimension (3D) shape and detection work. Research [36] studied cloud 3D
detection based on an end-to-end trainable deep network [37] that can solve such a challenge. The
Voxelnet methodology proposed in the research can effectively obtain 3D shapes by directly accessing
the 3D point. Research [38] studied a more efficient and accurate 3D object detection. It proposed a range
sparse net (RSN) model method that predicts foreground points from a range image and detects objects
by applying sparse convolutions. Voxelization was performed on the points for the selected object by
executing the sparse point feature extraction (SPFE) algorithm. Additionally, research [39] studied 3D
LiDAR for object detection in embedded systems. It proposed a visual-LiDAR that fuses a camera and
3D LiDAR for an efficient perceptual system and investigated 3D object detection and tracking. The
LiDAR point cloud was measured as a pose value trackable through ground removal and clustering.
Localized bounding boxes and class data were simultaneously provided through the YOLOv3 algorithm.
This was conducted using the Karlsruhe institute of technology and toyota technological institute (KITTI)
datasets [40].

3 Algorithms

This study detects and localizes obstacles and persons requiring rescue at disaster sites using cameras
and LiDAR for efficient and rapid rescue and search in disaster situations. This section describes the
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entire research system for collecting and processing data. It then describes the detection algorithm for
obstacles and victims, such as buried people, and the localization algorithm based on the detection.

3.1 Data Collection and Processing

A smartphone and LiDAR sensors are installed on a robot. Data are then collected using these sensors
when the robot moves. Fig. 1 shows the overall data flow and processing procedure of the system.

The shape of objects and obstacles can be identified as the image data collected via smartphone has RGB
image values. The collapse and damage status of the floor and wall using the image data can also be
identified. Fig. 2 shows the algorithm used for the 3D LiDAR that estimates the size and location of
detected objects and obstacles.

The algorithm is fused after parallel processing with two algorithms that process camera and 3D LiDAR
data. Point cloud data collected through 3D LiDAR carry x-axis, y-axis, and z-axis 3D vector values. Objects
are clustered and classified per object after separating them from spaces by clustering the point values of 3D
LiDAR. Subsequently, the center point of the classified clusters is determined, and the range value of the
point closest to the center point is stored. The camera provides image-based RGB image frame data while
two algorithms are processed in parallel. Here, a deep learning-based object detection algorithm is
utilized for rapid rescues, which is the most important factor in a disaster situation. Objects at disaster
sites are usually deformed into abnormal or difficult-to-recognize shapes. Furthermore, debris and
collapsed structures caused by the collapse are present within the building. A study was conducted to

Figure 1: Overall system configuration of the proposed methodology
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define such atypical objects as obstacles and to detect obstacles in image data. The floor surface is first
detected to determine whether the space can be entered. If the space is deemed accessible, floor patterns
are analyzed to detect obstacles. If the space is deemed inaccessible, its data is directly sent to the server
to notify the disaster situation control center of its inaccessibility. When a person is detected through an
obstacle and object detection algorithm based on the analyzed pattern, the camera and 3D LiDAR are
installed on the robot to face an identical direction to match the cluster’s center point extracted from the
3D LiDAR. The closest point in the 3D LiDAR cluster is matched following the position and size orders
of the image’s bound box. Labels are given to the point cloud cluster through the matching result based
on the camera’s object detection result. A person and obstacle can be localized through the range value.
Here, the 3D LiDAR can detect a wide range from floor to ceiling. It is possible to check accessibility, as
well as the damage and collapse status of floors, walls, and ceilings by fusing the damage and collapse
situation determined by the camera and the detection result from the 3D LiDAR. The detected results are
transmitted to the main cloud server controlling the disaster situation. Such data enable the identification
of disaster sites within buildings and rapid deployment of rescuers for search and rescue operations.

3.2 Obstacle and Object Detection

Using cameras, two algorithms are used to detect obstacles and persons requiring rescue, such as those
buried in disaster-hit buildings. An algorithm for detecting obstacles and determining accessibility was
studied in the previous research [20]. Fig. 3 shows the overall flow diagram of the detection algorithm.

To determine accessibility, floor segmentation is analyzed through mask R-CNN in camera-based image
data. The segmentation of the unobstructed, searchable, and accessible floor surface has a normal triangular
shape, whereas that of an obstructed, unsearchable, and inaccessible floor has an abnormal shape, as shown
in Fig. 4.

If the corridor is determined to be accessible, then the presence of obstacles can be determined by
analyzing the edge of the segmentation through the line segment detector [41]. If the obstacle pattern is
present on the floor, it is determined that obstacles are present, and their sizes are estimated through the
camera. The area with the obstacle is obtained for the estimation. The area without obstacles is

Figure 2: Flow chart of the proposed algorithm
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determined based on the farthest point among the points obtained through the floor pattern. The obstacle
characteristics are clearly expressed through the morphology operation [42], where the obstacles are
present on the other side. The morphology operation is a technique that analyzes the objects’ shape or
structure from image data. This method extracts the main obstacles characteristics by performing opening
and then closing computations. The uppermost characteristic point among the main characteristics is
determined as the height of the obstacle. With this, obstacles are detected, and their shapes are
determined. The second algorithm detects the buried persons through the you only look once version 4
(YOLOv4) algorithm [43] for rescue operations, which is the most important factor at disaster sites. The
YOLOv4 model and Common Object in Context (COCO) datasets [44] trained with human labels detect
even small indications of people in the image with high accuracy. However, the accuracy of using a
camera to determine accessibility and the presence of obstacles and persons in need of rescue varies
depending on the disaster environment. In particular, accurate detection cannot be performed with image
data alone in a dark situation owing to a lack of light or clouds caused by gas. Because this study
assumes a disaster situation, there is a high probability that the building’s power system will fail and
there will be no lighting; however, disaster situations can occur at any time of the day or night.
Additionally, the image data cannot make accurate detections if there is dust caused by the building
collapse or fire smoke. Therefore, accurate detection must be achievable even without light. To solve
such challenges and to more accurately localize obstacles and persons seeking rescue, a LiDAR fusion
algorithm is proposed.

3.3 Obstacle and Object Localization

3.3.1 2D LiDAR and Camera Fusion
We investigated the fusion of a 2D LiDAR and camera [45] to accurately localize obstacles. The

obstacles were detected, and disaster site maps were generated using the 2D LiDAR based on the
proposed algorithm. The 2D LiDAR utilized the hector SLAM methodology [46] to locate the robot and
generate a map, as shown in Fig. 5.

Figure 3: Flow diagram of obstacle detection algorithm
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Hector SLAM is a method of performing real-time matching based on the scanned point cloud that
allows for the creation of a map using 2D LiDAR. In this case, the map update algorithm proposed by
segmentation SLAM [28] was used to display the detected obstacles on the map. The map update
algorithm displays the object on the map by matching the 2D LiDAR-based scan result on the current
map with the bounding box obtained by the object detection algorithm. The size of the detected obstacle
was estimated and updated on the map. A disaster site map was created by indicating the accessibility of
a passage through the collapsed floor, as shown in Fig. 6. The red line is the scan result, and the gray part
is the mapping result.

The estimation accuracy of obstacle localization using 2D LiDAR is higher than when using only the
camera. Nevertheless, existing methods still depend solely on the camera for obstacle detection, making
them vulnerable to the environmental factors in disaster-hit buildings, such as light and gas. Additionally,
size estimation using a robot moving on uneven surfaces at disaster sites may yield inaccurate results as
estimating the obstacle size is also based on image data. To solve challenges induced by the specificity of
disaster situations, this study detects objects by clustering point cloud data of 3D LiDAR rather than
relying only on a camera when estimating obstacles.

Figure 4: Example of detecting a normal corridor and a corridor blocked by obstacle through floors in an
indoor space

Figure 5: Result of the hector SLAM via 2D LiDAR
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3.3.2 3D LiDAR and Camera Fusion
The results of the point cloud data based on 3D LiDAR are shown in Fig. 7.

Of the 1,003,006 points collected, only 3000 of the corresponding data are coordinates walls are
separated from objects by clustering 3D LiDAR-based point cloud data through the density-based spatial
clustering of applications with noise (DBSCAN) algorithm [47]. Here, the DBSCAN clustering is applied
to the point cloud classified as an object to classify the separated results once again. Fig. 8 shows the
result of classifying the point cloud determined as an object. The epsilon value which is the hyper
parameter value of DBSCAN is 0.8. Then, the center point of the point cloud clustering result
categorized per object is determined. The distance to the object is estimated based on the value of the
point closest to the x-axis, y-axis, and z-axis coordinates of the corresponding center point. This study
used a low-cost, short-range, single-channel 3D LiDAR costing less than $1,077 rather than a long-range
scan-capable, multi-channel 3D LiDAR costing tens of thousands to several tens of thousands of dollars.
This study was conducted using a low-cost 3D LiDAR to reduce the cost burden as the 3D LiDARs
installed on robots may be damaged in disaster sites, or multiple 3D LiDARs may need to be used to
cover a larger disaster area. However, unlike high-cost 3D LiDAR, low-cost 3D LiDAR makes it difficult
to accurately identify the shape of an object. Therefore, fusion with a camera is proposed because it is
necessary to distinguish between an obstacle and a person.

Figure 6: Result of maps

Figure 7: Example of a 3D LiDAR point cloud scan
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When installing the 3D LiDAR on the robot, it should be placed on a vertical line with the camera so that
both can detect and localize the same object based on the direction of movement of the robot. If the camera
determines that there is an object, such as an obstacle, the 3D LiDAR checks the presence of an object cluster
in that direction. In this case, the result of detecting the obstacle and the requestor for rescue in the camera is
shown in Fig. 9. If both the camera and 3D LiDAR determine that there is an object, the distance to the object
is estimated using the x-axis value among the point coordinates of the cluster’s center point. The cluster
closest to the center of the image is then selected and labeled as an obstacle or a person in need of
rescue, based on the camera’s estimation. This study can directly specify the initial position of the robot
and the starting point inside the building. This study was conducted based on previous research [48] to
reset the error caused by the robot’s movement. The current robot position is estimated based on the
distance the robot has moved to localize obstacles and persons seeking rescue in the building, and their
locations can be obtained by fusing the LiDAR’s spatial scan results.

Figure 8: Example of object clustering in a 3D point cloud

Figure 9: Result of detecting obstacles and person in need of rescue using pattern analysis and resulting
images for estimating the height of obstacles and person in need of rescue
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4 Experiments and Results

As shown in Fig. 10, sensors were installed on the actual robot to detect and localize obstacles. The
camera used here is Samsung’s S10 [49], and the 3D LiDAR is the Yujin Robot’s YRL3-v10 model [4].
The robot used in the experiment is the OMO Robot’s R1 model [50].

The experiments were carried out to detect obstacles and rescue requests and estimate their locations
using a camera, 2D LiDAR, the combination of camera and 2D LiDAR, 3D LiDAR, and the combination
of camera and 3D LiDAR while walking around real buildings on the university campus. In the building,
there were general objects such as chairs, desks, and lockers, as well as blackboards, sofas, water
purifiers, and newsstands. In order to simulate a disaster situation, the objects were knocked down and
placed in unusual shapes. Table 1 shows the results of the experiment.

The 3D LiDAR and camera fusion has the highest obstacle detection accuracy of 0.93. In the past, only
tomographic spatial data could be obtained using a 2D LiDAR and camera. However, in the case of a 3D
LiDAR-based point cloud, as shown in Fig. 11, the space of the current single floor can be identified in
detail up to the ceiling, and it is possible to predict even other sites because the ceiling of the current
floor becomes the floor of the upper floor.

Assuming various situations within the disaster site, the possibility of detection and estimation is shown
in Table 2. Obstacles and persons requiring rescue were marked with ‘O’ if detection and localization were
possible and ‘X’ otherwise.

Using a 3D LiDAR and camera, it was possible to detect and localize obstacles and persons requiring
rescue in more situations than other models.

Figure 10: Setup of robot for experiments

Table 1: Obstacles per sensor and accuracy of the detection of persons requiring rescue

Algorithm Modal Accuracy

Obstacle and object detection Camera 0.87

Camera + 2D LiDAR 0.56

Camera + 3D LiDAR 0.93
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Figure 11: Three-dimensional LiDAR point cloud results

Table 2: Detection and localization of obstacles and persons requiring rescue per sensor based on the situation

Situation/State Algorithm Modal Availability

Building collapse disaster
situation
that occurred during the day

Obstacle and object detection Camera O

Camera + 2D LiDAR O

Camera + 3D LiDAR O

Obstacle and object
localization

Camera O

Camera + 2D LiDAR O

Camera + 3D LiDAR O

Building collapse disaster
situation
that occurred during the night

Obstacle and object detection Camera X

Camera + 2D LiDAR X

Camera + 3D LiDAR O

Obstacle and object
localization

Camera X

Camera + 2D LiDAR O

Camera + 3D LiDAR O

Building interior full of smoke
due to fire

Obstacle and object detection Camera X

Camera + 2D LiDAR X

Camera + 3D LiDAR O

Obstacle and object
localization

Camera X

Camera + 2D LiDAR X

Camera + 3D LiDAR O
(Continued)
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5 Future Work

This study was intended to show the exact location of the disaster situation on the building drawing by
detecting and determining the location of obstacles in space, the possibility of entry, and rescue requests.
However, there are old buildings for which no drawings are available, and there are cases where existing
drawings have become obsolete as the topography of the buildings has been changed due to disasters.
Therefore, it is intended to use a 3D LiDAR-based SLAM algorithm in the future to detect and map the
topography or obstacles of a disaster site to create a 3D map of the disaster site without existing
drawings. There are various studies on the way to detect and map the surrounding topography or
obstacles using the 3D LiDAR-based SLAM algorithm based on the information obtained by the camera
and 3D LiDAR. Research [51] proposed a LiDAR-based SLAM loop closing methodology for measuring
distances using 3D LiDAR sensors. After measuring the distance between objects based on the 3D
LiDAR range image method, the overlap amount was obtained using the degree of overlap or function
loss between the two values. Overlapnet using loop closing was proposed afterward in which the higher
the value, the higher the coincidence rate. Research [52] used a surfel-based registration methodology to
register the measured values scanned using the 3D LiDAR on the map based on the hierarchical
refinement back-end [53]. The research combined the measurements into a multi-resolution map for
localization. The measurements were refined using a continuous-time trajectory representation [54] for
graph optimization. Research [55] used directed geometry point (DGP) and sparse frames to increase the
localization accuracy. The research performed data optimization by iteratively learning with the scan-to-
match module after extracting geometric points using the DGP extraction module. Research [56]
proposed efficient 3D mapping with segment group matching. The research performed real-time loop
detection using geometric segments extracted from LiDAR points. Robustification techniques were used
to enhance the precision. Based on this, the segment-group matching (SGM) and SGM with pose-based
method (SGM-PM) algorithms were proposed. Research [57] aimed to improve the 3D LiDAR large-area
mapping accuracy and efficiency. Real-time distributed cooperative SLAM (RDC-SLAM), which
transmits distributed data and fits the narrow bandwidth and limited range environment, is proposed. The
research has the advantage of using the descriptor-based registration method to increase the efficiency in
calculation time and data transmission. The distributed graph optimization module also connects data

Table 2 (continued)

Situation/State Algorithm Modal Availability

Multiple overlapping atypical
obstacles due to the collapse

Obstacle and object detection Camera O

Camera + 2D LiDAR X

Camera + 3D LiDAR O

Obstacle and object
localization

Camera O

Camera + 2D LiDAR X

Camera + 3D LiDAR O

The ceiling inside the building
collapsed due to the collapse
of the building

Obstacle and object detection Camera O

Camera + 2D LiDAR X

Camera + 3D LiDAR O

Obstacle and object
localization

Camera O

Camera + 2D LiDAR X

Camera + 3D LiDAR O
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between different robots and consistently monitors their global states. The above-mentioned 3D LiDAR-
based SLAM will be designed in the future to create a 3D disaster site map that includes the disaster site
situation.

6 Conclusion

This study proposes a method of using 3D LiDAR for firefighters and persons requiring rescue in case of
a disaster. A low-cost, short-range 3D LiDAR and camera fusion algorithm is proposed, which is then
implemented on an entry-level robot to identify disaster sites. Atypical obstacles, persons requiring
rescue, and accessibility inside the building are determined based on the camera’s image data, and the
distance to the detected object is estimated based on the 3D LiDAR’s point cloud data. The accuracy of
detecting obstacles and persons requiring rescue is 0.93. The detection is achieved in various situations.
This study is effective in 3D LiDAR and camera fusion, which can aid in quick and efficient search and
rescue operations in disaster situations. Furthermore, using a camera and 3D LiDAR fusion to localize
collapsed areas of the ceiling and floor surfaces can ensure the safety of firefighters who are dispatched to
disaster situations.
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