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Abstract: Speech separation is an active research topic that plays an important
role in numerous applications, such as speaker recognition, hearing pros-
thesis, and autonomous robots. Many algorithms have been put forward to
improve separation performance. However, speech separation in reverberant
noisy environment is still a challenging task. To address this, a novel speech
separation algorithm using gate recurrent unit (GRU) network based on
microphone array has been proposed in this paper. The main aim of the
proposed algorithm is to improve the separation performance and reduce the
computational cost. The proposed algorithm extracts the sub-band steered
response power-phase transform (SRP-PHAT) weighted by gammatone filter
as the speech separation feature due to its discriminative and robust spatial
position information. Since the GRU network has the advantage of processing
time series data with faster training speed and fewer training parameters, the
GRU model is adopted to process the separation features of several sequential
frames in the same sub-band to estimate the ideal Ratio Masking (IRM). The
proposed algorithm decomposes the mixture signals into time-frequency (TF)
units using gammatone filter bank in the frequency domain, and the target
speech is reconstructed in the frequency domain by masking the mixture signal
according to the estimated IRM. The operations of decomposing the mixture
signal and reconstructing the target signal are completed in the frequency
domain which can reduce the total computational cost. Experimental results
demonstrate that the proposed algorithm realizes omnidirectional speech sep-
aration in noisy and reverberant environments, provides good performance in
terms of speech quality and intelligibility, and has the generalization capacity
to reverberate.
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1 Introduction

Speech separation is the task of separating target speech from interference signals. Speech
separation is an important research topic in the field of speech signal processing with a wide range
of applications, including teleconferencing, speaker recognition, hearing prosthesis, and autonomous
robots [1–3]. For instance, teleconferencing systems need to separate the near-end target speech from
interfering signals before transmitting to the far-end listeners. In real scenarios, the performance
of automatic speech recognition systems will degrade due to noise and interfering signals. As a
crucial preprocessing step in automatic speech recognition systems, speech separation can improve
the performance of automatic speech recognition systems by separating the target speech from
background interference to remove interference signals. Speech separation is meaningful for hearing
aid design because hearing aid devices should separate the target speaker’s utterance from competing
sound sources. Speech separation technology can extract individual sound sources from their mixture,
which is very necessary to provide autonomous robots with machine audition capabilities.

Over the past few decades, a number of approaches have been put forward for the task of
speech separation. The approaches can be categorized into monaural and array-based methods
according to the number of microphones. The microphone array-based methods introduce spatial
domain processing besides time domain processing and frequency domain processing, which boosts
separation performance. The existing microphone array-based speech separation algorithms include
beamforming methods [4], independent component analysis (ICA) methods [5], compressed sensing
(CS)-based methods [6] and computational auditory scene analysis (CASA) methods [7]. The core
of CASA-based speech separation algorithms include two stages: segmentation and grouping. The
mixture speech is decomposed into time-frequency (TF) units as auditory perception segments in the
segmentation stage, and the TF units from the same target sound source are reconstructed into an
auditory data stream in the grouping stage.

Recently, a variety of CASA-based algorithms regard speech separation as a supervised learning
problem and focus on the following components: training targets, acoustic features, and learning
machines [8]. The commonly used training targets include ideal binary masking (IBM) [9], ideal ratio
masking (IRM) [10], complex IRM [11], spectral magnitude mask (SMM) [12], phase sensitive mask
(PSM) [13] and so on. The acoustic features play an important role in supervised speech separation.
The commonly involved monaural features include Mel-frequency cepstral coefficient (MFCC) [14],
gammatone frequency cepstral coefficient (GFCC), amplitude modulation spectrum (AMS) and so
on. The commonly involved spatial features of multi-channel include inter-aural time differences
(ITD), inter-aural level difference (ILD), inter-aural phase difference (IPD), cross-correlation function
(CCF), generalized cross correlation (GCC), time difference of arrival (TDOA) and so on. The spatial
features fully exploit the corresponding information from microphone array signals [15], and have the
advantage of independent of the speaker and the content of the speech signal. The traditional learning
machines include Gaussian mixture model (GMM), support vector machines (SVM) and so on. With
the development of artificial neural network, deep learning approaches have been introduced for the
task of speech separation in recent years.

The related researches for the introduction of deep learning to speech separation are as follows.
Jiang et al. [16] combined the ITD, ILD and GFCC as the input features, treated IBM as training
target, and utilized deep neural networks (DNN) for binaural speech separation. The approaches
in [17,18] predicted the IRM value through DNN model. ILD and IPD were jointed as input
features in [17], and the combination of ITD, ILD and monaural feature was treated as input
features in [18]. Zhou et al. [19] defined a modified IRM and trained the long short-term memory
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(LSTM) network model for binaural speech separation with input features consisting of CCF, IID
and ILD. The approach in [20] converted the combining features including logarithmic amplitude
spectrum (LPS) and IPD function into high-dimensional vectors through Bi-directional short-term
memory (BiLSTM), and utilized K-means clustering to classify the TF units. Zhao et al. [21] imple-
mented speech separation and speaker recognition using deep recurrent neural network (DRNN).
Venkatesan et al. [22] proposed an iterative-DNN-based speech separation algorithm to retrieve two
concurrent speech signals in a room environment. The aforementioned binaural speech separation
algorithms can realize speech separation when the speakers are located in the front half of the
horizontal plane due to the symmetry of spatial information, while the microphone array provides
multiple recordings and can realize omnidirectional speech separation. The approaches in [23–26]
decomposed the mixture signal into TF units by short-time Fourier transform (STTF) and extracted
the IPDs in STFT domain as features. In [23], the approach took the IPD function as the input feature
of the deep neural network of U-net architecture, and calculated the masking value according to
the direction of arrival (DOA) estimation. The approaches in [24–26] took the combination of IPD
function and LPS as input features and adopted the LSTM network to estimate the mask value. LSTM
is a special kind of recurrent neural network (RNN) which has advantages in processing time series
speech signals.

Speech separation methods may face some challenges when used in enclosed environments,
including the limitations of the aforementioned spatial features, the insufficient speech separation
performance in reverberant noisy conditions, and the need to reduce computational cost for practical
applications. The aforementioned spatial features such as IPD, ILD, ITD, TDOA, CCF and GCC have
certain limitations. IPD has the problem of high-frequency wrapping. ILD is not suitable for ordinary
omnidirectional microphone arrays for far filed case. CCF and GCC suffer from the drawback of
lack of robustness to noise and reverberation, resulting in incorrect ITD and TDOA estimates. As
our previous work described in [27,28], the steered response power-phase transform (SRP-PHAT)
spatial power spectrum contains robust spatial location information and is independent of the content
of the speech signal. Therefore, the sub-band SRP-PHAT weighted by gammatone bandpass filter
is adopted as the speech separation cue in this paper. Speech separation performance in adverse
acoustic scenarios is still far from perfect due to reverberation and noise. Spatial features between
consecutive speech frames are correlated, and learning the temporal dynamics of spatial features using
recurrent neural networks will help improve speech separation performance. LSTM provides a good
performance in processing time series data [29]. However, the introduction of a lot training parameters
leads to insufficient training efficiency of LSTM. The gate recurrent unit (GRU) network is a variant
of LSTM with fewer training parameters [30,31]. The GRU network combines the input gate and the
forget gate into one gate: the update gate. At the same time, the GRU network does not introduce
additional memory units, while introduces a linear dependency between the current state and the
historical state. Compared with LSTM, the GRU network can accelerate the training procedure and
provide a comparable performance [32]. Therefore, we introduce GRU network to model temporal
dynamics of spatial features. gammatone filter bank is often used to decompose mixture signal into
TF units. The existing methods conduct the auditory segmentation by convolving the mixture signal
with the impulse response of gammatone filter, and obtain the TF unit of the target speech signal
by multiplying mixture signal and the masking value in the time domain [15,19]. A large number of
multiplication operations are required in the speech segmentation and grouping stage, resulting in
computational cost consuming. The algorithm proposed in this paper decomposes the mixture signal
and separates target speech in the frequency domain without the time domain convolution operation,
thereby reducing the total computational cost. In summary, the main contributions of this paper are:
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• Feature extraction: The sub-band SRP-PHAT weighted by gammatone bandpass filter is
extracted as the separation feature, which fully exploits the phase information of the micro-
phone array signals. The SRP-PHAT spatial power spectra at different positions are much more
discriminative and robust than GCCs or TDOAs.

• GRU Model for IRM estimation: Considering the temporal dynamics of spatial features, a
GRU model for IRM estimation is presented, which has the advantages of fewer training
parameters and faster training speed.

• Scheme for speech segmentation and grouping: Different from the existing algorithms using
gammatone filter bank to decompose cochleagram in the time domain, the proposed algorithm
presents a scheme for speech segmentation and grouping in the frequency domain so that the
computational cost is reduced.

Through experimental evaluation, the proposed algorithm has been shown to provide good
performance in terms of speech quality and intelligibility in noisy and reverberant environments and
have the generalization capacity to reverberation.

The rest of this paper is organized as follows. Section 2 presents the overview of the proposed
speech separation system. Section 3 describes the proposed speech separation algorithm based on
GRU, including preprocess, feature extraction, speech separation and reconstruction, the architecture
of GRU network and the training of GRU network. The experimental results and analysis are
presented in Section 4. The conclusion is drawn in Section 5.

2 System Architecture

The core idea of our algorithm is to use GRU network to approximate the IRM value through
spatial feature. The proposed algorithm treats the IRM estimation problem as a regression task. Fig. 1
illustrates the overall architecture of the proposed speech separation system. The microphone array-
based speech separation system using GRU network includes two phases: the training phase and the
testing phase. The system inputs are the mixture signals received by microphone array. The mixture
signals are decomposed into TF units by gammatone filter bank in the frequency domain. Then, the
gammatone-weighted sub-band SRP-PHAT spatial spectrum [28] is extracted in each TF unit as the
spatial feature for speech separation. Furthermore, considering the temporal dynamics, the spatial
features of several sequential frames in the same sub-band are concatenated to form a spatial feature
matrix, which is treated as GRU network input for the central TF unit. In the training phase, the GRU
networks of all sub-bands are trained to approximate the IRM targets through the spatial features. To
improve the robustness and generalization of the system, training signals with diverse reverberation
and noise are taken together to train the GRU networks. During the testing phase, the trained GRU
network outputs estimated IRM values within each TF unit of the mixture testing signal. Then, the
target speech in each TF unit is reconstructed in the frequency domain by masking the mixture signal
according to the estimated IRM. Finally, the reconstructed target speech signals in the time domain are
obtained by conducting inverse Fourier transform on the combination of the signals of all sub-band.

3 Speech Separation Algorithm Using GRU Network
3.1 Preprocess

The physical model for speech signal from multi-speakers received by mth microphone in indoor
scenarios can be formulated as follows:

xm (t) = hm,1 (t) ∗ s1 (t) + hm,2 (t) ∗ s2 (t) + vm (t) m = 1, . . . M (1)
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where xm (t) represents the mixture signal received by the mth microphone, s1 (t) and s2 (t) denote two
speech source signals, hm,1 (t) and hm,2 (t) represent the room impulse responses from speech sources to
the mth microphone, “∗”denotes the linear convolution, vm (t) is additive noise for the mth microphone,
and M is the number of microphones.
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Figure 1: Overall architecture of microphone array-based speech separation system using GRU
network

Short-time Fourier transform (STFT) is conducted on the microphone array signal after framing
and windowing:

Xm (k, ω) =
∫ T

0

xm (k, t) e−jωt m = 1 . . . M (2)

where Xm (k, ω) represents the spectrum of the mth microphone signal at frame k, ω is the frequency,
and T is the frame length.

Gammatone filter bank is used to simulate the time-frequency analysis to acoustic signals. The
impulse response of the ith gammatone filter is defined as:

gi(t) = ctn−1e−2πbit cos(2πfit + ϕ), t > 0 (3)

where c denotes the gain coefficient, n denotes the filter order, bi denotes the decay coefficient, fi

denotes the central frequency of the ith filter, and ϕ denotes the phase. The central frequencies of
gammatone filters range from 50 to 8000 Hz on the equivalent rectangular bandwidth (ERB). Unlike
the existing algorithms, the proposed algorithm decomposes the microphone array signal into TF units
in the frequency domain as follows:

Xm (k, i, ω) = Xm (k, ω) Gi (ω) (4)

where Xm (k, i, ω) represents the spectrum of the mth microphone signal at frame k and sub-band i,
Xm (k, i, ω) is the TF unit for speech separation, and Gi (ω) is the Fourier transforms of gi (t). In this
paper, the number of sub-band is 32.

3.2 Feature Extraction
The spatial position of the speakers is sparse, and the spatial position information is independent

of the speaker and the content of the speech signal. The mixture signal can be effectively separated
according to the spatial position information without establishing a statistical model of the source
signal parameters. Furthermore, the spatial information has the abilities of simultaneous organization
and sequential organization. Therefore, the spatial position information extracted from the array
signals is used as the feature for speech separation.
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As our previous work described in [27,28], the SRP-PHAT spatial power spectrum of the array
signals contains spatial position information. The SRP-PHAT function fully exploits the phase
information of the microphone array signals. The SRP-PHAT spatial power spectra at different
positions are much more discriminative and robust than GCCs or TDOAs. Therefore the SRP-PHAT
spatial power spectrum is exploited as the separation feature. In each TF unit, the extracted feature is
the sub-band SRP-PHAT weighted by gammatone bandpass filter, and it is defined as:

P (k, i, r) =
M∑

m=1

M∑
n=m+1

∫ ∞

−∞
|Gi (ω)|γ Xm (k, i, ω) X ∗

n (k, i, ω)∣∣Xm (k, i, ω) X ∗
n (k, i, ω)

∣∣ejω�τmn(r)dω

=
M∑

m=1

M∑
n=m+1

∫ ∞

−∞
|Gi (ω)|γ Xm (k, ω) X ∗

n (k, ω)∣∣Xm (k, ω) X ∗
n (k, ω)

∣∣ejω�τmn(r)dω (5)

where P (k, i, r) represents the response power of TF unit at frame k and sub-band i, r is the steering
position, �τmn (r) is the propagation delay difference from steering position r to the mth microphone
and the nth microphone, �τmn (r) is only related to the azimuth of the steering position r in the far-filed
case, γ denotes the weighting order, and γ is set to 1 in this paper. From Eq. (5), we note that the phase
information of frequency components in each TF unit is weighted by gammatone bandpass filter.

The Gammatone-weighted sub-band SRP-PHATs within a TF unit are arranged into a vector,
which can be expressed as follows:

P (k, i) = [
P (k, i, r1) , P (k, i, r2) , . . . P (k, i, rD)

]
(6)

where P (k, i) represents the spatial feature vector extracted in each TF unit, D is the number of
steering positions. In the far-filed case, the argument rd is simplified to the azimuth. The azimuth of
steering position ranges from 0° to 360° with a step of 5°, corresponding to 72 steering positions. Thus
the dimension of gammatone-weighted sub-band SRP-PHAT feature vector is 72. The gammatone-
weighted sub-band SRP-PHAT feature vectors of different directions have good discrimination.

Due to the temporal dynamics of speech signals, the spatial feature of consecutive frames are
highly correlated. Research shows that the inter-frame correlation of the spatial features is small when
the frame interval exceeds 4. Thus the spatial features of 9 sequential frames (4 before and 4 after the
current TF unit) in the same sub-band are concatenated to form the GRU input matrix. Therefore the
dimension of GRU input matrix is 9 × 72.

3.3 Speech Separation and Reconstruction
The two speech source signals and noise are considered to be uncorrelated with each other within

a given TF unit. IRM is used as the mask for recovering the target signal form the mixture signal
received by microphone array. IRMs for speech source signals and noise are defined as follows [19]:

IRM1 (k, i) =
√

E1 (k, i)2

E1 (k, i)2 + E2 (k, i)2 + Ev (k, i)2 (7)

IRM2 (k, i) =
√

E2 (k, i)2

E1 (k, i)2 + E2 (k, i)2 + Ev (k, i)2 (8)

IRMv (k, i) =
√

Ev (k, i)2

E1 (k, i)2 + E2 (k, i)2 + Ev (k, i)2 (9)
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where IRM1 (k, i) and IRM2 (k, i) indicate the ideal masks of the target signals in TF unit at frame k
and sub-band i, IRMv (k, i) indicates the mask of the noise, E1 (k, i)2 and E2 (k, i)2 represent the energy
of two speech signals within the TF unit respectively, and Ev (k, i)2 represents the energy of additive
noise within the TF unit.

During the testing phase, the output of GRU network is an estimation of the ideal mask. The target
speech in each TF unit is reconstructed by masking the mixture signal according to the estimated IRM
as follows:

S̃1 (k, i, ω) = ĨRM1 (k, i) X (k, i, ω) (10)

S̃2 (k, i, ω) = ĨRM2 (k, i) X (k, i, ω) (11)

where S̃1 (k, i, ω) and S̃2 (k, i, ω) represent the reconstructed spectrums of two target speech signals in
TF unit at frame k and sub-band i, ĨRM1 (k, i) and ĨRM2 (k, i) are the estimated IRM values from
GRU network for two speakers within a given TF unit, X (k, i, ω) is the spectrum of mixture signal
from any one of the microphones. Thereafter, for a given TF unit, the target signal in the time domain
is calculated as follows:

s̃1 (k, i, t) = IDFT

(
S̃1 (k, i, ω)

Gi (ω)

)
ω ∈ [

ωL
i , ωH

i

]
(12)

s̃2 (k, i, t) = IDFT

(
S̃2 (k, i, ω)

Gi (ω)

)
ω ∈ [

ωL
i , ωH

i

]
(13)

where ωL
i and ωH

i denote the lower and upper bounds of the ith sub-band respectively, and IDFT (·)
denotes the inverse Fourier transform operation.

Subsequently, the target signal in a given frame is recovered by combining the signals of all sub-
bands as follows:

s̃1 (k, t) =
∑

i

s̃1 (k, i, t) (14)

s̃2 (k, t) =
∑

i

s̃2 (k, i, t) (15)

where s̃1 (k, t) and s̃2 (k, t) represent the time domain signals of two target sources at frame k. Finally,
the reconstructed target speech signals are obtained by combining the frame signals. Substituting
Eqs. (12) and (13) into Eqs. (14) and (15) respectively and considering the properties of the inverse
Fourier transform, Eqs. (14) and (15) can be rewritten as follow:

s̃1 (k, t) =
∑

i

IDFT

(
S̃1 (k, i, ω)

Gi (ω)

)
= IDFT

(∑
i

S̃1 (k, i, ω)

Gi (ω)

)
ω ∈ [

ωL
i , ωH

i

]
(16)

s̃2 (k, t) =
∑

i

IDFT

(
S̃2 (k, i, ω)

Gi (ω)

)
= IDFT

(∑
i

S̃2 (k, i, ω)

Gi (ω)

)
ω ∈ [

ωL
i , ωH

i

]
(17)

In practical applications, fast Fourier transform (FFT) is usually used instead of STFT to process
the signal. Gammatone filter bank can be designed and stored in advance. In the segmentation
stage, the proposed method decomposes mixture speech into TF units according to Eq. (4). The FFT
operation on the mixture speech needs to perform

(
L log2 L

)
/2 complex multiplications, where L is

the length of FFT. Multiplying Xm (k, i, ω) and Gi (ω) needs to perform L complex multiplication.
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Hence, a total of
(
L log2 L

)
/2 + LI complex multiplications are required to decompose a frame of

signal, where I is the number of sub-band. However, the methods in [15,19] conduct the auditory
segmentation by convolving the mixture speech with the impulse response of gammatone filter in the
time domain. The convolution can be realized by overlap-add method to reduce the computational
cost. It is necessary to perform FFT on mixture speech to obtain Xm (k, i, ω), and perform inverse fast
Fourier transform (IFFT) on the product of Xm (k, i, ω) and Gi (ω). Hence, it requires

(
L log2 L + L

) ·I
complex multiplications in total for segmentation in [15,19]. In the grouping stage, the computational
cost of reconstructing the target speech in each TF unit according to Eqs. (10) and (11) is similar
to the computational cost in [15,19]. To recover the auditory data stream of the target speech, the
proposed method needs

(
L log2 L

)
/2 + LI complex multiplications according to Eqs. (16) and (17),

while the methods in [15,19] need
(
L log2 L + L

) · I complex multiplications. Therefore, the proposed
scheme for speech segmentation and grouping requires fewer complex multiplications and reduces the
computational cost effectively.

3.4 The Architecture of GRU Network
Speech signal has characteristics of temporal dynamics, and RNN has advantages in processing

time series data. Although both GRU and LSTM are recurrent networks, the GRU network has
fewer training parameters and accelerated training procedure, and provides comparable performance.
Therefore, RNN with GRU is adopted to learn the temporal dynamics of spatial features for speech
separation. As depicted in Fig. 2, the architecture of the network includes an input layer, two GRU
layers, two fully connected layers, and an output layer. Since the time-step is set to 9 (4 before and 4
after the current TF unit), the data of input layer is the spatial feature matrix of size 9 × 72 which is
described in Section 3.2. The input layer is followed by two GRU layers. Each GRU layer contains 256
bidirectional GRU units. The two GRU layers fully encode the information of the input signal in the
time-step. The last GRU layer is followed by two fully connected layers. For each fully connected layer,
batch normalized (BN) and rectified linear unit (ReLU) activation function are performed after linear
operation. The dropout method is introduced in each GRU layer and fully connected layer to prevent
overfitting. The output layer outputs the estimated IRM for each speaker with different directions. The
azimuth of speaker ranges from 0° to 360° with a step of 10°, corresponding to 36 training directions.
Therefore, the output layer contains 37 neurons, corresponding to 36 directions and noise. For the
output layer, the softmax regression model is adopted to convert the feature data into the IRM value
of the target signal at a given direction.

Input 
layer

Dropout Dropout

GRU layer
Fully 

connected 
layer

Fully 
connected 

layer

Output 
layer

GRU layer

Softmax
Dropout Dropout

Figure 2: The GRU network architecture of the proposed algorithm

3.5 The Training of GRU
The speech separation system trains the models separately for 32 sub-bands. To improve the

robustness and generality of model, the training data with diverse noisy and reverberant are used
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together to train the GRU model. The input data of the GRU model is the sub-band SRP-PHAT
spatial feature constructed in Section 3.2.

For each sub-band, the training target of GRU model is the label vector, which is expressed as
follows:

Y = [
y1 y2 . . . y36 y37

] = [
0, . . . IRM1, . . . IRM2, . . . IRMv

]
(18)

In the label vector, the values of the two elements whose positions in the vector are corresponding
to the speakers’ directions are IRM1 and IRM2, the value of the last element is IRMv for noise, and the
values of the other elements in the label vector are 0. The IRM values are calculated by Eqs. (7)–(9).
From Eq. (18), we note that the label vector is sparse.

The training of GRU model includes forward propagation process and back propagation process.
In the forward propagation process, the features are transferred layer by layer, and the expression of
the output layer is as follows:

Z = Softmax (f (P)) (19)

where Z is the output of the GRU network; P is the input signal, that is sub-band SRP-PHAT
spatial feature in this paper; and f (·) is total operation of the GRU network under the current model
parameters, including gated loop unit operation of GRU, linear operation, BN operation, activation
operation and so on.

The model parameters are updated through the back propagation algorithm. The mean square
error (MSE) between the output of the GRU network and the training label vector is used as the loss
function, which is expressed as follows:

J = 1
2
||Y − Z||2

2 (20)

where ||·||2 represents L2 norm.

The MSE loss function is minimized in the back propagation process to update the model
parameters. The Adam optimizer is adopted. The number of training epochs is set to 50. The gradient
decay factor is set to 0.9, the square gradient decay factor is set to 0.99, the initial learning rate is 0.001,
and the mini-batch is set to 200. To prevent over-fitting in the training phase, the 7:3 cross validation
is adopted and the dropout method with a ratio of 0.5 is introduced.

4 Simulation and Result Analysis
4.1 Simulation Setup

Simulation experiments are implemented to evaluate the performance of the proposed method.
The dimensions of the simulated room are given as 7 m × 7 m × 3 m. A uniform circular array consisted
of six omnidirectional microphones is located at (3.5, 3.5, 1.6 m) in the room. The radius of the array is
10 cm. The clean speech signals are selected randomly from the TIMIT database, with a sampling rate
of 16 kHz. The room impulse response from speaker to microphone is generated by the Image method
[33]. The reverberant signal is derived by convolving the clean speech signal with the room impulse
response. The scaled Gaussian white noise is added to the sum of reverberant signals of two speech
sources to generate the mixture signal received by microphone.

The speaker is in the far-field, and the azimuth varies between [0°, 360°] with a step of 10°. During
the training phase, the SNR is varied from 0 to 20 dB with a step of 5 dB, and the reverberation time
T60 is set to two levels as 0.2 and 0.6 s. The training data with different reverberation and noise are
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taken together to train the GRU network. The microphone signals are segmented into 32-ms frame
length with a shift of 16 ms.

The separation performance is measured by short-time objective intelligibility (STOI) and percep-
tual evaluation of speech quality (PESQ). STOI is the metric of speech intelligibility, and PSEQ is the
metric of speech quality, which is used to evaluate the auditory perception characteristics of speech.
The performance of the proposed algorithm is compared with DNN-IRM method mentioned in [15].

4.2 Evaluation in Setup-Matched Environments
In this section, the speech separation performance is evaluated in the setup-matched environments,

that is, the test signals and the training signals are generated under the same setup conditions. Figs. 3
and 4 depict the speech separation performance as a function of SNR for different algorithms under
reverberation environments with T60 = 0.2 and T60 = 0.6 s, respectively.
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Figure 3: Performance comparison of two algorithms with T60 = 0.2 s

From Figs. 3 and 4, it can be seen that the performance of speech separation algorithm deteriorates
as the SNR decreases. Based on Figs. 3 and 4, we have found that the proposed algorithm achieves
better speech intelligibility and quality than the DNN-IRM method in noisy and reverberant envi-
ronments. The reason is that the proposed algorithm adopts the gammatone sub-band SRP-PHAT
containing robust spatial position information as spatial feature, which effectively exploits the phase
information of the microphone array signals and has good discrimination. And meanwhile the GRU
network used by the proposed algorithm can introduce the temporal context. Furthermore, in terms of
speech intelligibility, the STOI improvement of the proposed method compared with the DNN-IRM
method is significant under low SNR environments (below 5 dB), that is about 0.02∼0.04 which means
that the proposed method can significantly improve speech intelligibility in high noisy environments.
In terms of speech quality, the proposed method and the DNN-IRM method have similar PESQ
values in low SNR condition, and the proposed method presents higher PESQ values than those of the
DNN-IRM method in moderate to high SNR condition with about 0.02∼0.07 improvement, which
means that the proposed method can significantly improve speech quality in in moderate to high SNR
condition.
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Figure 4: Performance comparison of two algorithms with T60 = 0.6 s

4.3 Evaluation in Setup-Unmatched Environments
In this section, we investigate the reverberation generalization of the proposed algorithm in

untrained environments. For the testing signals, the reverberation time T60 is set to 0.8 s which is
different from that of training signals. Fig. 5 depicts the performance comparison results.
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Figure 5: Performance comparison of two algorithms with T60 = 0.8 s

Based on the results in Fig. 5, we have found that the proposed algorithm is superior to the DNN-
IRM method in terms of speech intelligibility and quality. Compared to Fig. 4 with T60 = 0.6 s, the
STOI and PESQ are slightly reduced, while the regularity of data variation is similar to those described
in Section 4.2. Specifically, the STOI improvement increases from 0 to 0.02 as the SNR decreases
from 20 to 0 dB. The proposed method and the DNN-IRM method have similar PESQ values in low
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SNR condition, and the proposed method presents higher PESQ values than those of the DNN-IRM
method in moderate to high SNR condition with about 0.03 improvement. Therefore, the proposed
method achieves better speech intelligibility and quality in the untrained reverberant environments,
demonstrating that the proposed method has better generalization performance to reverberate.

5 Conclusion

In this work, a speech separation algorithm using GRU network based on microphone array has
been presented. Different from the existing algorithms using gammatone filter bank to decompose
cochleagram in the time domain, the proposed algorithm decomposes the mixture speech and
separates target speech in the frequency domain. The proposed scheme for speech segmentation and
grouping can reduce the total computational cost for speech separation. The gammatone sub-band
SRP-PHAT spatial power spectrum which contains robust spatial position information is exploited
as the feature for speech separation. Considering the temporal dynamics of spatial features, the GRU
network model which has the advantages of fewer training parameters and faster training speed, is
adopted to estimate the IRM value for each target source in the TF unit. Experimental results show
that the proposed algorithm can achieve omnidirectional speech separation, provide better speech
quality and intelligibility both in the trained and untrained environments compared with DNN-
IRM method, and have the generalization capacity to reverberation. The limitations of the proposed
method in practical applications are: First, it is necessary to collect a sufficient number of training data
covering variabilities including the speaker’ positions, reverberation, and noises. Second, it is necessary
to annotate the training data with ground-truth labels, which are not the direct information contained
in mixture speech and need to be calculated according to Eqs. (7)–(9). In future work, we will adopt
the transfer learning method to address the above issues.
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