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Abstract: In Intelligent Transportation Systems (ITS), controlling the traffic flow
of a region in a city is the major challenge. Particularly, allocation of the traffic-
free route to the taxi drivers during peak hours is one of the challenges to control
the traffic flow. So, in this paper, the route between the taxi driver and pickup
location or hotspot with the spatial-temporal dependencies is optimized. Initially,
the hotspots in a region are clustered using the density-based spatial clustering of
applications with noise (DBSCAN) algorithm to find the hot spots at the peak
hours in an urban area. Then, the optimal route is allocated to the taxi driver to
pick up the customer in the hotspot. Before allocating the optimal route, each
route between the taxi driver and the hot spot is mapped to the number of taxi
drivers. Among the map function, the optimal map is selected using the rain opti-
mization algorithm (ROA). If more than one map function is obtained as the opti-
mal solution, the map between the route and the taxi driver who has done the least
number of trips in the day is chosen as the final solution This optimal route selec-
tion leads to control of the traffic flow at peak hours. Evaluation of the approach
depicts that the proposed traffic flow control scheme reduces traveling time, wait-
ing time, fuel consumption, and emission.

Keywords: Intelligent transportation system (ITS); DBSCAN; rain optimization
algorithm (ROA); traffic flow control

1 Introduction

Taxis have become one of the most popular methods of urban ITS in terms of their flexibility and
convenience [1,2]. Taxis are an irreplaceable segment of the urban IDS and cater to the travel needs of an
extraordinary number of people. In many cities, however, people who want to demand a taxi are
accustomed to parking an empty taxi by “roadside beckoning”. As a result, the areas where taxi drivers
receive their passengers are exceptionally arbitrary [3,4]. Both those who want to get a taxi and taxi
drivers do not have enough data about a better area, which makes it surprising that a taxi driver
experiences difficulties in locating passengers, while people think it is not easy to find an empty taxi.
Empty taxis in urban street networks not only make use of unwanted energy (i.e., oil and gas) but also
use the extra street space, thus making congestion of traffic and air pollution problems.
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Lately, taxis have been generally outfitted with global positioning system (GPS) sensors, which are cell
phones that can screen taxi areas and situations with customary stretches. Accordingly, an enormous number
of GPS directions with spatial-temporal data have been gathered. A lot of tracking information gives an
extraordinary chance to find certain data and comprehend taxi drivers’ driving practices, mobility of
humans, and the elements of street networks [5,6]. The extraction of taxi GPS directions has gotten
expanding consideration from information mining, smart transportation, development designs, and
omnipresent figuring networks.

Few research works focus on strategies of the driver for locating passengers [7–10]. This will help to
enhance travel efficiency and decrease unnecessary travel time by exploring the travel patterns of
experienced drivers. Besides, many studies focus on finding the hot spots of pick-up spots [11,12]. Road
networks have hotspots for pick-up locations at different times of the day. Experienced drivers know that
the road network is more likely to drop off passengers and pick up passengers quickly instead of being
empty. In this work, reduction of customer waiting time at hotspots at maximum times and controlling its
traffic flow are focused on. So, to attain these goals, the following contributions are presented in this paper.

� To find the hot spots in a particular region during peak hours, these hot spots are to be clustered. For
clustering, the DBSCAN algorithm is presented. Using this algorithm, closed points are grouped
andthe remaining points are kept as outliers in low-density regions.

� Among the multiple routes between the location of the taxi and the hot spot, an optimal route is
selected using Rain Optimization Algorithm and is allocated to the taxi driver.

� The proposed approach is simulated in the platform Java.

� The performance of the proposed scheme is analyzed in terms of total waiting time, travel time, and
fuel consumption.

The remaining sections of the paper are sorted as follows. Section 2 surveys some recent literature that
focused on research in ITS. Section 3 proposes ROA-based optimal routing using spatial-temporal
dependencies for traffic flow control in ITS. Section 4 discusses the evaluation of the proposed schemes
in terms of waiting time, travel time, and fuel consumption. The conclusion of this paper is described in
Section 5.

2 Related Works

A lot of researchers had developed Traffic Flow Control in Intelligent Transportation Systems. Among
them a few research works are reviewed here; Ghorai et al. [13] had presented a beaconless traffic-aware
geographical routing protocol based on optimal path selection in a traffic surveillance system. This
protocol considered traffic density, distance to the next forward node, and route selection for the direction
and route selection process. In the old days, for the routing process, the geographical routing protocol
was used due to the low overhead. Nevertheless, with many advantages, geo-routing protocols are not
considered as many barriers to the vehicle environment. This approach overcame difficulties in the
geographic routing protocol. This protocol is feasible for urban dense and scattered traffic conditions and
faces delays, disconnections, and pocket-dropping problems.

Pourazarm et al. [14] had developed a Strength Pareto Evolutionary Algorithm (SPEA)-based multi-
metric routing protocol for intelligent transportation systems. The authors aimed to increase the packet
delivery ratio and reduce the delay. To attain this goal, they had presented a multi-metric routing
protocol. With this protocol, the authors included the SPEA algorithm to select the path with minimum
distance, delay, and maximum V2V connectivity. Using this SPEA algorithm, the five metrics such as
delay, link capacity, distance, connectivity, and relative velocity were optimized and the fitness value was
calculated. Then the optimal path was found if it satisfied the fitness value of the SPEA algorithm.
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Abbasi et al. [15] had developed energy awareness optimal routing in the transport network. Here, they
used their optimal routing scheme to a sub-network of the East Massachusetts Transportation Network
utilizing real traffic data contributed by the Boston Regional Metropolitan Planning Organization. With
this data, they evaluated cost functions and explore the best solutions attained under various charging
stations and energy-conscious vehicle loads.

Chen et al. [16] had developed an effective parallel genetic algorithm for the problem of vehicle routing
in cloud implementation of the ITS. The suggested approach significantly speeds up the resolution of the
equivalent DSP of multiple complex vehicle routing problems (VRPs) in the cloud operation of ITS. The
proposed scheme parallels GA by formatting three kernels simultaneously, each running some of GA’s
dependent operators. It can be directly modified to run on multi-core and multi-core processors. To make
better use of the valuable resources of such processors in the parallel operation of GA, the texts operating
on the three kernels are synchronized by a low-cost conversion mechanism. The recommended method
was tested to convert DSP’s GA-based solution in parallel in multi-core and multi-core systems.

Li et al. [17] developed Traffic flow guidance algorithm in ITS including the impact of a non-floating
vehicle. Along with the estimation scheme, a novel traffic flow guidance mechanism called Estimated
Weight Vehicle Density Feedback Strategy based on Weight Vehicle Density Feedback Strategy
(WVDFS) was presented. In the simulation, the guiding impact of the novel algorithm was executed
depending on the two-way scenario, which is a simplified model of the transport network. The Nash
model was also utilized as a vehicle movement model, which can simulate vehicle movement. Simulation
results depicted that floating vehicles have a major negative influence on the execution of WVDFS, and
the compatibility of our algorithms is verified for optimal performance in incomplete information sequences.

Togou et al. [18] had analyzed the influence of traffic signs on pedestrian path selection behavior and
developed a MAKLINK map to study the effect of traffic signs on pedestrian sequence results by a
simulation technique. With the MAKLINK map, the route plan is divided under the guidance of traffic
signs. Then, the optimal pedestrian path on the MAKLINK map is improved via the Ant Colony
algorithm including the impact of traffic signs. The experiential study is conducted at Beijing South
Railway Station. The findings reflect that traffic signs within the urban rail transport hub may be effective
for the route selection behavior of a large number of passengers.

Kumari et al. [19] proposed the selection of an altruistic service channel for VANET to select the
minimum congested service channels for V2 non-safety applications. Dharani & Shylaja (2019) had
developed an Analytical Hierarchical Process (AHP) based geographical routing protocol for the urban
environment of VANETs. In this paper, multiple routing was considered. For multiple routing, they
considered link lifetime, node density, and node status. The protocol used the computed single-weighing
function to find a next hop node within a defined range which can ensure an improved forwarding process.

3 ROA-Based Optimal Routing Using Spatial-Temporal Dependencies for Traffic Flow Control in ITS

3.1 Overview

As the waiting time of the customer is the main concern in ITS, the optimal route is to be allocated to the
taxi driver who can reach the customer quickly. Fig. 1 shows the workflow of the proposed scheme. With the
spatial-temporal dependencies, during rush hours, pick-up locations or hot spots in a region are clustered
using the density-based spatial clustering algorithm. Using this algorithm, closed points are grouped and
the remaining points are kept as outliers in low-density regions. After clustering, based on the demand
of the customer from the particular hot spot, the optimal route is allocated to the taxi driver who can
reach the hot spot quickly. Before allocating the optimal route, each route between the taxi driver and the
hot spot is mapped to the number of taxi drivers. Among the map function, the optimal map is selected
using the rain optimization algorithm (ROA). If more than one map function is obtained as the optimal
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solution, the map between the route and the taxi driver who has done the least number of trips in the day is
chosen as the final solution.

3.2 Clustering of Hotpots

During the peak hours, the experienced drivers reach or wait at locations to pick up the passengers as
they know well the details of pickup locations such as railway stations, bus stands, shopping centers, and
so on. These pick-up locations are also known as hot spots. From these hot spots, taxi drivers may
receive maximum customer demand for travel. So, in this work, from the spatial-temporal data, high-
demand regions are explored using the historical pick-up information. Besides, distribution patterns of
pick-up hot spots are analyzed. So, to find the hot spots during the peak hours in an urban area,
clustering is the major solution.

With spatial-temporal trajectory data, hot spots in a particular region are clustered using a density-based
spatial clustering algorithm at the period of rush hours. Density-based clustering can organize geographical
attributes. In this approach, hot spots or pick-up locations are discovered with the DBSCAN algorithm. From
the spatial-temporal dataset, this algorithm forms a group by combining the hotspots that have similarities in
terms of high-density regions and low-density regions that are marked as outliers. Epsilon (Eps) and
minimum points (MinPts) are major parameters used in DBSCAN for clustering.

Trajectory dataset

Clustering of pick-up locations using density-based spatial 
clustering algorithm

Generation of map function between taxi drivers and 
multiple routes between the location driver and pick-up 

location

Selection of optimal map function using ROA algorithm

Based on the number of trips of the driver in the day route 
is allocated if the algorithm outputs the above one solutions

Figure 1: Workflow of the proposed scheme
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For a given spatial-temporal dataset, DBSCAN forms arbitrary-shaped clusters. Also, it separates the
noise points in the dataset. This algorithm uses a radius value (Eps(e)) which represents a user-defined
distance measure and the number of minimal points (MinPts) that must happen inside Eps. Briefly, Eps
denotes the distance parameter for spatial characteristics such as longitude and latitude. For calculating
Eps, the formal distance metric like Minkowski, Euclidean, or Manhattan can be applied. If a region has
more points than the value of MinPts, it is considered as dense. The process of the DBSCAN algorithm is
described as follows:

� This algorithm begins with the initial point k in a dataset. Then, all points within Eps i.e., density reachable
form k are retrieved. Namely, the object or point k is density reachable from the point l depending on the
MinPts and Eps if there is a sequence of points k1……. kn, k1 = l and kn = l likewise ki + 1 is directly
density-reachable from ki depend on the MinPts and Eps, for 1 � i � n; ki 2 Dataset. Fig. 2 shows
the k density reachable from l.

� If the object k is a core object, a cluster is created. Namely, an object is represented as a core object if it
has at least MinPts of other points within the radius of Eps. Fig. 3 shows the representation of the core
object and border object.

� The object k is considered as the border object if there are no points that are density reachable from k.
So, if the object k is a border object, the algorithm chooses the next point of the dataset.

� Density-based cluster (C) should satisfy the following conditions,

i) 8k; l: if l 2 C and k is density reachable from l depending on MinPts and Eps, k 2 C
ii) 8k; l 2 C: k is density-connected to l depending on MinPts and Eps.

k

l

Figure 2: k density reachable from l

Border object

Core object

Figure 3: Core object and border object
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� The set of points that do not belong to any cluster is considered noise. Fig. 4 shows the representation
of the noise object.

� The above process is continued until processing all points in the dataset.

So, with the spatial-temporal trajectory dataset, the DBSCAN algorithm groups the hot spots or pickup
locations during peak hours. This will helps the non-experienced as well as experienced taxi drivers to
identify the hot spots in a region during peak hours.

3.3 Mapping Function

After clustering the hot spots or pickup locations in the period of peak hours, routes between the hot spot
and taxi drivers are estimated with the data of GPS in ITS.

Before allocating the optimal route to the taxi drivers, multiple routes are mapped with each taxi driver
as shown in Fig. 5. According to the capability of the taxi and driver, the best route is determined among the
multiple routes.

Finally, among the map functions, the best map function is chosen using the ROA algorithm which is
explained in the section. The mathematical representation of the map function is denoted as follows,

Mn ¼ R1; Tnð Þ; R2; Tnð Þ; . . . ::; Rm; Tnð Þf g (1)

where, Mn denotes the mapping of multiple routes to the nth taxi or taxi driver, Rm denotes the mth route and
Tn denotes the n

th taxi.

Noise object

Figure 4: Noise object

R1 R2 R3 ................. Rm

T1 T2 T3 T4 Tn

(R1, T1) (Rm, Tn)

Figure 5: Mapping between taxi and routes
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3.4 Optimal Routing Using ROA Algorithm

The rain optimization algorithm (ROA) imitates the behavior of raindrops. Raindrops normally stream
down along a slant from a pinnacle at that point structure the waterways and consistently move to the lowest
land points or void out into the ocean. The raindrops follow breaks and overlays in the land as they stream
downhill. As the water streams downhill, it may be caught in the puddles and structures of a lake known as
local optimal. At last, most streams move to the ocean level known as global optimal and void out into the
ocean. The manner in which the proposed strategy merges from a conjecture to the ideal is comparable to
raindrops streaming from the top to the ocean level in a hilly region as per gravitation. As consistently
raindrops will in general choose the way having the more extreme slant, ROA reproduces this propensity
and uses the slope of the target capacity to decide the solution that is better than an estimate.

To track down the most profound valley and afterward reach the ocean level known as global optimal, a
population of raindrops is created haphazardly at the initial iteration. The positions of the neighbor points of
each drop are compared with the position of the drop before the drop moves towards the neighbor point
possessing the least position. This development proceeds until the drop arrives at the valley. However
long every one of the drops is streaming down from an upper to a lower position, regardless of whether
there are puddles on the drops “route to the valley, they can in any case flood and rise out of the puddles
to continue to move towards the valley by a fitting component carried out by the ROA algorithm.

The process for selecting the optimal map function using the ROA algorithm is described as follows:

Initialization: In this algorithm, each particle or raindrop in a population denotes the solution. The
solution of this approach is the optimal map function. The initialization of ith drop is defined as follows,

Di ¼ yi; 1; yi; 2; yi; 3;...::; yi; j
� �

i 2 1; 2; 3; . . . ::; s½ � (2)

where, s represents the size of the population, j denotes the number of optimization variables, and yi; j denotes
the variables of the optimization problem. For this work, the variable can be defined as follows,

yi; j ¼ Mnf gi; j (3)

yi; j ¼ R1; Tnð Þ; R2; Tnð Þ; . . . ::; Rm; Tnð Þf gi; j (4)

where, Mn denotes the mapping of multiple routes to the nth tax.

Rainfall manages raindrops during the process of optimization. It is created by a uniform random
distribution function and subject to every one of the constraints in Eq. (5)

yi; j ¼ U upj; lowj

� �
(5)

where, U denotes the uniform distribution function, upj and lowj denote the upper and lower limits of yj.

Fitness calculation: For each initialized solution, fitness or objective function is estimated to evaluate
the solution. To select the optimal map function, the map function is to be evaluated with the following fitness
function,

Fiti ¼ Min waiting time ið Þð Þ (6)

Update the solution: As the raindrop (D) is defined as a point in N-dimensional space, the domain
which has the radius vector (r) placed around the point is known as the neighborhood. The neighborhood
can be updated when changes occur in the value of raindrops.
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During the process of optimization, a point in the neighborhood of drop can be generated randomly. The
ith drop’s neighborhood point q is denoted as NPqi. Using the following condition, the neighbor point of the
drop is generated.

i ¼ 1; 2; 3; . . . :; s

ûp � Di�NPi
q

� ����
��� � ûp � r

�� �� for q ¼ 1; 2; 3; . . . :; np

p ¼ 1; 2; 3; . . . :; z

(7)

where, np denotes the number of neighbor points, ûp denotes the unit vector of the p
th dimension. r denotes

the size of the neighborhood in terms of a real positive vector and can be defined as follows,

r ¼ f itrð Þ � rinitial (8)

where, rinitial denotes the initial size of the neighborhood and f(itr) is denoted as a function used to adapt the
size of the neighborhood within iterations.

Dominant drop: The dominant neighbor point (NP i
d ) is one of the points chosen from the drop’s (Di)

neighbor point. It should satisfy the following condition,

Fit Di
� �

.Fit NPi
d

� �

Fit NPi
q

� �
.Fit NPi

d

� �

Active drop: The drop is considered an active drop if it has a dominant neighbor point.

Inactive drop: The drop is considered an inactive drop if it doesn’t have a dominant neighbor point.

Process of explosion: If the drop has no sufficient neighbor points or it couldn’t continue the search
process to attain the optimal minimum, the explosion process is initiated to solve this condition of the
drop. Using Eq. (9), the number of neighbor points can be created in this explosion process.

npE ¼ be� np� ce (9)

where, npE denotes the number of neighbor points created in the process of an explosion, np denotes the
number of neighbor points without the process of explosion and ce denotes the counter of explosion.

The rank of raindrop: For each raindrop, rank (R) is calculated using (12) in every iteration. This rank is
used in the merit order list.

V1it ¼ Fit Di
� �		

at tth iteration
�Fit Di

� �		
at first iteration

(10)

V2it ¼ Fit Di
� �		

at tth iteration
(11)

Ri
t ¼ order V1it

� � � f1þorder V2it
� � � f2 (12)

where, V1it denotes the difference between the fitness function of drop D
i at first iteration and tth iteration, V2it

denotes the fitness function of drop Di at tth iteration, order V1it
� �

and order V2it
� �

denote the orders of
V1 and V2 at tth iteration when they are arranged in the form of ascending order, f1 and f2 denote the
weighting coefficients that are assumed as 0.5 and Ri

t denotes the rank of raindrop at tth iteration.

List of merit order: For every iteration, the ranks of the raindrops are arranged in ascending order. From
the list, each low-ranking drop can be removed and some drops can be given significant rights. The drop with
minimum fitness function is considered the optimal solution or map function.
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Termination: The above process is repeated until getting the solution with the minimum fitness
function. Otherwise, the algorithm is terminated.

Algorithm: Selection of optimal map function using ROA algorithm

Input: Map function (Mn), population size (s), np, and a maximum number of iterations.

Output: Optimal map function

1. Initialize the solutions or raindrops.

2. Generate the number of neighbor points using the condition (7)

3. Determine the fitness for each drop and its neighbor points using (6)

4. Change the current position of the drop if it has a dominant neighbor point.

5. Set the status of the drop as inactive if the drop doesn’t have a dominant neighbor point after the
explosion.

6. Generate a list of merit order list and remove drops if they have low rank or consider higher neighbor
points to drop with high rank.

7. Let t = t + 1

8. Move to step 2 if any active drop is available there and maximum iterations are not attained.

9. Terminate the algorithm if the optimal solution or map function is attained.

3.5 Decision Phase

Using the ROA algorithm, optimal mapping of the route and taxi is attained. Then the selected taxi
driver will reach the hotspot through the selected route. However, there is a possibility may occur when
the optimal mapping function is being selected that the algorithm may select the one above the mapping
function as the optimal solution. Namely, the algorithm may select three optimal mapping functions i.e.,
three taxis and three routes. At this time, the ITS system will decide to choose the taxi driver who only
can reach the particular hot spot. Based on the number of travels that the taxi driver completed in a day,
the taxi driver and the mapped route will be allocated. If a taxi driver has completed fewer number
travels per day compared to the other two taxi drivers, then he/she will be assigned to reach the hot spot
through him/her mapped route.

4 Results and Discussion

The proposed traffic flow scheme is simulated in the simulation tool of Java with the system operating
system of windows 2007 with 64-bit and with 4 GB main memory at 2 GHz dual-core PC. For this work,
New York City Taxi (TaxiNYC) Trip Duration dataset is used. This dataset has 1458644 trip records as a
training set and 625134 trip records as a testing set. In this dataset, pickup locations are clustered using
the DBSCAN algorithm.

To prove the effectiveness of the proposed approach, it is compared with other approaches. In this paper,
for clustering, the DBSCAN algorithm is utilized. Besides, the optimal route selection process ROA
algorithm is utilized. The experimental results were carried out based on two stages. The experimental
results are listed below;
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4.1 Performance Analysis Based on Clustering Algorithm

In this section, the effectiveness of the proposed clustering is analyzed. In routing, clustering is an
important stage. The clustering process mainly reduces the time and computation complexity. In this
section, the work is compared with and without clustering algorithm-based routing.

In Fig. 6, the performance of the proposed approach is analyzed in terms of waiting time for varying
numbers of vehicles. When analyzing Fig. 6, our proposed approach attained the minimum waiting time
of 2.45787 s which is 3.56897 s for without clustering-based traffic flow control in intelligent
transportation systems. As per the analysis, the number of vehicles increases; the waiting time also
gradually increases. From the results, it’s clear that the clustering algorithm is most important to reduce
the waiting time and avoid traffic. In Fig. 7, the performance of the proposed approach is analyzed in
terms of traveling time by a varying number of vehicles. Traveling time is measured based on how much
time is taken to reach the destination. The good system has taken minimum time for traveling. When
analyzing Fig. 7, the proposed approach is taken 768 s to reach the destination which is 874 s without
clustering-based reach the destination. From the results, it’s clear that the proposed approach reaches the
destination quickly compared to other approaches.

The performance of the proposed approach is analyzed based on fuel emissions as given in Fig. 8. The
process of path selection has a vital role in decreasing fuel emissions. The fuel emissions may be enhanced by
permitting longer waiting, or starting after the rush hour. The main objective of this paper is to solve the
vehicle routing problem and minimize fuel emissions. When analyzing Fig. 8, the proposed approach is
taken with minimum fuel emission compared to other algorithms. In Fig. 9, the performance of the
proposed approach is analyzed in terms of fuel consumption. As per the analysis, the proposed approach
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Figure 6: Performance analysis based on waiting time
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Figure 7: Performance analysis based on traveling time
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consumes less amount of fuel compared to other algorithms. By allowing long waiting times at customer
nodes, vehicles can avoid being caught in congestion, and fuel emissions can be reduced.

4.1.1 Performance Analysis Based on A Route Selection Algorithm
The path selection process plays a more significant role in reducing fuel emissions and traveling time. In

this paper, for the route selection process, the ROA algorithm is used. To prove the effectiveness of the
proposed ROA, the algorithm was compared with different methods such as GA-based route selection,
PSO-based route, and optimization-based traveling.

In Fig. 10, the performance proposed against the existing optimal path selection algorithm is analyzed in
terms of waiting time. When analyzing Fig. 10, our proposed approach takes a minimum waiting time of
1.857 s for 1000 vehicles on the road which is 3.6658 s for PSO-based optimal route selection, 6.3225 s
for GA-based optimal route selection on-road, and 8.456 s for without optimization based optimal route
selection. This is due to ROA-based rote selection. In Fig. 11, the performance of the proposed approach
is analyzed in terms of traveling time. As per the analysis, the number of vehicles increases, and traveling
time also increases. The good optimal route selection algorithm reaches the destination quickly and also it
takes minimum traveling time. When analyzing Fig. 11, the proposed approach takes a minimum
traveling time of 745 s which is 812 s for PSO-based optimal route selection on road, 889 s for GA-
based optimal route selection on road, and 956 s for without optimization-based routing. Compared to the
other three algorithms, the route selection approach without optimization takes maximum time. Because
this method is select the path based on the driver’s knowledge not optimally. The performance of the
proposed approach is analyzed based on fuel emission as given in Fig. 12. Fuel is one of the major
products for running the vehicle. The major objective of route selection is to minimize time and fuel
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emissions. During the traveling period, if the fuel discharge is kept to a minimum, the cost of purchasing fuel
for the driver will be reduced. When analyzing Fig. 12, the proposed approach is taken a minimum fuel
emission of 0.08 Lt/Km which is low compared to another algorithm. From the result, it’s clear that the
proposed approach is taken minimum fuel emission compared to other methods. Similarly, a comparative
analysis based on fuel consumption is given in Fig. 13. When analyzing Fig. 13, our proposed approach
consumes a minimum amount of fuel of 1.14 Lt/Km which is low compared to the existing algorithm.
From the results, it’s clear that the proposed approach is better than all the other algorithms.
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5 Conclusion

For traffic flow control, rain optimization algorithm (ROA) based optimal routing has been presented
with the spatial-temporal dependencies. Hotspots in a region are found at the peak hours by clustering
them using the density-based spatial clustering of applications with noise (DBSCAN) algorithm. After
clustering, the taxi drivers reach the hotspot through the optimal route. This optimal route has been
selected using the ROA algorithm. The performance of the optimal route selection based on ROA has
been compared with that of the conventional algorithms GA, PSO, and without optimization algorithm.
Simulation results showed that the proposed traffic flow control scheme has reduced traveling time,
waiting for time, fuel consumption, and fuel emissions.
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