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Abstract: Essential ncRNA is a type of ncRNAwhich is indispensable for the sur-
vival of organisms. Although essential ncRNAs cannot encode proteins, they are
as important as essential coding genes in biology. They have got wide variety of
applications such as antimicrobial target discovery, minimal genome construction
and evolution analysis. At present, the number of species required for the deter-
mination of essential ncRNAs in the whole genome scale is still very few due to
the traditional methods are time-consuming, laborious and costly. In addition, tra-
ditional experimental methods are limited by the organisms as less than 1% of
bacteria can be cultured in the laboratory. Therefore, it is important and necessary
to develop theories and methods for the recognition of essential non-coding RNA.
In this paper, we present a novel method for predicting essential ncRNA by using
both compositional and derivative features calculated by information theory of
ncRNA sequences. The method was developed with Support Vector Machine
(SVM). The accuracy of the method was evaluated through cross-species cross-vali-
dation and found to be between 0.69 and 0.81. It shows that the features we selected
have good performance for the prediction of essential ncRNA using SVM. Thus, the
method can be applied for discovering essential ncRNAs in bacteria.

Keywords: Bioinformatics; biological information theory; biomedical informatics

1 Introduction

Bacterial non-coding RNA (ncRNA) is a newly discovered gene expression regulator in bacterial
genome in recent years [1]. The molecular size of ncRNA is 40–500 nucleotides. It plays an important
role in RNA transcription regulation, chromosome replication, RNA processing and modification, mRNA
translation and stability, protein degradation and transport, bacterial infection and other biological
processes [2]. With the rapid increase in the number of bacterial ncRNAs discovered and their important
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role in organisms, bacterial ncRNAs have become one of the hot spots in microbial research. Since ncRNAs
play important roles in organisms, the identification of new ncRNAs is of great scientific significance and
commercial value [3].

Some ncRNAs are indispensable for the survival of organisms. Thus, they are called “essential non-
coding RNA” (essential ncRNA) [4]. Although essential ncRNAs cannot encode proteins, they are as
important as essential coding genes in biology. For example, bacterial essential ncRNAs play vital role
ranging from structural regulation to catalysis, affecting a variety of processes, such as bacterial toxicity,
development control, mRNA stability and protein degradation. Therefore, these groups of ncRNA could
be used as a potential target for drug development [5]. Furthermore, significant number of theoretical
researches revealed that essential ncRNAs are helpful to understand and determine the composition and
lifestyle of minimum genome. For example, Gil and Christen et al. explored that a complete minimum
genome should include regulatory and structural elements in addition to encoding proteins, such as 5′-
UTRs and ncRNA [6,7]. Similarly, Maria et al., reported a minimal cell containing essential ncRNA [8].
In our previous work, we also constructed a minimum bacterial gene set, which also contain the
minimum non-coding RNA set besides the minimum coding gene sets [9].

With the development of high-throughput sequencing and genome-scale inactivation technologies, it has
been possible to identify the essential ncRNAs contained in the genome. At present, the determination of
essential ncRNAs mainly relies on experimental methods. However, these traditional methods are time-
consuming, laborious and costly. In addition, traditional experimental methods are limited by the
organisms, as less than 1% of bacteria can be cultured in the laboratory. In this context, it is urgent to
establish effective new algorithms for theoretical analysis, and to mine the information and knowledge of
essential ncRNA [10]. Pattern recognition and informatics theory play an extremely important role in
biological data analysis, especially in sequence recognition research. With the development of machine
learning and artificial intelligence [11,12], more and more research groups are applying machine learning
to the prediction of essential genes and essential ncRNAs [13]. Zhang integrated features derived from
sequence data and protein-protein interaction network and developed a machine learn method called
DeepHE to predict human essential genes [14]. In terms of recognition of essential genes of bacteria, we
have developed general recognition software Geptop for genome-wide recognition of essential genes,
with recognition accuracy is the best so far [15]. The intrinsic features of sequences are the easiest to
access for constructing a predicting essential model [16]. Using the intrinsic features of sequences, the
accuracy of the identification of essential genes could be significantly increased. Machine learning is an
effective predictive method [17], which has been used in classification of medical field and image
processing [11,17–23]. At present, there are few researches on the theoretical recognition of “essential
ncRNA”. Therefore, it is important and necessary to develop theories and methods for the recognition of
essential non-coding RNA.

At present, the number of species required for the determination of essential ncRNAs in the whole
genome scale is still very few. The essential ncRNAs have important scientific significance and
application in biomedical research. Facing the urgent need to obtain essential ncRNAs, we have
conducted in-depth research on the theoretical identification of bacterial essential ncRNAs. The purpose
of this study was to design a universal model, which is less dependent on training sets, and to develop a
computer based automatic method for identification of essential ncRNA of bacteria with high accuracy
and universality. The findings of the study can be utilized to extend the existing drug target library,
greatly accelerate the process of new drug research and shorten the research cycle, reduce costs, promote
the development of new rapid detection of pathogenic bacteria system. The findings can also assist
development of new pathogenic bacteria prevention and treatment methods, and the minimal genome
chassis in synthetic biology research.
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2 Materials and Methods

2.1 Training and Dataset Constructed

The quality of training dataset has a great influence on the predicted performance in machine learning
field. The cross-organism validation result of Geptop shows that not all species achieve a high area under the
curve (AUC). The essential gene dataset of species with low AUC may be unreliable due to differences in
wet-lab experimental conditions. To build a reliable training dataset for developing a predicted essential
ncRNA model in bacteria, we analyze the bacterial essential genes in database of essential gene (DEG)
by Geptop and CEG_Match [24,25]. There are nine bacteria with their essential ncRNAs determined
through wet-lab experiment. Their essential ncRNAs are obtained from DEG, and the non-essential
ncRNAs were downloaded from RNAcentral (https://rnacentral.org), as shown in Table 1 [26]. The ratio
of the number of essential ncRNA to the number of non-essential ncRNA in each bacterium is calculated
in order to construct a reliable training dataset for proposing a bacterial essential ncRNA recognition
algorithm. Six datasets with ratio in the range from 0.1 to 0.7 are extracted for further analyses. Data of
Sphingomonas wittichii is used as test dataset for assessing the accuracy of model of essential ncRNA
recognition. Data of the remaining bacteria is used as the training dataset.

2.2 Training and Data Marking

In this paper, we use the support vector machine learning approach, a supervised machine-learning
method, to predict the essential ncRNA. Thus, every piece of data in the training dataset must be marked.
In the training dataset, the essential ncRNA is marked as 1 and non-essential ncRNA is marked as 0.

2.3 Features Extraction

2.3.1 Homology Feature
For a DNA sequence, the sequence homology is often used in prediction of protein function [10].

Because negative selection acts more strongly on essential ncRNA, essential ncRNAs are more conserved
than non-essential ncRNAs. Thus, this is an important feature that distinguishes between essential and
non-essential ncRNA. For a predicted gene or ncRNA, we compared it with both essential and non-
essential ncRNA in the reference library by BLASTN with e < 10−10 [27]. After sequence alignment, we
use the average value of 10 sequences with the highest BLASTN score as the indicator for homology

Table 1: Information of ncRNA of nine bacteria

Organism # (essential
ncRNA) a

# (non-essential
ncRNA) b

# (ratio) c

Acinetobacter baumannii 59 85 0.694 *

Agrobacterium fabrum 11 299 0.036

Brevundimonas subvibrioides 35 78 0.449 *

Caulobacter crescentus 532 73 7.288

Mycobacterium tuberculosis 35 227 0.154 *

Salmonella enterica serovar Typhi Ty2 24 150 0.160 *

Salmonella enterica serovar Typhimurium SL1344 23 425 0.054

Sphingomonas wittichii 32 90 0.356 **

Synechococcus elongatus 34 52 0.654 *

Note: a. The number of essential ncRNA in each organism. b. The number of non-essential ncRNA in each organism. c. The ratio of the number of
essential ncRNA to the number of essential ncRNA in each organism.
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feature. For those alignments less than 10 hits, we use the average value of all hit sequences as the as the
indicator for homology feature.

2.3.2 Sequence Related Feature
The first sequence feature is the length of sequence, which is defined as L. The GC content is a main

factor shaping the amino acid usage during bacterial evolution process [28]. Thus, the GC content is used
as a feature for perdition of essential ncRNAs. The GC content (GC%) is calculated using the following
formula:

GC% ¼ count Gð Þ þ count Cð Þ
L

(1)

where count (G) is the number of guanine in a DNA sequence, and count (C) is the number of cytosine in a
DNA sequence. The L indicates the length of a DNA sequence, including guanine, cytosine, thymine and
adenine.

2.3.3 Nucleotide Concatemer Feature
We obtain the contents of single-nucleotide, dimeric-nucleotide, triplet-nucleotide, quadruplexes-

nucleotide, pentamers-nucleotide and hexon-nucleotide as the features in the prediction models [29]. The
above-mentioned features were calculated considering phase-independent. We calculate the content of
triplet-nucleotide as an example in following paragraph.

We set window length of three and step size of one when intercepting and calculating the counts of
triplet-nucleotide in a sequence. For triplet-nucleotide, sixty-four (43) combinations were computed, such
as ATG, ACG, GTC and so on. For each combination, we calculate its frequency in following formula:

fi ¼ CiP64
i¼1 Ci

; i ¼ 1; 2;…64 (2)

where i is the ith triplet-nucleotide. Ci indicates the number of the ith triplet-nucleotide in a sequence. The
frequencies of other nucleotide concatermers are calculated using similar approached used to calculate the
triplet-nucleotide using Eq. (3).

f ki ¼ CiP4k

i¼1 Ci

; i ¼ 1; 2; . . . 4k (3)

2.3.4 Markov Remotely Related Base Feature
The Markov chain model in stochastic process theory assumes that the state of the next character is

determined by successive characters adjacent to it [30]. Thus, we used this theory to obtain the remote
correlation information of nucleotide in gene or ncRNA sequences. It means that a nucleotide in a gene
or ncRNA is determined by successive nucleotides adjacent to it. DNA is not linear in organisms. Gene
and ncRNA have a specific structure due to the curling of DNA and the principle of nucleotide
complementarity among nucleotides at different locations.

By the same analogy, we extend Markov chain model that nucleotides spaced some distance
apart (lambda nucleotides) are also correlated. This correlation is not the actual correlation of a Markov
chain but the correlation between sequence and tertiary structure. Experimental evidence for this
correlation is three-dimensional genomics studies. The formula used for calculating the correction is
presented in Eq. (4).

2734 IASC, 2023, vol.36, no.3



xxk ¼ pk XAð Þ þ pk XGð Þð Þ � pk XCð Þ þ pk XTð Þð Þ
yxk ¼ pk XAð Þ þ Pk XCð Þð Þ � pk XGð Þ þ pk XTð Þð Þ;X ¼ A;C;G;T ; k ¼ 1: kþ 1; 2: kþ 2; 3: kþ 3

zxk ¼ pk XAð Þ þ pk XIð Þð Þ � pk XGð Þ þ pk XCð Þð Þ

8><
>:
k ¼ 1; 2; 3 . . . L

(4)

where A, C, G and T indicate the four nucleotides in DNA sequence, respectively. The x, y and z mean the
effects among the four nucleotides (guanine, cytosine, thymine and adenine) depending on the bond
properties among them, respectively [31]. k represents the position of two relevant nucleotides. The first
nucleotide of k respectively falls into first, second and third phases. λ denotes the spacing of positions
between two nucleotides in sequences level. And L represents the maximum spacing in a sequence. Thus,
a DNA sequence could be transformed into 3 × 4 × λ variables.

2.3.5 Mutual Information Feature
The mutual information is used for measuring the correlation of two random variables [32,33]. Based on

the mutual information, the information of a random variable could be provided by another random variable.
In predicting essential gene and ncRNA model, the mutual information is used to measure the information
between successive nucleotides X and Y of a DNA sequence, which is defined as:

IðX ;Y Þ ¼
X
x2�

X
y2�

Pðx; yÞlog2 Pðx; yÞ
PðxÞPðyÞ (5)

where Ω is the set of,{A, T, C, G} and P(x,y) is the joint probability of X and Y. P(x) and P(y) correspond to
the probability of X nucleotide and Y nucleotide, respectively. The mutual information of a DNA sequence is
calculated with the Eq. (5). For each dimeric-nucleotide (x,y), its mutual information is defined by the below
formula as a feature:

P x; yð Þlog2 P x; yð Þ
P xð ÞP yð Þ (6)

For a DNA sequence, there are 42 = 16 dimeric-nucleotides and hence generating 16 features. Thus,
considering the mutual information of a DNA sequence, we obutain 17 mutual informations features in total.

2.3.6 Conditional Mutual Information Feature
Conditional mutual information refers to the mutual information between the random variables X and Y

in the case of a third random variable Z [34]. It is defined as:

IðX ;Y jZÞ ¼
X
z2�

PðzÞ
X
x2�

X
y2�

Pðx; yjzÞlog2 Pðx; yjzÞ
PðxjzÞPðyjzÞ ¼

X
z2�

X
x2�

X
y2�

Pðx; y; zÞlog2 PðzÞPðz; y; zÞPðx; zÞPðy; zÞ (7)

where P(x,y,z), P(x,z) and P(y,z) are the joint probability of the random variables in brackets. The three
positions of triplet-nucleotide are considered to the random variables of X, Y and Z, in sequence.
According to the formula (7), the mutual information between the first base and the third base in the
condition of the second base is calculated, and is used as a feature. In a DNA sequence, we could obtain
43 = 64 triplet-nucleotide. The conditional mutual information of each triplet-nucleotide is calculated by
the formula given in Eq. (8):
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X
z2�

X
x2�

X
y2�

Pðx; y; zÞlog2 PðzÞPðx; y; zÞPðx; zÞPðy; zÞ (8)

In total, there are 65 conditional mutual information features.

2.3.7 Kullback-Leibler Divergence Feature
Kullback-Leibler divergence is used for mensuration of the similarity between probability distribution P

(x) and model distribution Q(x), which is calculated by the formula in [35] :

KLD ¼
X

i
P xð Þlog2 P xð Þ

Q xð Þ (9)

The frequencies of nucleotide, dinucleotides and trinucleotides in a given sequence to be predicted are
compared with the corresponding frequencies of the genomes used to train the model. For a given dataset,
one feature is extracted by Kullback-Leibler Divergence method. In total, we get three features in this step.

2.4 Feature Normalization

After obtaining a large number of features generated by the sequences and information theory of
essential ncRNA and non-essential ncRNA, all features need to be normalized to the same scale.
Accordingly,, we used the Min-Max Normalization approach [36]. The formula is used for normalizing
each feature.

X � ¼ X � min

max� min
(10)

2.5 Positive and Negative Samples Balanced

Table 1 shows that the number of essential ncRNA and non-essential ncRNA are differ greatly. It is
possible to misevaluate the performance of a machine learning model. For example, Bacillus subtilis
168 has 271 essential genes and 4175 non-essential genes. If all genes are predicted as non-essential
genes in a model, then the accuracy rate of the model is still as high as 94% (4175/(4175+271) = 0.939).
However, this model is worthless.

To avoid this situation, balancing the number of positive and negative samples is crucial process. The
conventional method to solve the imbalance of positive and negative samples is the subset sampling method,
which randomly select the same amount of negative sample as the positive sample [37]. However, only part
of the known information from the negative sample is used with subset sampling method [38]. Thus, a large
amount of potentially helpful information can be lost, which in turn affects the accuracy of the model. In this
paper, we attempt to introduce principal component regression to solve this problem. As a new multivariate
statistical method, principal component regression is mainly used in multivariate correlation analysis.
Principal component regression has hardly been applied to the classification of biomolecules. Principal
component regression uses regression technique to make classification prediction, which is not affected
by sample size. The principal component regression includes steps of principal component analysis and
correlation analysis at the same time, which can be used to eliminate the redundancy of variables and
screen significant variables at a time.

In general, the number of negative samples (non-essential coding gene and ncRNAs) is tens of times that
of positive samples (essential coding gene and ncRNAs). For example, the number of non-essential gene is
14 times more than essential gene in Bacteroides thetaiotaomicron VPI 5482, (Table 1). And the number of
non-essential ncRNA is 6 times more than essential ncRNA in Mycobacterium tuberculosis, (Table 2). In
order to use information as much as possible of negative samples, we implemented a K-means clustering
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center substitution method. In K-means clustering method, if there are K sequences of positive samples, then
the negative samples will be divided into K categories. In K-mean clusters, the center of each category of
negative samples will be taken as the characteristic of negative samples. The information regarding each
non-essential ncRNA is reservation, and the number of negative samples obtained should be consistent
with that of positive samples. For instance, B. subtilis 168 has 271 essential genes and 4175 non-essential
genes. The 4175 non-essential genes would be divided in to 271 categories with K-means clustering
method and this gives balanced sample for building the predicting model.

2.6 Data Dimension Reduction

The features collected through interval correlation and phase heterogeneous adjacency correlation of
sequence composition created a characteristic variable data matrix with huge dimensions. Thus, this
requires a computational tool to reduce the dimensions of the matrix.

The least absolute shrinkage and selection operator (Lasso regression) can be used for feature extraction,
which has been successfully applied in the classification of cancer [39,40]. Thus, we have applied the Lasso
regression method to reduce the dimensions. In the end, we obtained 231 variables to construct the essential
ncRAN prediction model by SVM.

2.7 Machine Learning Algorithm

In this work, we use sequence features to characterize essential and non-essential ncRNAs. The essential
and non-essential ncRNAs were computationally identified and analyzed as the characteristic variables of
machine learning.

The first step was analysis of sequence homology and corresponding features are extracted. And then,
the support vector machine (SVM) is used to build essential ncRNA models.

2.7.1 SVM Model Training
The 70% of the data were selected as training data. The remaining 30% was used as a test data. The

prediction model was created by executing the SVMLIB training program—Svm-train.exe with the
default parameters.

2.7.2 Prediction Model
We marked two different labels (1 and 0) to essential ncRNAs and non-essential ncRNAs sequences

respectively and combined the 231 parameters into a training data. After optimizing the SVM parameters,
C and Gamma by running grid.py program while the training, an accuracy of 89% was obtained under 5-
fold cross-validation, which further indicated that the model could significantly separate the positive and

Table 2: Cross-species prediction performance of the algorithm

Organism SN SP Precision Acc

Acinetobacter baumannii 0.73 0.81 0.73 0.78

Brevundimonas subvibrioides 0.71 0.82 0.64 0.79

Mycobacterium tuberculosis 0.40 0.74 0.19 0.69

Salmonella enterica serovar Typhi Ty2 0.63 0.79 0.33 0.77

Sphingomonas wittichii 0.66 0.84 0.60 0.80

Synechococcus elongatus 0.76 0.81 0.72 0.79
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negative sets. Finally, we obtained the classification model with the optimized parameters by executing the
command: svm-train -b l -C xx - g xx training set file.

3 Results and Discussions

To verify the performance of the algorithm, we used the across-species validation to test the accuracy of
the algorithm.

Accordingly, we used sensitivity (SN), specificity (SP), precision (precision) and accuracy (Acc) to
measure the predictive performance of algorithm, respectively. These indicators are calculated as
follows:

SN ¼ TP

TP þ FN
(11)

SP ¼ TN

TN þ FP
(12)

precision ¼ TP

TP þ FP
(13)

Acc ¼ TP þ TN

TP þ FP þ TN þ FN
(14)

where TP indicates the number of the essential genes predicted as essential genes, FP indicates the number of
the non-essential genes predicted as essential genes, TN indicates the number of the non-essential genes
predicted as non-essential genes, FN indicates the number of the essential genes predicted as non-
essential genes. The results of predictive performance are shown in Table 2.

Only the six datasets with ratio in the range from 0.1 to 0.7 are used for construction of essential ncRNA
prediction model. The accuracy was found to be between 0.69 and 0.81 through cross-species cross-
validation. It shows that the features we selected have good performance for prediction of essential
ncRNA. And there is a potential application for discovering essential ncRNAs in bacteria for further
analysis, such as antimicrobial target discovery, minimal genome construction and evolution analysis.
However, the prediction accuracy fluctuated greatly for different bacteria. In order to further analyze the
reasons for the different accuracy, we analyzed the relationship between the above four indicators (SN,
SP, Precision and Acc) and the ratio of the number of essential ncRNA to the number of essential ncRNA
in each organism (ratio), which is shown in Fig. 1.

Fig. 1 shows that the accuracy of the algorithm is related to the ratio. It had been mentioned that accuracy
of an algorithm would be unreliable due to differences in wet-lab experimental conditions. It was further
found that when the ratio was about 0.35, the prediction effect was the best.
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