
Implementation of Hybrid Particle Swarm Optimization for Optimized
Regression Testing

V. Prakash* and S. Gopalakrishnan

SASTRA Deemed University, Kumbakonam, Tamilnadu, 613401, India
*Corresponding Author: V. Prakash. Email: prakashvphd@gmail.com

Received: 07 May 2022; Accepted: 27 August 2022

Abstract: Software test case optimization improves the efficiency of the software
by proper structure and reduces the fault in the software. The existing research
applies various optimization methods such as Genetic Algorithm, Crow Search
Algorithm, Ant Colony Optimization, etc., for test case optimization. The existing
methods have limitations of lower efficiency in fault diagnosis, higher computa-
tional time, and high memory requirement. The existing methods have lower effi-
ciency in software test case optimization when the number of test cases is high.
This research proposes the Tournament Winner Genetic Algorithm (TW-GA)
method to improve the efficiency of software test case optimization. Hospital
Information System (HIS) software was used to evaluate TW-GA model perfor-
mance in test case optimization. The tournament Winner in the proposed method
selects the instances with the best fitness values and increases the exploitation of
the search to find the optimal solution. The TW-GA method has higher exploita-
tion that helps to find the mutant and equivalent mutation that significantly
increases fault diagnosis in the software. The TW-GA method discards the infor-
mation with a lower fitness value that reduces the computational time and mem-
ory requirement. The TW-GA method requires 5.47 s and the MOCSFO method
requires 30 s for software test case optimization.

Keywords: Equivalent mutation; fault diagnosis; hospital information system;
software test case optimization; tournament winner genetic algorithm

1 Introduction

Software systems are irreplaceable and an integral part of many engineering systems that assists in
various tasks. Software testing is the process of finding errors in the given program in the execution of a
system or program. Software testing is a process of evaluating or exercising a system component or
system in automated or manual means to verify specified requirements and provides actual results [1].
Features combination provides faults in the system that implies exponential search space for fault
detection using feature combinations. Various methods were applied for solving test case problems in
software that are mainly classified into three classes: meta-heuristic algorithms, greedy algorithms, and
constraint encoding algorithms [2]. Software testing is considered an expensive and time-consuming

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI: 10.32604/iasc.2023.032122

Article

echT PressScience

mailto:prakashvphd@gmail.com
https://www.techscience.com/journal/IASC
http://dx.doi.org/10.32604/iasc.2023.032122
https://www.techscience.com/
https://www.techscience.com/doi/10.32604/iasc.2023.032122

process that leads to the reliable formation and effective software systems. The testing process is provided
with high software development resources due to its significance. The conventional software testing methods
are cleared in the modules due to high data-intensive software [3]. The existing research explored various
optimization and Constraint Satisfaction Problem for typical Software Product Line (SPL) problems due
to the scare of SPL. Optimization-based solutions were applied in various types of research to solve cost
problems in test case optimization [4]. The Target Software Project is compared with the completed
project to find similar projects to predict software effort in Case-Based Reasoning (CBR) [5].

Regression testing is considered an important activity, time-taking, and costliest activity in an environment
for certain restrictions to ensure modified software validity [6]. A test case sequence is necessary to select in
case optimization that provides an efficient solution and transverse faults in minimum execution time [7].
Test case prioritization helps to provide efficient performance in which important test cases are executed
first and later lower important test cases are executed. The studies show that prioritization methods based on
test factors like Coverage, Time, Fault Rate, Complexity, Volatility, and importance have good results, and
optimization methods like Genetic Algorithm (GA), and Ant Colony provide efficient performance in test
case optimization [8]. In the software testing process, automatic test case generation is an optimization
problem. Test cases are automatically generated with help of optimization methods like GA. Some
researchers apply hybrid methods like Cuckoo search optimization and GA for better-optimized test cases.
GA method is used by many researchers in software test case optimization due to its efficiency. The test
cases are automatically generated for the structural test such as search space operations and parallelism
which are important characteristics. GA method efficiently solves many optimization problems to provide
near a global optimum solution and lacks exploitation [9,10]. The contribution of the TW-GA method in
software test case optimization is given as follows:

The TW-GA method is proposed in software test case optimization for fault diagnosis and test case
optimization. The Tournament winner in the GA method selects instances with higher fitness value for
search and increases the exploitation.

The HIS software is applied to test the performance of the TW-GA method for software test case
optimization. The TW-GA method is compared with conventional GA and existing methods for optimization.

The TW-GA method has higher performance in fault detection, average size, and average time in test
case optimization. The TW-GA method increases the exploitation process which improves the performance.

The organization of the paper is given as follows: Recent research on software test case optimization was
reviewed in Section 2 and related work is explained in Section 3. The TW-GAmethod explanation is given in
Section 4. The simulation setup is given in Section 5 and the results are shown in Section 6. The conclusion
of this research work is given in Section 7.

2 Literature Review

Much automated software is used in the real-time system and defect-free software is required for
effective performance. Test case optimization technique is required in software reliability and software
reusability. Some recent methods in software test case optimization research were reviewed in this section.

Mishra et al. [11] applied genetic algorithm-based software test case optimization that considers
execution time, risk exposure, requirement factors, and statement coverage data. Regression testing of
three processes such as test case selection, test case prioritization, and test case minimization was carried
out. Test cases are optimized based on given constraints in the software model. Agrawal et al. [12]
applied ant colony and hybrid Particle Swarm Optimization (PSO) models for software test case
optimization. The SIR repository of standard flex objects was applied to test the performance of the
developed model. The quality measure was calculated using fault coverage and execution time of the

2576 IASC, 2023, vol.36, no.3

process. Panwar et al. [13] applied a cuckoo search algorithm and modified ant colony optimization for
software test case optimization in a time constraint scenario. The hybrid algorithm was applied to the
triangle categorization problem and prioritizes test case generation using the DD-path graph.

Chen et al. [14] applied Adaptive Random Sequences (ARS) with clustering techniques on black-box
information for regression testing on object-oriented software. The K-means and K-medoids techniques
cluster the test case based on several objects and methods. The K-medoids clustering method with
similarity metrics was applied for the optimization of test cases. A neighboring test case is considered in
ARS for optimization. Banias et al. [15] developed a dynamic programming method for test case
optimization for selection-prioritization in software. The dynamic programming method was applied as an
objective method and empiric human decision was applied for the prioritization task. The model requires
less memory for the software test case optimization. proposed regression test case prioritization for
generating the test case and Kernel Fuzzy C Means (KFCM) method was applied for the generated test
case. The KFCM clusters relevant and irrelevant test cases, then relevant test cases are used for the
prioritization task. The Whale Optimization Algorithm was applied for weight optimization and Modified
Artificial Neural Network was applied for test case prioritization. The developed model selects the
optimal selection for test suites at better convergence. The model has considerable performance in terms
of average time and average size.

3 Related Methods

The Hill climbing optimization technique performs local search optimization to find the solution.

Hill Climbing

Hill climbing is an optimization technique and iterative technique in the local search method developed
from a random solution and then continues to a trajectory search for finding better positions in search space.
This process is iterated till a higher solution is achieved.

Original hill climb consists of many challenges and the most vital one is movement uphill accepts. Local
optima have occurred in the model for getting trapped is an important problem in optimization. To solve the
local optima trap problem, many extensions are applied and β-hill climbing is a considerable method in
which exploration-exploitation is balanced using the β-factor, such that β∈[0, 1].

The local search method of βhill-climbing optimizer starts the process with a unique solution. At each
iteration, the present solution is changed to randomly generate a solution utilizing two factors β-factor and Z-
factor, which are highly responsible for the exploration-exploitation process. A neighborhood search is
carried out using Z-factor and a mutation operator is carried out using β-factor. The Z-factor or β-factor at
every iteration provides the best solution.

The β-hill climbing process generates a single solution x∈Rn, randomly that further evaluates the
objective function f(x). Once Z-factor updates the solution, a new individual ‘x’ is generated in x vicinity,
as in Eq. (1).

x0j ¼ xj � rnd � bw (1)

where the new solution to the current solution bandwidth is denoted as bw, and randomly selected value is
j 2 1; 2; . . . ; nf g. In case f x0ð Þ, f xð Þ, then x x0.

A decision variable j is selected randomly for the new solution considering the b-operator, as given in
Eq. (2).

IASC, 2023, vol.36, no.3 2577

x0i lj þ uj � lj
� �� U 0; 1ð Þ r � b

xi otherwise

�
(2)

where r � U 0; 1ð Þ. The current solution is replaced with a new solution as x x0 in the case of f x0ð Þ, f xð Þ.
The β-hill-climbing method is effectively applied to various real-world problems such as engineering

optimization, feature extraction, signal processing, and gene selection problem.

4 Proposed Method

Hospital Information System (HIS) software is used in the research for test case optimization in the
model. Test case information of software is analyzed with test case requirement, test case subset, and test
case coverage. Tournament selection with a genetic algorithm is applied to the extracted information for
optimal selection of test cases. The flow of the Tournament Winner Genetic Algorithm (TW-GA) is
shown in Fig. 1.

4.1 Hospital Information System (HIS)

HospitalRun is offline-enable, open-source, and easy-to-use Electronic Medical Record (EMR) or
Hospital Information System (HIS) software to assist in the healthcare system.

The HIS system integrates solutions designed to manage hospital operations including medical
operations, legal, inventory, human resources, administrative, financial, and clinical workflow. HIS is
developed to assist in the hospital and for every user with an active role in hospital operations such as lab
technicians, pharmacists, accountants, staff nurses, doctors, and managers. The HIS basic features are

Human resources management

Ward management

Accounting and Financial management

Pharmacy management

Laboratory management

Inpatient management

Figure 1: Tournament winner genetic algorithm for test case optimization

2578 IASC, 2023, vol.36, no.3

Patient records management

Appointment management

Patient admissions

An electronic medical record system adoption is the primary goal of modern health organizations and
this aim is to increase the efficiency of treating patient information and make it available in an accurate
and timely form at the point of service.

More information is available on mobile phones, traditional computers, and other mobile devices as the
system progresses to the final stage in terms of maturity. This system operates as storage for all patient
information and offers complete medical records available online and when in human contact with the
patient. Several characteristics are present in influencing factors and various functions required to build a
complete and exhaustive electronic medical record for the patient.

The screenshot of the HospitalRun HIS software is given below in Figs. 2 and 3.

4.2 Problem Statement

Minimization: Given a test suite Ts and test case requirements set r1; r2; r3; . . . ; rn that is to be
satisfied for software test coverage. The Ts subsets T1; T2; T3; . . . ; Tn are related to the Traceability
matrix in such a way each test case Tj belongs to Ti used for test ri.

Figure 2: Sample screenshot of the software

Figure 3: Sample screenshot of the software

IASC, 2023, vol.36, no.3 2579

Problem: Test cases set representative from Ts that satisfies all ri's where program all requirements
represent r0is or requirements related to the modified program.

Prioritization: A number of ways test cases are selected based on Torder and a test suite T. The test suite T
fitness f is based on real value criteria.

Problem: Find T 0 based on T 0 2 Torder for all T, where f T 0ð Þ � f Tð Þ and T ! ¼ T 0.

4.3 Genetic Algorithm

Genetic algorithm optimization starts with a solution set (chromosome) called population. The selected
solutions create new solutions (offspring) using fitness value and a higher chance of reproduction if the
fitness value is more. Algorithm 1 explains the TW-GA method.

The TW-GA method is an improved version of GA, where selected values are used for increases the
exploitation in the search to achieve desired optimizing results. The conventional GA method applies
mutation to the chromosome of each parent for random interchanging of genes to occur. The
chromosome’s fitness is used to measure mutation calculation and the rate of mutation is based on
mutation performance. A solution set is generated using chromosomes for TW-GA functioning. Every
chromosome is related to TW-GA steps.

The TW-GA method steps are explained below.

The GA is a popular soft computing method and the Tournament winner technique is introduced in GA
to increase the exploitation capacity to find faults in test case optimization. The TW-GA steps are given as
follows.

Chromosomes generation

Fitness function calculation

Crossover

Mutation

Tournament Selection

The fuzzy classifier generates the rules for optimization and every rule is considered a chromosome.
Randomly generates the chromosome pools and every chromosome is applied for the TW process.
Chromosomes are evaluated using fitness values and chromosomes with higher fitness values are
available at the output. The crossover and mutation are vital steps in the GA method.

Solution pre-defined ways of containing information are represented by chromosomes. Chromosome
information is commonly encoded using binary strings.

String every bit retains correspondence of solution’s characteristic and a complete string are used to
represent by a number. Solution encoding is presented by many coding techniques and this is based on
the problem solved. The integer is directly applied for encoded and certain permutations are encoded.

Step 1 Chromosome Generation: The initial stage of the TW-GA method generates chromosomes and
those are used to generate rules based on the rule parameters. Count C chromosomes at the solution space are
generated randomly and Eq. (3) provides the term.

Chk ¼ Gk
0G

k
1 . . .G

k
CL�1

h i
0 � k � M � 1; 0 � i � CL � 1 (3)

where chromosome length is denoted as CL, the total population is denoted asM, and jth gene chromosome is
denoted as Gk

i .

2580 IASC, 2023, vol.36, no.3

Step 2 Calculating Fitness Function: The fitness function is used to optimize the rules for selecting
solutions and better fitness solutions are selected using Eq. (4).

ft ¼
XM

K¼1 Rs=M (4)

where the rules’ total count is denoted asM, the selected rule is denoted as Rs, summation term is denoted as s

and
m

k
.

Each chromosome’s fitness value ft is measured using selected rules and every chromosome is verified
against fitness function. Solutions that satisfy the fitness function are selected to participate in reproduction as
either mutation or crossover.

Step 3 Crossover: Crossover is applied for two-parent chromosomes to generate a new chromosome.
Offspring is a newly generated chromosome and crossover is measured based on selected genes and
offspring production on crossover rate. The crossover point is given in Eq. (5).

CPrate ¼ CG

CL
(5)

where the length of the chromosome is denoted as CL, the number of genes generated is denoted as CG and
the crossover rate is denoted as CPrate.

The parent chromosomes perform crossover generation based on crossover rate and new chromosomes
set named of spring. The crossover point is found using crossover rate and genes are interchanged from both
parent chromosomes to generate springs of both parent’s chromosomes. The better fitness function is applied
for chromosome generation compared to older chromosome generation.

Step 4 Adaptive Mutation: Some random genes are changed from a single parent and mutation is
performed using the rate of mutation. Eq. (6) provides the mutation rate.

MUr ¼ Pm

CL
(6)

where chromosome length is denoted as CL, mutation point is denoted as Pm, and mutation rate is denoted as
MUr.

Mutation rate selection is based on estimated fitness value and generated rules are used to measure the
fitness value. Mutation rate compared with fitness-stated values is used to measure resultant and threshold
values that are selected as the final mutation rate. The mutation points of the vector are used in Eq. (7).

MUr ¼ mp1; mp2; . . . ; mplf g (7)

Fitness value ft is measured using the Rate of mutation r and chromosome length is denoted as l, as in
Eq. (8).

MUr ¼ 1; if ft � T
0; else

�
(8)

where mutation rules are used to compute T and every mutating point extraction is used for mutating.
Every chromosome with the iteration of mutation rate is based on fitness value.

Step 5 Selection

The TW-GA method is applied for the selection of solution and new chromosomes (Np) are applied in
the selection pool based on fitness value. The fitness value in the selection pool chromosome is the best and

IASC, 2023, vol.36, no.3 2581

topmost Np chromosome stored in the selection pool in next-generation between 2Np chromosomes. The
flow chart of the GA method is given in Fig. 4.

Tournament selection is a selection process to select the fittest candidates in the GA method in the
current generation. The selected candidate is applied for the next generation. The k-individuals are
selected in k-way tournament selection and compute the tournament. The Fittest candidate is applied for a
selected candidate for next-generation passing the candidates. Many tournaments are applied and the
candidate’s final selection is processed to the next generation. Selection pressure is used as a parameter
for the probabilistic measure of candidates for participation likelihood in a tournament. Weak candidates
have a smaller selection chance if the tournament size is larger than competing with a stronger candidate.
GA convergence rate is measured based on a parameter of selection pressure. More convergence rate is
applied for more selection pressure. Near-optimal solutions or identifying optimal GA are selected over
selection pressures wide range. The TW also considers negative fitness values.

The individual candidate is selected from the population of GA based on fitness value.

Several ‘Tournaments’ are selected among a few individuals selected randomly from the population.

The candidate with the best fitness or each tournament winner is selected for crossover.

Tournament selection provides a chance to all individuals if tournament size is small and diversely
preserves that degrades convergence rate.

Weak individuals have less chance for selection if the tournament size is larger.

Algorithm: Tournament Selection–Genetic Algorithm

1. Initialize population with m chromosomes f yð Þ
2. Measure every chromosome y’s fitness f yð Þ at the population
3. For iterations:

a. Select a couple of chromosomes for the parent based on fitness

Figure 4: Flow chart of genetic algorithm

(Continued)

2582 IASC, 2023, vol.36, no.3

b. Parents perform crossover based on crossover probability

c. If the crossover is not performed, the parent’s exact copy is applied to the offspring

d. Mutate new offsprings based on mutation probability

e. A new offspring is applied to a new population

4. End

5. A newly generated population is applied for an additional run

6. For k-individuals:

a. Then select a random individual from a population as ind

b. If individual fitness is greater than best fitness:

i. Best fitness is set as ind

c. End

7. End

8. If the condition is satisfied, end the process

9. Repeat Step 2

5 Simulation Setup

The implementation details of the TW-GA algorithm in test case optimization for software were
discussed below.

5.1 System Requirement

The system configuration for the implemented proposed method is given as follows.

Intel i9 processor

22 GB graphics card

128 GB RAM

Windows 10 64-bit OS

The Python 3.7 tool is used to analyze the test case from the software and apply optimization for test case
optimization.

5.2 Metrics

Mutation score, average size, and average time were measured from the optimized test case in the
developed method. Average size and average time are requirements of size and time for the model.

Mutation score is test suite adequacy measured based on dead mutants, equivalent mutants, and a total
number of mutants, as given in Eq. (9).

Mutation Score MSð Þ ¼ DMj j
M
� Ej j

� �
� 100 (9)

where killed mutants are denoted as DMj j, the equivalent mutants are denoted as Ej j, and the total number of
mutants is denoted as Mj j.

Algorithm (continued)

IASC, 2023, vol.36, no.3 2583

6 Results

The TW-GA method is proposed for software test case optimization in HIS software. The TW-GA
method is compared with existing methods in the software test case optimization process, discussed in
this section. Mutation score, average time, and average size were measured from TW-GA and existing
methods.

The mutation is fault applying method in the software and is commonly used to evaluate the test case
optimization method. The mutation operator is applied in the software to lead to various faults such faults are
mutant and alternations are mutations. If the optimization method detects the mutations in the software based
on the behavior change then the mutation is removed from the software. Some mutations are difficult to find
due to the mutants being similar to original test cases and these are known as equivalent mutants. Table 1
shows the mutants applied for each subject in a test case and the detection performance of the TW-GA
model is measured by mutation score. The S1 and S11 subjects are difficult to find mutants due to
subjects consisting of more equivalent mutants.

The mutation score of TW-GA and existing methods were measured, as shown in Fig. 5 and Table 2. The
TW-GA method has a higher mutation score than existing methods in software test case optimization. TW-
GA model applies the tournament winner method to further selects the best values based on fitness value in
the optimization. This process tends to increase the exploitation and convergence of the TW-GA method in
software test case optimization. The exploitation performance is need to be improved in the GA method that
helps to find the equivalent mutation in the model. The equivalent mutation is difficult to find in the software
test case optimization due to its similarity to the original test case. The Hill climbing method has a second
higher performance in mutation score and this fails to find the equivalent mutation in the test case. GA
method has a limitation of lower convergence and the BGA method has trap into local optima that have
lower exploration process. The SGO model has lower performance in strings and dynamic arrays in the

Table 1: Mutation information in subject wise

Subjects Mutants Exec-M (%) Equ-M (%) Ex-M (%)

S1 480 85.67 9.02 3.08

S2 36 90.13 7.27 0.16

S3 167 88.27 1.46 5.37

S4 125 87.31 3.3 5.19

S5 224 87.58 7.22 0.6

S6 85 83.32 5.53 8.45

S7 323 88.96 7.64 1.5

S8 621 86.87 5.03 5.8

S9 245 88.23 7.43 2.24

S10 85 86.12 7.95 3.44

S11 496 88.48 9.72 1.3

S12 329 94.6 2.9 0.8

S13 469 94.53 4.57 1.9

Total 3685 88.467 6.080 3.064

2584 IASC, 2023, vol.36, no.3

software. The random search and BGA method has lower performance in the software test case optimization
due to lower convergence in the optimization.

The average size of the TW-GA model in software test case optimization was measured and compared
with existing models, as given in Fig. 6 and Table 3. The tournament winner in the GA method helps to
discard the information of lower fitness value which helps to reduce the memory requirement of the
model. The TW-GA method has a higher exploration and exploitation capacity that requires a minimum
population for searching for the optimal solution. The MOCSFO method has considerable performance in
software test case optimization. The MOCSFO method generates more data related to search due to Crow
Search and the fruitfly algorithm. The MOPSO method has a lower exploration process and lower
convergence in the search process. The existing methods have lower performance when the number of
test cases in software is high.

Figure 5: TW-GA and existing methods mutation score in software test case optimization

Table 2: Mutation score of TW-GA and existing methods

Subjects Random BGA SGO GA Hill climbing TW-GA

S1 66.17 97.11 97.93 76.67 98.21 99.43

S2 90.74 98.24 98.15 92.34 99.44 99.35

S3 72.33 96.12 94.55 83.23 97.32 95.85

S4 82.62 95.95 97.34 93.32 97.45 99.24

S5 50.67 76.21 91.53 60.97 78.11 93.23

S6 83.58 96.7 96.08 93.58 98.3 97.98

S7 32.7 77.26 89.69 43.2 78.66 91.59

S8 27.49 91.43 93.96 37.69 92.83 95.66

S9 48.55 86.8 85.23 59.45 88.2 86.73

S10 64.3 94.35 94.14 75 95.75 95.74

S11 33.06 67.55 78.19 43.76 68.85 79.69

S12 45.84 82.72 88.98 56.44 84.62 90.48

S13 33.7 75.14 86.44 44 77.14 88.04

IASC, 2023, vol.36, no.3 2585

Figure 6: The average size of TW-GA and existing methods in software test case optimization

Table 3: Average size of TW-GA for various constraints

Constraint mAETG AETG SA (base) MOPSO MOCSFO GA Hill climbing TW-GA

Spin-S 26.3 27.1 24 22 26.2 27.7 23.9 28

Spin-V 36 42.5 36 36 20.2 37.5 37.8 21.4

GCC 25.2 24.8 21 25.2 25 26.8 27.2 26.6

Apache 42.4 42.8 33 39 11.64 43.8 40.6 13.14

Bugzilla 25 24.9 17 25 78.76 26 26.5 80.16

1 56.5 54.7 44 42 18 58.2 43.4 19

2 40 40.1 32 34 19 41.2 35.7 20.5

3 23.1 21 18 19 15 24.1 20.1 16.4

4 29.8 28.7 21 30 11 30.9 32 12.3

5 65.8 64.1 60 60 56 66.8 61 57.7

6 34.3 34 24 28 29 35.4 30 30.8

7 12.4 12 9 11 10 13.5 12.5 11.5

8 59.4 57.3 49 59.4 56 60.8 61.1 57.2

9 36.3 27.2 36.3 31 56 37.4 32.2 57

10 64 64.1 58 56 90 65.6 57.5 91.3

11 61.5 61.1 46 65 41 62.9 66.9 42.8

12 58.8 57.1 49 48 29 60 49.1 30

13 51.5 51 40 54 24 53.2 56 25.4

14 56.6 56.2 37 55 15 58.6 56.3 16.8

15 41.1 40.7 41.1 40 14 42.3 41.1 15.6

16 33.4 33 19 38 47 34.4 39.2 48.1

17 57.1 57 42 59 34 58.5 60.6 35.7

18 59.5 57.7 177 55 32 60.8 56.8 34

19 68 66.3 180 180 75 69.3 181.9 76.6
(Continued)

2586 IASC, 2023, vol.36, no.3

The average time of TW-GA and existing methods in software test case optimization for various
constrains are measured, as in Fig. 7 and Table 4. The TW-GA method has a lower average time for
various constraints due to this method finding the potential region for search and increasing the
exploitation in the region. The TW-GA method discards the information with a lower fitness value that
helps to increase the search speed. The convergence rate of the proposed method is increased using the
tournament winner in the optimization process. The MOCSFO method has a limitation of lower
convergence and is easily trapped into local optima. The MOCSFO method is a hybrid method and has
high computational complexity.

Table 3 (continued)

Constraint mAETG AETG SA (base) MOPSO MOCSFO GA Hill climbing TW-GA

20 72.6 71.6 67 72 125 73.6 73.4 126.5

21 56 55 37 57 86 57 59 88

22 28.8 28.7 36 48 50 30.3 49.3 51

23 20.7 15.7 13 22 10 22.6 23.1 11.7

24 61 59.9 51 60 37 62.2 62 38.8

25 67.6 66.2 59 58 29 69.6 59.9 30.8

26 44.2 43.3 30 48 18 45.6 49.1 19.8

27 49.8 49.8 36 52 13 51.8 53.3 15

28 70.1 68.4 164 164 56 71.3 165.3 57.1

29 42.2 41.2 31 34 17 43.3 36 18.1

30 49.2 50.2 20 31 19 50.6 32 20

Figure 7: Average time of TW-GA and existing method in software test case optimization

IASC, 2023, vol.36, no.3 2587

Table 4: Average time of TW-GA and existing methods for various constraints

Constraint CASA MOPSO MOCSFO GA Hill climbing TW-GA

Spin-S 9.57 24.31 30 7.97 6.77 5.47

Spin-V 82.34 105.74 409.557 80.94 79.04 77.84

GCC 1832.81 0 407.359 1831.81 1830.11 1828.31

Apache 63.78 205.41 32.3137 62.58 60.98 59.58

Bugzilla 12.42 44.78 50 11.32 9.42 8.32

1 94.32 204.52 74.6775 93.12 91.82 90.32

2 34.12 56.27 45.3712 32.72 31.52 29.82

3 17.62 32.45 30 16.52 15.52 14.02

4 175.37 307.5 30 174.37 172.97 171.77

5 834.78 1117.54 262.604 833.08 831.68 830.28

6 37.72 63.22 61.6351 35.92 34.12 32.52

7 6.73 10.74 30 5.03 3.73 2.53

8 143.28 0 184.011 141.68 140.08 138.28

9 38.82 49.42 150.755 37.02 35.62 34.62

10 343.76 483.65 361.935 342.06 340.66 339.56

11 405.54 738.94 126.472 404.34 402.84 401.34

12 125.54 336.51 75.8138 124.34 122.84 121.24

13 71.82 154.29 67.8291 70.42 69.42 68.02

14 85.8 236.94 30 84.4 83.3 81.7

15 29.57 58.36 39.6769 27.97 26.77 25.17

16 29.41 64.83 137.259 27.41 26.21 24.91

17 119.45 307.67 88.9662 118.05 116.45 115.05

18 268.67 693.79 93.1928 266.67 265.67 263.77

19 763.72 0 270.096 762.62 760.62 759.32

20 443.26 846.21 376.236 441.56 440.46 438.76

21 93.71 206.48 316.749 92.41 90.61 88.61

22 17.62 73.82 163.23 16.62 14.82 13.82

23 36.78 54.23 30 34.78 33.08 31.88

24 284.28 582.63 94.4635 283.08 281.18 279.28

25 534.28 958.4 90.4903 533.08 531.18 529.88

26 123.63 195.32 72.1692 122.13 120.23 118.53

27 28.94 38.41 36.7925 27.84 26.34 25.14

28 741.86 0 218.953 740.56 738.76 736.86

29 97.69 153.92 54.0728 95.99 94.89 93.09

30 43.2 59.42 44.0977 42.1 40.6 39.5

2588 IASC, 2023, vol.36, no.3

7 Conclusion

Software test case optimization finds the fault in the software, provides proper structure, and increases
the reusability of the software. The existing methods have limitations and lower efficiency in software test
case optimization due to lower convergence. This research proposes the TW-GA method to find a potential
region in search and increases the exploitation in the search process. The TW-GA method has higher
exploitation that helps find mutant and equivalent mutant in software for fault diagnosis. The TW-GA
method discards information with a lower fitness value that reduces the computational time and memory
requirement. The MOCSFO method has lower exploitation, convergence rate, and higher complexity that
affects the performance of optimization. The TW-GA method has a 99.43% mutation score and the SGO
method has a 97.93% mutation score. The future work of this research is to apply recent optimization
methods to increase the convergence rate.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] M. Khari, P. Kumar, D. Burgos and R. G. Crespo, “Optimized test suites for automated testing using different

optimization techniques,” Soft Computing, vol. 22, no. 24, pp. 8341–8352, 2018.

[2] Y. Fu, Z. Lei, S. Cai, J. Lin and H. Wang, “WCA: A weighting local search for constrained combinatorial test
optimization,” in Information and Software Technology, vol. 122, China: Elsevier, pp. 106288, 2019.

[3] P. Ramgouda and V. Chandraprakash, “Constraints handling in combinatorial interaction testing using multi-
objective crow search and fruitfly optimization,” Soft Computing, vol. 23, no. 8, pp. 2713–2726, 2019.

[4] U. Afzal, T. Mahmood, A. H. Khan, S. Jan, R. U. Rasool et al., “Feature selection optimization in software
product lines,” IEEE Access, vol. 8, pp. 160231–160250, 2020. https://doi.org/10.1109/ACCESS.2020.3020795

[5] D. Wu, J. Li and C. Bao, “Case-based reasoning with optimized weight derived by particle swarm optimization for
software effort estimation,” Soft Computing, vol. 22, no. 16, pp. 5299–5310, 2018.

[6] S. F. Ahmad, D. K. Singh and P. Suman, “Prioritization for regression testing using ant colony optimization based
on test factors,” in Intelligent Communication, Control and Devices, vol. 624, Singapore: Springer, pp. 1353–
1360, 2018. https://doi.org/10.1007/978-981-10-5903-2_142

[7] T. Yaghoobi,” “Parameter optimization of software reliability models using improved differential evolution
algorithm,” in Mathematics and Computers in Simulation, vol. 177, Iran: Elsevier, pp. 46–62, 2020.

[8] K. Raimond and J. Lovesum, “A novel approach for automatic remodularization of software systems using
extended ant colony optimization algorithm,” in Information and Software Technology, vol. 114, India:
Elsevier, pp. 107–120, 2019. https://doi.org/10.1016/j.infsof.2019.06.002

[9] D. B. Mishra, R. Mishra, K. N. Das and A. A. Acharya, “Test case generation and optimization for critical path
testing using genetic algorithm,” in Soft Computing for Problem Solving, vol. 817, Singapore: Springer, pp. 67–
80, 2019. https://doi.org/10.1007/978-981-13-1595-4_6

[10] R. Khan, M. Amjad and A. K. Srivastava, “Optimization of automatic test case generation with cuckoo search and
genetic algorithm approaches,” in Advances in Computer and Computational Sciences, vol. 554, Singapore:
Springer, pp. 413–423, 2018. https://doi.org/10.1007/978-981-10-3773-3_40

[11] D. B. Mishra, R. Mishra, A. A. Acharya and K. N. Das, “Test case optimization and prioritization based on multi-
objective genetic algorithm,” in Harmony Search and Nature Inspired Optimization Algorithms, vol. 741,
Singapore: Springer, pp. 371–381, 2019. https://doi.org/10.1007/978-981-13-0761-4_36

[12] A. P. Agrawal and A. Kaur, “A comprehensive comparison of ant colony and hybrid particle swarm optimization
algorithms through test case selection,” in Data Engineering and Intelligent Computing, vol. 542, Singapore:
Springer, pp. 397–405, 2018. https://doi.org/10.1007/978-981-10-3223-3_38

IASC, 2023, vol.36, no.3 2589

https://doi.org/10.1109/ACCESS.2020.3020795
https://doi.org/10.1007/978-981-10-5903-2_142
https://doi.org/10.1016/j.infsof.2019.06.002
https://doi.org/10.1007/978-981-13-1595-4_6
https://doi.org/10.1007/978-981-10-3773-3_40
https://doi.org/10.1007/978-981-13-0761-4_36
https://doi.org/10.1007/978-981-10-3223-3_38

[13] D. Panwar, P. Tomar and V. Singh, “Hybridization of cuckoo-ACO algorithm for test case prioritization,” Journal
of Statistics and Management Systems, vol. 21, no. 4, pp. 539–546, 2018.

[14] J. Chen, L. Zhu, T. Y. Chen, D. Towey, F. C. Kuo et al., “Test case prioritization for object-oriented software: An
adaptive random sequence approach based on clustering,” Journal of Systems and Software, vol. 135, China:
Elsevier, pp. 107–125, 2018. https://doi.org/10.1016/j.jss.2017.09.031

[15] O. Banias, “Test case selection-prioritization approach based on memoization dynamic programming algorithm,”
in Information and Software Technology, vol. 115, Romania: Elsevier, pp. 119–130, 2019.

2590 IASC, 2023, vol.36, no.3

https://doi.org/10.1016/j.jss.2017.09.031

	Implementation of Hybrid Particle Swarm Optimization for Optimized Regression Testing
	Introduction
	Literature Review
	Related Methods
	Proposed Method
	Simulation Setup
	Results
	Conclusion
	References

