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Abstract: Cybersecurity has become the most significant research area in the
domain of the Internet of Things (IoT) owing to the ever-increasing number of
cyberattacks. The rapid penetration of Android platforms in mobile devices has
made the detection of malware attacks a challenging process. Furthermore,
Android malware is increasing on a daily basis. So, precise malware detection
analytical techniques need a large number of hardware resources that are signifi-
cantly resource-limited for mobile devices. In this research article, an optimal
Graph Convolutional Neural Network-based Malware Detection and classification
(OGCNN-MDC) model is introduced for an IoT-cloud environment. The pro-
posed OGCNN-MDC model aims to recognize and categorize malware occur-
rences in IoT-enabled cloud platforms. The presented OGCNN-MDC model
has three stages in total, such as data pre-processing, malware detection and para-
meter tuning. To detect and classify the malware, the GCNN model is exploited in
this work. In order to enhance the overall efficiency of the GCNN model, the
Group Mean-based Optimizer (GMBO) algorithm is utilized to appropriately
adjust the GCNN parameters, and this phenomenon shows the novelty of the cur-
rent study. A widespread experimental analysis was conducted to establish the
superiority of the proposed OGCNN-MDC model. A comprehensive comparison
study was conducted, and the outcomes highlighted the supreme performance of
the proposed OGCNN-MDC model over other recent approaches.

Keywords: Cybersecurity; IoT; cloud; malware detection; graph convolution
network

1 Introduction

The Internet of Things (IoT) is a novel network paradigm in which devices, machines and human beings
communicate and collaborate with each other through novel association procedures [1]. The pervasive and
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ever-rising cybersecurity assaults on IoT mechanisms made organizations and people experience a wide
range of complexities in finance, reputation, compliances and day-to-day business functions [2]. The
increased occurrences of cyberattacks are a direct result of phenomenal growth and the development of
IoT gadgets in these fields in terms of smart manufacturing, smart grids, patient monitoring systems,
logistics and environmental monitoring. It is challenging to accomplish the security management of IoT
networks due to the transient and dynamic nature of the links among the devices, the diversity of the
players who can interact with IoT networks and resource limitations [3]. The global IoT security market
is anticipated to expand at an Annual Growth Rate of 33.7%, owing to multiple factors such as a high
number of cyberattacks on IoT gadgets, heavy regulations on IoT security and an increased number of
security concerns [4].

In recent years, mobile devices have turned out to be a crucial part of everyone’s life and are utilized
even more than traditional computers like personal computers [5]. The data generated by smartphones is
different and highly confidential in nature. Thus, smartphones are employed as working tools, payment
means and also for other modes of interaction [6]. On the other hand, these devices are highly susceptible
to cyberattacks than conventional computer systems since all the types of protocols and networks are
used in these devices, such as mobile networks, Wi-Fi (e.g., 3rd or 4th generation), etc. As mentioned
earlier, the rapid penetration of Android platforms in mobile devices makes detecting malware assaults a
significant task to accomplish [7]. This malware can access the data of the users from their Android
devices, transmit Short Message Services (SMSs) to the usernames and disrupt the privacy of a user [8].
Such evolved malware have been contained earlier using numerous analytical techniques and malware
identification processes like hybrid analysis, static analysis and dynamic analysis to secure Android
devices from cyberattacks [9]. Thus, a precise malware detection technique needs a large volume of
hardware resources that are not only highly significant but also must be resource-limited for mobile
devices [10]. This denotes the requirement for a multi-objective malware detection technique that can
function in mobile atmospheres and optimally solve this problem.

In this article, an optimal Graph Convolutional Neural Network-based Malware Detection and
Classification (OGCNN-MDC) model is introduced for the IoT-cloud environment. The proposed
OGCNN-MDC aims to recognize and categorize the occurrences of malware in IoT-enabled cloud
platforms. The presented OGCNN-MDC model has three stages in total, such as data pre-processing,
malware detection and parameter tuning. To detect and classify the malware, the GCNN model is
exploited in this study. To enhance the overall efficiency of the GCNN model, the Group Mean-Based
Optimizer (GMBO) algorithm is utilized for appropriate adjustment of the GCNN parameters. A
widespread experimental analysis was conducted to highlight the improvements of the proposed
OGCNN-MDC model.

2 Related Works

In the literature [11], the authors developed an event-aware and scalable Android malware detection
technique called EveDroid. This technique exploited the behavioural patterns of different activities to
efficiently identify the novel malware in accordance with the insights reflected by the events in case of
potential malware attacks [11]. Unlike the existing methodologies that use Application Programming
Interface (API) calls as features directly, the authors developed this model to utilize the activity groups
for describing the behaviour of the apps at the activity level so that a high level of semantics can be
compared to the API levels. Inactivity groups, a functioning cluster was adopted to characterize the
behaviour for all the events. This is executed in such a way that the behaviour, concealed in every event,
is still taken, and the EveDroid program is allowed to detect the novel malware at event levels. The
authors developed a testing architecture named learning-based Android Malware Detection System
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(TLAMD) to be applied in IoT gadgets [12]. The major concern lies in creating an appropriate fitness
function that can generate efficient adversarial samples without impacting the feature of the applications.

Taheri et al. developed two defence methodologies against adverse attacks in malware detection process
for mobile multi-media applications in an IoT environment [13]. In these methodologies, a powerful NN and
a group of 1-nearest neighbour (C4N) and CNN were used. Then, the methods were trained using the dataset
with adverse attacks. Consequently, the trained Machine Learning (ML) method achieved precise results.
Further, when a malicious program arrives in the network through any other IoT device, the system
triggers crucial warnings too. This study also described the attack model and algorithm for defending
these attacks. Akbar et al. developed a Permission-based Malware Detection Method (PerDRaML) in
which the App’s malevolence was defined based on the application of the suspected permission [14].
Being a multi-level based model, this method identified and extracted a set of many characteristics,
namely, permission rate, small size and permissions from the data gathered automatically-gathered from
10,000 applications. Furthermore, this study employed different ML models to classify the Apps as
benign and malicious.

In the study conducted earlier [15], the authors proposed a malware detection technique to reduce the
error rates and improve the accuracy by pre-processing and balancing the used datasets. To achieve this
objective, static analysis was applied in this study to extract the features of the application. The feature
ranking method was utilized in this study to pre-process the feature subset. Based on the ranks generated,
the low-efficient features were eliminated. Also, the suggested method balanced the datasets using
SMOTE, an under-sampling technique, along with a group of two other models which were not
investigated earlier in the domain of detection techniques. Next, KNN, SVM, and Iterative Dichotomiser
3 classifiers were utilized to develop the recognition system. Niu et al. developed a novel method to
categorize Android malware according to OpCode-level FCG and deep learning techniques [16]. The
FCG was achieved with the help of static analysis of the Operation Code (OpCode), whereas this study
used LSTM as its DL method.

3 The Proposed Model

This article has developed a new OGCNN-MDC model for malware detection and classification in IoT-
cloud environment. The proposed OGCNN-MDCmodel aims to recognize and categorize the occurrences of
malware in IoT-enabled cloud platforms. The presented OGCNN-MDC model has three stages: data pre-
processing, malware detection and parameter tuning. Fig. 1 depicts the working processes of the
OGCNN-MDC approach.

Figure 1: Working processes of the OGCNN-MDC approach
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3.1 Malware Detection Using the GCNN Model

In order to detect and classify the malware, the GCNN model is exploited in this work. The GCNN
approach implements the semi-supervised classifier [17]. The major concept is to upgrade the
representation of the nodes by transmitting the data among the nodes.

Unlike the typical convolution that operates on a local Euclidean structure in the image, the GCNN
approach aims to learn a function (.,.) on graph G that takes the feature description, Hl 2 Rn�d and the
correlative matrix, A 2 Rn�n as input values (n represents the node count and d represents the
dimensionality of the node feature) and upgrades the node feature as Hlþ1 2 Rn�d0 .

Hlþ1 ¼ f Hl; A
� �

: (1)

After applying the convolution function, f (.,.) is denoted as follows.

Hlþ1 ¼ h ÂHlW l
� �

; (2)

In Eq. (2), Wl 2 Rd�d0 indicates a conversion matrix that needs to be learnt, and Â 2 Rn�n shows the
normalization form of the correlative matrix, A. Here, h :ð Þ signifies a nonlinear function performed by
LeakyReLU in this study. Therefore, the complicated inter-relationships of the node can be modelled and
learnt by stacking a different number of GCNN layers. The GCNN approach was developed for the
classification of semi-supervised methods in which the node-level output is the predictive score of all the
nodes. Unlike that, the authors developed a concluding output for all the GCNN nodes so that it acts as a
class for all the respective labels in this process.

Furthermore, the graph model (viz., correlative matrixes) is generally pre-determined though it is not
presented during the multi-label image detection process. Therefore, the correlative matrices should be
developed from scratch. It encompasses two major components: GCNN-based classifier learning modules
and image representation learning. Then, the CNN base model is applied to learn the features of the
image. Therefore, an input image I with 448� 448 resolution can develop as a 2048� 14� 14 feature
map from the conv5_x” layers. Next, the global max-pooling layer is employed to obtain the image-level
feature, x.

x ¼ fGMP fcnn I ; hcnnð Þð Þ 2 RD; (3)

In Eq. (3), hcnn denotes the model parameter and D ¼ 2048:

W ¼ fwigCi¼1 is derived from label representation through a GCNN-based mapping function in which C
signifies the category number. Then, the stacked GCNN is used in which l layer takes the node representation
from the preceding layer Hl

� �
as input, whereas the output is the new-fangled node representation, i.e., Hlþ1.

For the primary layer, the input is Z 2 RC�d matrix. In this notation, d indicates the dimensionality of the
label-level embedded word. For the previous layer, the output is W 2 RC�D, in which D denotes the
dimensionality of the image demonstration. The prediction score can be determined from the learned
classifier to image representation as

ŷ ¼ Wx: (4)

Consider that the ground truth label of the image is y 2 RC in which yi ¼ 0; 1f g denotes whether the
label i appears in the image or not. Using conventional multi-label classification loss, the entire model is
trained as given below.

L ¼
XC

c¼1
yc log r ŷcð Þð Þ þ 1� ycð Þ log 1� r ŷcð Þð Þ; (5)

In Eq. (5), σ(.) represents the sigmoid function.
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Typically, if a ‘surfboard’ occurs in an image, then a ‘person’ occurs with a high probability. But, due to
the condition of the occurring ‘person’, the ‘surfboard’ not necessarily appears. Fig. 2 depicts the framework
of the CNN method.

3.2 Hyperparameter Optimization Using GMBO Algorithm

In order to enhance the overall efficiency of the GCNN model, the GMBO algorithm is utilized to adjust
the GCNN parameters appropriately. GMBO is a population-based optimization method proposed earlier
based on efficiently using population member data when upgrading a model [18]. In all the iterations,
two groups of members are chosen carefully, such as the bad group members and the good group
members, with a specific number of members in each group. The foremost notion in the development of
the presented method is to apply both integrated groups by averaging the number of two group members.
The population member in the presented model is recognized using a matrix termed population matrix.
The column count in the population matrix indicates the number of parameters in the problem whereas
the row count in the population matrix designates the number of members in the algorithm. As a
population member, every row of the population matrix is the solution proposed to resolve the
optimization issue, which is determined as follows.

X ¼

X1

..

.

Xi

..

.

XN

2
666664

3
777775
N�M

x1;1 � � � xxd � � � x1;m
..
. . .

. ..
.

. .
. ..

.

xi;1 � � � xi;d � � � xi;m
..
.

. .
. ..

. . .
. ..

.

xN ;1 � � � xN ;d � � � xN ;m

2
6666664

3
7777775
N�M

(6)

Now, X denotes the population matrix, Xi shows the i-th member of the population, xi;d indicates the
value of the d-th parameter that is generated using i-th member of the population, N shows the number of
population members, and m indicates the number of parameters in the problem.

According to the variable value presented by every member of the population, the objective function is
estimated. Therefore, the objective function value is defined by the vector as given below.

Figure 2: Structure of the CNN method
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F ¼

F1

..

.

Fi

..

.

FN

2
666664

3
777775

F X1ð Þ
..
.

F Xið Þ
..
.

F XNð Þ

2
6666664

3
7777775
;

N�1

(7)

In Eq. (7), F denotes the vector of the main function, and Fi indicates the main function value, according
to the i-th member of the population. Both good and bad group members are carefully chosen based on the
objective function value. The good group has a specific number of population members with an optimal value
of the main function. The bad group has a specific number of population members with the worst values of
the objective function as shown below.

Fs ¼

Fs
1

..

.

Fs
i

..

.

Fs
N

2
6666664

3
7777775

minimum Fð Þ
..
.

..

.

..

.

maximum Fð Þ

2
6666664

3
7777775
;

N�1

(8)

X ¼

X s
1

..

.

X s
i

..

.

X s
N

2
6666664

3
7777775

xs1;1 � � � xs1;d � � � xs1;m
..
. . .

. ..
.

. .
. ..

.

xsi;1 � � � xsi;d � � � xsi;m
..
.

. .
. ..

. . .
. ..

.

xsN ;1 � � � xsN ;d � � � xsN ;m

2
66666664

3
77777775
N�M

; (9)

GNG�m ¼ X s
i & i ¼ 1:NG0 (10)

BNB�m ¼ X s
i & ¼ N � NB þ 1: N ; (11)

In this expression, Fs denotes the sorted objective function vector, according to the objective function
value arranged from the optimum member to the worst member, X s indicates the sorted population matrixes,
according to the value of the objective function,G denotes a certain good group, B denotes the bad group, NG

indicates the number of good groups and NB denotes the number of bad groups. After defining both groups in
this phase, two composite members are attained by averaging the values of the group as follows.

MG ¼ mean GNG�mð Þ; (12)

MB ¼ mean BNB�mð Þ; (13)

In this equation, MG and MB denote the composite members according to the mean values of the good
and bad groups. In this work, the population matrix is upgraded through three phases, according to the best
and the composite members as given below.

xGi;d ¼ xi;d þ r � MGi;d � xi;d
� �� sign Fi � FMGð Þ; (14)
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Xi ¼ XB
i ; FB

i ,Fi

Xi; else 0

�
(15)

Now, xGi; d denotes the novel value of the d-th parameter, r indicates an arbitrary value within [0–1], FMG

shows the objective function value of the composite members of the good groups, XG
i represents the novel

location of the i-th member of the population and FG
i shows the value of objective function. Next, the

population matrix is upgraded based on the composite members of the bad groups, as evaluated herewith.

xBi;d ¼ xi;d þ r � MBi;d � xi;d
� �� sign Fi � FMBð Þ; (16)

Xi ¼ XB
i ; FB

i ,Fi

Xi; else 0

�
(17)

Now, xBi;d indicates the novel value of the d-th variable, r denotes an arbitrary value within [0—1], FMB

shows the objective function value of the composite members of the bad groups, XB
i indicates the novel

location of the i-th population member and FB
i indicates the value of the objective function. Then, the

population matrix is upgraded based on the optimum member of the population, as given below.

x0i;d ¼ xi;d þ r � xbesti;d � xi;d
� �

; (18)

Xi ¼ X 0
i ; F 0

i ,Fi

Xi; else 0

�
(19)

In this equation, x0i;d denotes the novel value of the d-th variable, r shows an arbitrary value within [0–1],
X i
i denotes the novel location of the i-thmember of the population and F 0

i represents the value of the objective
function. The procedure of upgrading the population matrices is repeated until the process is satisfied. Then,
during the final iteration, a quasi-optimal solution, i.e., output, is attained by the GMBO technique.

Algorithm 1: Pseudocode of the GMBO algorithm

Initialize GMBO.

1: Input problem data: constraints, variables, and objective function.

2: Determine the count of iterations (T) and population members (N).

3: Make a primary population matrix randomly.

4: Assess the objective function.

5: for t ¼ 1:T

6: Sort population matrix related to Eqs. (8) and (9).

7: Upgrade good group related to Eq. (10).

8: Upgrade the bad group related to Eq. (11).

9: Upgrade composite members ðMG and MBÞ related to Eqs. (12) and (13).

10: for i ¼ 1:N

11: Upgrade date Xi depends on the primary phase utilizing Eqs. (14) and (15).

12: Upgrade Xi depends on the next phase utilizing Eqs. (16) and (17).

13: Upgrade Xi depends on the last stage utilizing Eqs. (18) and (19).

(Continued)
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14: end for

15: Save the optimum quasi-optimal solution attained with the GMBO so far.

16: end for

17: Resultant optimum quasi-optimal solution gained with the GMBO.

End GMBO.

4 Experimental Validation

This section discusses the malware classification results of the proposed OGCNN-MDC method in
detail, while the experimental validation was conducted using a standard dataset. Table 1 gives the details
of the dataset. The dataset holds a total of 33,269 samples under two classes.

Fig. 3 illustrates the confusion matrices generated by the proposed OGCNN-MDC model during the
classification process. With run-1, the proposed OGCNN-MDC model categorized 5,081 samples under
the malware class and 27,764 samples under the benign class. Similarly, with run-2, the OGCNN-MDC
approach categorized 5,064 samples as a malware class and 27,768 samples as a benign class. Also, with
run-3, the proposed OGCNN-MDC technique classified 5,049 samples under the malware class and
27,778 samples under the benign class. Furthermore, with run-4, the proposed OGCNN-MDC technique
placed 4,812 samples under the malware class and 27,843 samples under the benign class. Additionally,
with run-5, the proposed OGCNN-MDC technique categorized 5,052 samples under the malware class
and 27,774 samples under the benign class.

The overall cyberattack classification results of the proposed OGCNN-MDC model under distinct runs
are given in Table 2.

Fig. 4 showcases the run-1 results of the proposed OGCNN-MDCmodel on both class labels. The figure
denotes that the proposed OGCNN-MDC method proficiently identified both malware and benign classes. In
malware class, the OGCNN-MDC model attained accuy, precn, sensy, specy, Fscore and AUCscore values such
as 98.73%, 96.19%, 95.80%, 99.28%, 95.99% and 97.54% respectively. Besides, in the benign class, the
proposed OGCNN-MDC model reached accuy, precn, sensy, specy, Fscore and AUCscore values such as
98.73%, 99.20%, 99.28%, 95.80%, 99.24% and 97.54% respectively. Also, the presented OGCNN-MDC
model produced average accuy, precn, sensy, specy, Fscore and AUCscore values such as 98.73%, 97.70%,
97.54%, 97.54%, 97.62% and 97.54% respectively.

Fig. 5 displays the run-2 results of the proposed OGCNN-MDC approach on both class labels. The
figure is implicit that the OGCNN-MDC algorithm proficiently identified both malware and benign
classes. In the malware class, the proposed OGCNN-MDC technique obtained accuy, precn, sensy, specy,
Fscore and AUCscore values such as 98.69%, 96.26%, 95.48%, 99.30%, 95.86% and 97.39%

Table 1: Dataset details

Class No. of instances

Malware 5304

Benign 27965

Total no. of instances 33269

Algorithm 1 (continued)
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correspondingly. In addition, in benign class, the presented OGCNN-MDC method reached accuy, precn,
sensy, specy, Fscore and AUCscore values such as 98.69%, 99.14%, 99.30%, 95.48%, 99.22% and 97.39%
correspondingly. Likewise, the proposed OGCNN-MDC approach produced average accuy, precn, sensy,
specy, Fscore and AUCscore values such as 98.69%, 97.70%, 97.39%, 97.39%, 97.54% and 97.39%
correspondingly.

Figure 3: (Continued)
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Figure 3: Confusion matrices of OGCNN-MDC approach (a) Run1, (b) Run2, (c) Run3, (d) Run4, and (e)
Run5

Table 2: Analytical results of the OGCNN-MDC approach under different measures and runs

Labels Accuracy Precision Sensitivity Specificity F-Score AUC Score

Run-1

Malware 98.73 96.19 95.80 99.28 95.99 97.54

Benign 98.73 99.20 99.28 95.80 99.24 97.54

Average 98.73 97.70 97.54 97.54 97.62 97.54

Run-2

Malware 98.69 96.26 95.48 99.30 95.86 97.39

Benign 98.69 99.14 99.30 95.48 99.22 97.39

Average 98.69 97.70 97.39 97.39 97.54 97.39

Run-3

Malware 98.67 96.43 95.19 99.33 95.81 97.26

Benign 98.67 99.09 99.33 95.19 99.21 97.26

Average 98.67 97.76 97.26 97.26 97.51 97.26

Run-4

Malware 98.15 97.53 90.72 99.56 94.00 95.14

Benign 98.15 98.26 99.56 90.72 98.91 95.14

Average 98.15 97.90 95.14 95.14 96.46 95.14
(Continued)
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Fig. 6 exemplifies the run-3 results of the proposed OGCNN-MDC approach on both class labels. The
figure implies that the proposed OGCNN-MDC method identified both malware and benign classes
excellently. In malware class, the proposed OGCNN-MDC technique gained accuy, precn, sensy, specy,

Table 2 (continued)

Labels Accuracy Precision Sensitivity Specificity F-Score AUC Score

Run-5

Malware 98.67 96.36 95.25 99.32 95.80 97.28

Benign 98.67 99.10 99.32 95.25 99.21 97.28

Average 98.67 97.73 97.28 97.28 97.50 97.28

Figure 4: Average analysis results of the OGCNN-MDC approach under Run-1

Figure 5: Average analysis results of the OGCNN-MDC approach under Run-2

IASC, 2023, vol.36, no.3 2907



Fscore and AUCscore values such as 98.67%, 96.43%, 95.19%, 99.33%, 95.81% and 97.26% correspondingly.
In benign class, the proposed OGCNN-MDC approach achieved accuy, precn, sensy, specy, Fscore and
AUCscore values such as 98.67%, 99.09%, 99.33%, 95.19%, 99.21% and 97.26% correspondingly.
Likewise, the proposed OGCNN-MDC approach produced average accuy, precn, sensy, specy, Fscore and
AUCscore values such as 98.67%, 97.76%, 97.26%, 97.26%, 97.51% and 97.26% correspondingly.

Fig. 7 displays the run-4 results of the proposed OGCNN-MDC approach on both class labels. The
figure infers that the proposed OGCNN-MDC method proficiently identified both malware and benign
classes. In the malware class, the proposed OGCNN-MDC algorithm gained accuy, precn, sensy, specy,
Fscore and AUCscore values such as 98.15%, 97.53%, 90.72%, 99.56%, 94% and 95.14% correspondingly.
In addition, in benign class, the presented OGCNN-MDC approach reached accuy, precn, sensy, specy,
Fscore and AUCscore values such as 98.15%, 98.26%, 99.56%, 90.72%, 98.91% and 95.14%
correspondingly. Similarly, the proposed OGCNN-MDC method produced average accuy, precn, sensy,
specy, Fscore and AUCscore values such as 98.15%, 97.90%, 95.14%, 95.14%, 96.46% and 95.14%
correspondingly.

Figure 6: Average analysis results of the OGCNN-MDC approach under Run-3

Figure 7: Average analysis results of the OGCNN-MDC approach under Run-4
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Fig. 8 portrays the run-5 results of the OGCNN-MDC method on both class labels. The figure denotes
that the proposed OGCNN-MDC approach proficiently identified both malware and benign classes. In
malware class, the proposed OGCNN-MDC methodology gained accuy, precn, sensy, specy, Fscore and
AUCscore values such as 98.67%, 96.36%, 95.25%, 99.32%, 95.80% and 97.28% correspondingly. Also,
in benign class, the proposed OGCNN-MDC methodology achieved accuy, precn, sensy, specy, Fscore and
AUCscore values such as 98.67%, 99.10%, 99.32%, 95.25%, 99.21% and 97.28% respectively. In
addition, the proposed OGCNN-MDC methodology produced average accuy, precn, sensy, specy, Fscore

and AUCscore values such as 98.67%, 97.73%, 97.28%, 97.28%, 97.50% and 97.28% correspondingly.

Both Training Accuracy (TRA) and Validation Accuracy (VLA) values, acquired by the proposed
OGCNN-MDC approach on the test dataset, are displayed in Fig. 9. The experimental results infer that
the OGCNN-MDC method attained the maximal TRA and VLA values. In contrast, VLA values were
higher than the TRA values.

Figure 8: Average analysis results of the OGCNN-MDC approach under Run-5

Figure 9: TRA and VLA analyses results of the OGCNN-MDC approach
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Both Training Loss (TRL) and Validation Loss (VLL) values attained by the proposed OGCNN-MDC
approach on the test dataset are exhibited in Fig. 10. The experimental results denote that the proposed
OGCNN-MDC method exhibited the least TRL and VLL values. In contrast, the VLL values were lesser
than the TRL values.

A clear precision-recall analysis was conducted upon the OGCNN-MDC method using the test dataset.
The results are portrayed in Fig. 11. The figure shows that the proposed OGCNN-MDC technique produced
enhanced precision-recall values under all the classes. A brief ROC analysis was conducted on the proposed
OGCNN-MDC technique using the test dataset. The results are shown in Fig. 12. The results represent that
the proposed OGCNN-MDC method established its ability to categorise the test dataset under distinct
classes.

Figure 10: TRL and VLL analyses of the OGCNN-MDC approach

Figure 11: Precision-recall analysis results of the OGCNN-MDC approach

2910 IASC, 2023, vol.36, no.3



At last, a brief comparative examination was conducted between the OGCNN-MDC method and other
ML approaches and the results are provided in Table 3 [19]. Fig. 13 provides the comparative accuy
investigation results achieved by the proposed OGCNN-MDC model and other ML methods. The figure
indicates that the SGD and MLP models achieved ineffectual outcomes with minimal accuy values, such
as 93.71% and 93.81%, respectively. Meanwhile, the NB and LR models revealed slightly enhanced
outcomes with accuy values such as 94.85% and 94.76%, correspondingly. Furthermore, the RF and RT
models managed to produce reasonable accuy values, such as 96.44% and 95.19%, respectively. Finally,
the proposed OGCNN-MDC model achieved an effectual performance with a maximum accuy of 98.73%.

Fig. 14 presents the detailed comparative precn examination outcomes of the OGCNN-MDC approach
and other ML models. The figure denotes that the SGD and MLP techniques achieved ineffectual outcomes
with minimal precn values such as 93.52% and 93.58%, correspondingly. Meanwhile, the NB and LR
methods exposed slightly enhanced outcomes with precn values such as 93.98% and 93.65%,
correspondingly. Also, the RF and RT techniques yielded reasonable precn values, such as 96.05% and

Figure 12: ROC analysis results of the OGCNN-MDC approach

Table 3: Comparative analysis results of the OGCNN-MDC approach and other existing algorithms

Methods Accuracy Precision Sensitivity Specificity

OGCNN-MDC 98.73 97.70 97.54 97.54

Naïve bayes 94.85 93.98 96.05 93.27

Logistic regression 94.76 93.65 95.76 94.55

Stochastic gradient descent 93.71 93.52 93.88 94.69

Multilayer perceptron 93.81 93.58 93.81 95.62

Random forest 96.44 96.05 96.76 95.80

Random tree 95.19 96.66 93.38 93.60
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96.66%, correspondingly. At last, the proposed OGCNN-MDC approach accomplished an effectual
performance with a maximum precn of 97.70%.

Fig. 15 illustrates the comprehensive sency study outcomes achieved by the proposed OGCNN-MDC
approach and other ML algorithms. The figure denotes that the SGD and MLP algorithms accomplished
ineffectual outcomes with minimal sency values, such as 93.88% and 93.81%, correspondingly. In the
meantime, the NB and LR methods yielded slightly enhanced outcomes with sency values such as
96.05% and 95.76%, correspondingly. Also, the RF and RT techniques produced reasonable sency values,
such as 96.76% and 93.38%, correspondingly. Finally, the proposed OGCNN-MDC approach
accomplished an effectual performance with a maximum sency of 97.54%.

Fig. 16 demonstrates the comparative specy investigation outcomes of the proposed OGCNN-MDC
model and other ML techniques. The figure indicates that the SGD and MLP methods achieved
ineffectual outcomes with minimal specy values such as 94.69% and 95.62%, correspondingly. In the
meantime, the NB and LR methods produced slightly enhanced outcomes, with specy values being
93.27% and 94.55% correspondingly. Besides, the RF and RT approaches yielded reasonable specy values

Figure 13: Accuy analysis results of the OGCNN-MDC approach and other existing algorithms

Figure 14: Precn analysis results of the OGCNN-MDC approach and other existing algorithms
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such as 95.80% and 93.60%, respectively. At last, the proposed OGCNN-MDC technique displayed an
effectual performance with a maximum specy of 97.54%. Therefore, the proposed OGCNN-MDC model
can be utilized to ensure cybersecurity in an IoT environment.

5 Conclusion

This article has developed a new OGCNN-MDC model for malware detection and classification in an
IoT-enabled cloud environment. The proposed OGCNN-MDC model aims to recognize and categorize the
occurrences of malware in the IoT-enabled cloud platform. The presented OGCNN-MDC model has three
stages, namely, data pre-processing, malware detection and parameter tuning. To detect and classify the
malware, the GCNN model is exploited in this work. To enhance the overall efficiency of the GCNN
model, the GMBO algorithm is utilized to adjust the GCNN parameters appropriately. A widespread
experimental analysis was conducted to highlight the improvements of the proposed OGCNN-MDC
method. A comprehensive comparison study was conducted, and the outcomes confirmed the superiority
of the proposed OGCNN-MDC method over other recent approaches with an accuracy of 98.73%.

Figure 15: Sensy analysis results of the OGCNN-MDC approach and other existing algorithms

Figure 16: Specy analysis results of the OGCNN-MDC approach and other existing algorithms
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