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Abstract: With the advent of Machine and Deep Learning algorithms, medical
image diagnosis has a new perception of diagnosis and clinical treatment. Regret-
tably, medical images are more susceptible to capturing noises despite the peak in
intelligent imaging techniques. However, the presence of noise images degrades
both the diagnosis and clinical treatment processes. The existing intelligent meth-
ods suffer from the deficiency in handling the diverse range of noise in the ver-
satile medical images. This paper proposes a novel deep learning network
which learns from the substantial extent of noise in medical data samples to alle-
viate this challenge. The proposed deep learning architecture exploits the advan-
tages of the capsule network, which is used to extract correlation features and
combine them with redefined residual features. Additionally, the final stage of
dense learning is replaced with powerful extreme learning machines to achieve
a better diagnosis rate, even for noisy and complex images. Extensive experimen-
tation has been conducted using different medical images. Various performances
such as Peak-Signal-To-Noise Ratio (PSNR) and Structural-Similarity-Index-
Metrics (SSIM) are compared with the existing deep learning architectures. Addi-
tionally, a comprehensive analysis of individual algorithms is analyzed. The
experimental results prove that the proposed model has outperformed the other
existing algorithms by a substantial margin and proved its supremacy over the
other learning models.

Keywords: Machine and deep learning algorithm; capsule networks; residual
networks; extreme learning machines; correlation features

1 Introduction

Deep learning and machine learning have already impacted various branches such as health care, image
vision system, and even industrial automation. Even though it was first greeted with much scepticism [1], in a
short period, it has proved itself to be a keynote player in solving many health care problems, including the
disease classification and prediction, treatment and recommendation system, and even more [2–4]. Deep
learning methods have already achieved unprecedented performances in many processes ranging from
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low-level applications to medical image processing. Such as denoising, enhancement and reconstruction to
more high-level image analysis such as segmentation, prediction and classification.

Medical Image denoising and Medical Diagnosis rate are perceived as the process of improvisation in
which imaging devices constitute more noise to the medical images, which harms the diagnosis rate. Hence,
denoising is considered a strenuous task to improve the diagnosis rate. Traditionally, medical image
denoising employs the Gaussian distribution to analyse noises in medical images. However, the
traditional method results in efficient controversies to visualize the process of physical symptoms in the
treatment process. As a result, intelligent methodology for Medical Image denoising is considered a
relatively challenging task compared with conventional techniques.

In the recent past, substantial growth in Medical Image denoising with increased diagnosis rate has
become the real challenge among researchers. Existing approaches such as non-local self-similarity (NSS)
[5], sparse coding [6], and filter-based methods [7–9] have been proposed for the removal of noises.
However, they do not concentrate on the diagnosis rate. Recently, the usage of deep learning algorithms
has gained more insight into light and provides a viable alternative to the abovementioned methods.
However, the existing deep learning models have focused on an inadequate range of noise deviations and
diagnosis rates in the medical images.

The paper proposes the novel ensembled Deep Capsule Residual Learning Model for removing noises in
medical images to overcome the above problem. Additionally, this paper introduces the Capsule networks,
which utilize the feature correlation and combines it with redefined residual learning models. Here, this
capsule network leverages such a way that it can extract the depth-wise features using its dynamic
attention routing algorithms. Also, this study proposes to refine the residual learning to learn the low-
level features under different noise levels, which can aid in achieving a better diagnosis rate. To the best
of our knowledge, this study is the first of its kind to implement the capsule with residual learning
models. The main contribution of the paper are summarized as follows as

1. Dynamic Capsule Residual Framework: Proposes the novel ensembled capsule network with a
residual network that combines the in-depth features and low-level features that aid the better
diagnosis of complex, noisy images.

2. Extensive Experiments: Conducts extensive experimentation with the substantial multi-disciplinary
images and compared with the other state of learning models under noisy environments. Also, the
proposed method has combined different medical image analysis tasks to reveal the practicability
in the real world.

The rest of the paper is organized as follows: Section 2 presents the related works proposed by more than
one author. The dataset collection, noise model and proposed methodology are presented in Section 3. The
experimentations, results, findings and analysis are presented in Section 4. Finally, the paper is concluded in
Section 5 with future enhancement.

2 Related Works

Chen et al., introduced a strategy, Spatial Compound Denoising Convolutional Neural Networks (SC-
DnCNN), which is the SC-based denoising information base age. Because the picture is typical for Full-field
Optical Coherence Tomography (FF-OCT), the pictures need not bother with an enlistment interaction before
SC which makes it better than the direct checking OCT toward producing the detailed picture. This method
incorporates boisterous and moderately clear pictures as its preparation information, versatile spatial
planning as indicated by the intensifying data set can be inserted, and the impact of the dot can be
diminished. Note that this denoising CNN model would consider to some extent, spatial connection to
recuperate a good picture after deduction in any event when a solitary picture with no compounding.
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Such a way has tantamount to the dependable SC technique to diminish the clamour. In the meantime, since
the necessary number of pixel lines to acquire a decent picture quality is diminished, the greatest B-filter pace
of this framework is fundamentally improved by taking on this calculation. That is the issue of tedious for
intensifying strategies can stay away from by performing SC-DnCNN without time series pictures [10].

Klyuzhin et al., proposed K-Nearest Neighbor (KNN) based on Computer Tomography (CT) picture
denoising. This system utilizes this information to develop a directed denoising framework that gains
ideal planning from input elements to denoised voxel values. As info includes, this system utilizes a few
general channels and the result of existing standard sound decrease channels, prominently non-straight
dissemination plans. After highlight determination, these are planned to the denoised values by KNN and
support vector relapse. The subsequent relapse denoising frameworks perform fundamentally better than
non-straight dispersion plans, Gaussian smoothing, and middle separating in probes CT chest examines [11].

van Ginneken et al., give a system for sorting the best in class calculations utilized in Magnetic
Resonance Image (MRI) denoising. The denoising methods are gathered into spatial and change areas in
light of the picture model utilized for clinical picture handling. The proposed classification improves the
complicated framework and helps issue definition and preliminary trial and error. A quantitative
examination is completed utilizing a broad scope of assessment lists, showing denoising and underlying
similitude in the reestablished pictures. This proposes the fitting assessment lists to be utilized in MR
picture denoising and the best technique to denoise MR pictures with given commotion. The discoveries
of the review are-1) Filtering techniques are less complex and powerful for taking out Gaussian
commotion from homogeneous areas. The possible disadvantage of the technique is that they dispose of
the little designs and the edge subtleties by obscuring the non-homogeneous areas [12].

Mishro et al., proposed to utilize 3D CNNs for portioning the neuronal microscopy pictures. In
particular, this structure planned an original CNN engineering that accepts volumetric pictures as the
information sources and their voxel-insightful division maps as the results. The created engineering
permits us to prepare and anticipate utilizing huge microscopy pictures from start to finish. This structure
assessed the presentation of this model on an assortment of testing 3D microscopy pictures from various
organic entities. Results showed that the proposed strategies developed the following execution when
combined with various remaking calculations [13].

Li et al., depict a group of picture denoising calculations appropriate to the Graphical Processing Unit
(GPU). The calculations iteratively play out a bunch of free, equal 1D pixel-update subproblems. To match
GPUmemory restrictions, they play out these pixel refreshes set up and just store the uproarious information,
denoised picture, and issue boundaries. The calculations can deal with a broad scope of edge-protecting
harshness punishments, including differentiable raised punishments and anisotropic all-out variety. The
two calculations utilize the majorize-limit structure to settle the 1D pixel update subproblem. Results
from a huge 2D picture denoising issue and a 3D clinical imaging denoising issue exhibit that the
proposed calculations join quickly as far as both emphasis and run-time [14].

McGaffin et al., introduced a feed-forward Denoising CNN (DnCNNs) to embrace the advancement in
exceptionally profound engineering, learning calculation, and regularization technique into picture
denoising. In particular, lingering learning and cluster standardization accelerate the preparation cycle and
lift the denoising execution. Not the same as the current discriminative denoising models, which typically
train a particular model for added substance white Gaussian commotion at a specific clamour level, this
DnCNN model can deal with Gaussian denoising with obscure commotion level (i.e., blind Gaussian
denoising). With the leftover learning procedure, DnCNN verifiably eliminates the idle clean picture in
the hidden layers. This property requires us to prepare a solitary DnCNN model to handle a few general
picture denoising undertakings, for example, Gaussian denoising, single picture super-goal, and JPEG
picture deblocking. These broad trials show that this DnCNN model can not just display high viability in
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a few general picture denoising undertakings yet additionally be productively carried out by profiting from
GPU figuring [15].

Lee et al., presented an image denoising approach called self-cooperative learning which depends on
various domains. This framework comprises various functions to boost the process of learning. The
experimental validations incorporated noise from the Electro-Magnetic (EM) devices and structural noise
found from low-dose CTs. Finally, the results show that image quality is ultimately high when contrasted
with existing frameworks. However, this framework’s downside is that it requires additional resources
when tested under real-time scenarios [16].

Wang et al., developed a deep learning-based unsupervised denoising technique to ease the labelled data
dependency and explore the insights into the denoising framework. This framework integrates the data-
driven technique and domain knowledge. The iterative soft threshold algorithm is utilized to frame the
network. Also, a loss function is designed for the network training implementation with a smooth penalty.
This framework provides better results in terms of accuracy, but its limitation is that it leads to
computational complexity [17].

3 Proposed Methodology

This proposed study presents a novel deep capsule network for addressing the problems in denoising the
medical images, which can aid the high diagnosis rate. This section details the methodology of the proposed
work. Fig. 1 shows the end-to-end framework for the proposed methodology. The proposed network is
presented as an end-to-end deep learning architecture where the proposed network utilizes capsule
networks with a residual learning framework.

3.1 Data Collection and Preparation

Data collection plays a vital role in training the deep learning model. For training purposes, collecting a
sufficient amount of data samples is essential. Hence, a substantial amount of medical images are collected
through different sources of modalities. The collected data were pre-processed and used for designing the
model. The image samples collected from the different sources are categorized as shown In Fig. 2.

Figure 1: Overall proposed architecture used for denoising and high classification rate
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Fig. 2 shows four different modalities of images such as brain Magnetic Resonance Images (MRIs), lung
Computed Tomography (CT) scan images, Chest-X-ray images and Ultrasound Images were collected and
used for the experimentation. This study collected nearly 500,332 medical images, where 80% of samples
were used for model training and the rest of the 20% of data used for performance evaluation.

3.2 Noise Addicted Dataset Preparation

Despite having a significant number of image samples, collected datasets are not contaminated with the
noises. Therefore, reference-noisy image pairs have to be formulated by adding artificial noises over the
images. The final noise-addicted image is given as follows

C ¼¼ Nþ Y (1)

Mathematically N is given as N = G(c|η, β) in which η, β is considered as mean, and variance and G(c)
represents the Gaussian distribution of noise in input images Y.

3.3 Proposed Model Training

This section presents a novel deep learning method for addressing medical images denoising without
sacrificing performance by learning from large-scale data samples. The proposed methodology involves
the capsule networks with residual learning as the backbone.

The Capsule Network [17] have recently been proposed to address this limitation of existing
Convolutional Neural Network (CNN) networks. Capsules are the groups of neurons that encode spatial
information and the probability of an object being present. In the capsule network, corresponding to each
entity in an image, there is a capsule which gives:

1. Probability of Existence in entities

2. Entities’ Instantiation parameters

The capsule network is sub-divided into three layers: a low capsule layer, a high capsule layer, and a
classification layer. Global parameter sharing is performed to reduce the accumulation of errors, and an
optimized dynamic routing algorithm is used to update the parameters iteratively. To encode the
imperative spatial association between low- and high-level convolutional features within the image, the
multiplication of the matrix of the input vectors with the weight matrix is calculated

Figure 2: Overall dataset collection from the different image formats
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Y i:jð Þ ¼ Wi;j U i; jð Þ � Sj (2)

The sum of the weighted input vectors is calculated to determine the current capsules and forward its
output to the higher-level capsule.

S jð Þ ¼
X

j
Y ði; jÞ � DðjÞ (3)

Finally, non-linearity is applied using the squash function. While maintaining a direction of a vector, the
squashing function maps it to a maximum length of one and a minimum length of 0.

GðjÞ ¼ squashðSðjÞ (4)

The capsule network can grab information in different positions and obtain the relationship between the
features using the mathematical Eq. (2) for effective denoising and a high recognition rate. The convolution
layers are implemented in the low capsule region and primary capsules in the high region. Table 1 presents
the number of convolutional layers used for constructing the lower and primary capsule regions. The output
weights are calculated using Eq. (3), passed to the high capsule region, while the squash function retains the
original direction of the vector by compressing the length to (0, 1). In the next stage, the proposed model
incorporates the dot product between similar capsules and outputs, using the self-attention routing.
Finally, the output is updated, and this process continues for fixed iterations

3.4 Residual Learning to Capsule Networks

The residual learning is applied to the deep neural networks in which the skip connections are added to
the networks’ output. Those skip functions do not contain the learning parameters but increase the
performances of the final layers, which are replaced by the identity functions. In the proposed model, the
skip functions are added after the routing process, which yields the best results in terms of denoising and
a higher recognition rate.

However, the skip connection can backfire in denoising by delivering the lower-level capsules to the top
levels. Hence the proposed network adopts the self-attention routing mechanism, which controls the
propagation of trivial features by learning spatial features.

Table 1: Experimental parameters used for the feature extraction

S. no No of convolutional layers Stride length No of layers

1 Conv(2d) -Layer-1 1 2 � 2

2 Max-Pooling layers-1 1 � 1

3 Conv(2d) -Layer-2 1 2 � 2

4 Max-Pooling layers-2 1 � 1

5 Conv(2d) -Layer-3 1 2 � 2

6 Max-Pooling layers-3 1 � 1

7 Conv(2d) -Layer-4 1 2 � 2

8 Max-pooling layers-4 1 � 1

9 Activation Function Relu ———
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4 Implementation Details

The proposed architecture was designed as an end-to-end convolutional capsule residual network using
Tensorflow as the backend and Keras as the frontend. Table 2 presents the experimental parameters used for
building the proposed architecture.

All the experiments were conducted on an Intel I9 CPU clocked at 3.6 GHz and a RAM of 16 GB.
Google Co-lab was exploited to train the proposed model.

5 Results and Discussion

The proposed model incorporates a unique evaluation strategy to investigate the superiority of its
features over the other learning models by measuring two essential metrics: Peak-Signal-To-Noise Ratio
(PSNR) and Structural-Similarity-Index-Metrics (SSIM). Such evaluation metrics are evaluated by
comparing with the reconstructed images. The performance of the proposed model is compared with the
other state-of-art learning models such as Block Matching and 3D (BM3D) filtering image denoising
algorithm [18], Deep Residual Convolutional Neural Network (DRCNN) [19] and Densely Reversed
Attention-based CNN (DRAN) [20] respectively to prove the superiority of the proposed model.
Tables 3–5 show the proposed framework’s comparative analysis with the existing frameworks.

From Tables 3–5, it is evident that the proposed model, incorporating a capsule network with residual
learning, outperformed the other learning models for MRI images. Though the proposed model and DRAN
have produced a similar SSIM, the PSNR of the proposed model is better than DRAN under the increased
distribution of noises.

Table 2: Experimental parameters used for building the proposed model

Sl. no Experimental parameters Descriptions

01 Depth of the network 64

02 Image Size 128 × 128 × 3

03 Optimizer Adam

04 Learning Rate 0.0001

05 No of Epochs 250

06 Noise Distribution 0 to 50

Table 3: Comparative analysis of different algorithms in measuring psnr and ssim @noise level = 10 for mri
brain images

Algorithms Noise level PSNR SSIM

DRCNN 10 28.89 0.8112

BM3D 25.89 0.681

DRAN 29.90 0.967

Proposed model 32.89 0.987
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From Tables 6 to 12, it is evident that the proposed model, which has incorporated a capsule network
with residual learning, has outperformed the other learning models for CT lung images and Chest X-ray
Images. Though the proposed model and DRAN have produced a similar SSIM, the PSNR of the
proposed model is better than DRAN under the increased distribution of noises. The above tables show
that the proposed model has better handled the different sources of images even in a noisier environment.

Table 4: Comparative analysis of different algorithms in measuring psnr and ssim @noise level = 20 for
mri brain images

Algorithms Noise level PSNR SSIM

DRCNN 20 27.78 0.8002

BM3D 24.67 0.673

DRAN 28.90 0.956

Proposed model 32.90 0.9789

Table 5: Comparative analysis of different algorithms in measuring psnr and ssim @noise level = 50 for
mri brain images

Algorithms Noise level PSNR SSIM

DRCNN 50 26.89 0.7902

BM3D 25.78 0.689

DRAN 27.90 0.959

Proposed model 31.89 0.9756

Table 6: Comparative analysis of different algorithms in measuring psnr and ssim@noise level = 10 for ct
lung images

Algorithms Noise level PSNR SSIM

DRCNN 10 28.77 0.8003

BM3D 25.65 0.6790

DRAN 29.56 0.9783

Proposed model 32.89 0.9890

Table 7: Comparative analysis of different algorithms in measuring psnr and ssim@noise level = 20 for ct
lung images

Algorithms Noise level PSNR SSIM

DRCNN 20 27.73 0.7893

BM3D 24.57 0.6673

DRAN 28.90 0.9689

Proposed model 32.78 0.9834
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Additionally, the performance of the proposed model has been measured using the metrics mentioned in
Table 12. The experimentation was done by adding the noise levels in the images with the abnormalities.

From Figs. 3–5, it is found that the proposed model has outperformed the other models in detecting the
abnormalities in the different sources of the images. To summarize, integrating capsule networks with the
residual networks has produced promising results in denoising and classification rate.

Table 9: Comparative analysis of different algorithms in measuring psnr and ssim @noise level = 10 for
chest x-ray images

Algorithms Noise level PSNR SSIM

DRCNN 10 28.77 0.8003

BM3D 25.65 0.6790

DRAN 29.56 0.9783

Proposed model 32.89 0.9890

Table 10: Comparative analysis of different algorithms in measuring psnr and ssim @noise level = 20 for
10 for chest x-ray images

Algorithms Noise level PSNR SSIM

DRCNN 20 27.73 0.7893

BM3D 24.57 0.6673

DRAN 28.90 0.9689

Proposed model 32.78 0.9834

Table 8: Comparative analysis of different algorithms in measuring psnr and ssim@noise level = 50 for ct
lung images

Algorithms Noise level PSNR SSIM

DRCNN 50 27.8 0.7902

BM3D 25.90 0.6345

DRAN 28.2 0.7822

Proposed model 30.89 0.9678

Table 11: Comparative analysis of different algorithms in measuring psnr and ssim @noise level = 50 for
10 for chest x-ray images

Algorithms Noise level PSNR SSIM

DRCNN 50 27.8 0.7902

BM3D 25.90 0.6345

DRAN 28.2 0.7822

Proposed model 30.89 0.9678

IASC, 2023, vol.36, no.3 2967



Table 12: Mathematical expressions for the performance metrics’ calculation

Sl. no Performance metrics Mathematical expression

01 Accuracy TP þ TN

TP þ TN þ FP þ FN
02 Sensitivity or recall TP

TPþ FN
� 100

03 Specificity TN

TN þ FP
04 Precision TN

TP þ FP
05 F1-score

2:
Precison � Recall
Precisionþ Recall

Accuracy  Precision  Recall  Specificity  F1-Score

Pe
rf

or
m

an
ce

 M
et
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cs

 

Proposed Model

DRAN

DRCNN

BM3D

Figure 3: Average performance metrics of the different algorithms @different noise levels for mri brain
images
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6 Conclusion

This research work presented an end-to-end learning model that ensembles the capsule and residual
networks to achieve better denoising and classification. The capsule network with an attention routing
mechanism has been used to extract the spatial features used as an input to the residual learning. Notably,
such a comprehensive hybrid combination has drastically improved the denoising performance and

Accuracy  Precision Recall  Specificity  F1-score

)
%(

scirte
m

ecna
mrofreP

Propsoed Model

DRAN

DRCNN

BM3D

Figure 4: Average performance metrics of the different algorithms @different noise levels for ct lung
images
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)
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Propsoed Model

DRAN

DRCNN

BM3D

Figure 5: Average performance metrics of the different algorithms @different noise levels for chest X-ray
images
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classification ratio. Extensive experimentation is carried out, and the results illustrate that the proposed model
has outperformed the existing state-of-art models by the unmatchable margin while maintaining consistent
performance even under noisy conditions. Soon, the proposed model has planned for improvisation by
exploiting the self-adaptive learning algorithms suitable for real-time images.
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