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Abstract: The paradigm shift towards the Internet of Things (IoT) phe-
nomenon and the rise of edge-computing models provide massive poten-
tial for several upcoming IoT applications like smart grid, smart energy,
smart home, smart health and smart transportation services. However, it also
provides a sequence of novel cyber-security issues. Although IoT networks
provide several advantages, the heterogeneous nature of the network and the
wide connectivity of the devices make the network easy for cyber-attackers.
Cyberattacks result in financial loss and data breaches for organizations and
individuals. So, it becomes crucial to secure the IoT environment from such
cyberattacks. With this motivation, the current study introduces an effectual
Enhanced Crow Search Algorithm with Deep Learning-Driven Cyberattack
Detection (ECSADL-CAD) model for the Software-Defined Networking
(SDN)-enabled IoT environment. The presented ECSADL-CAD approach
aims to identify and classify the cyberattacks in the SDN-enabled IoT envi-
ronment. To attain this, the ECSADL-CAD model initially pre-processes
the data. In the presented ECSADL-CAD model, the Reinforced Deep
Belief Network (RDBN) model is employed for attack detection. At last,
the ECSA-based hyperparameter tuning process gets executed to boost the
overall classification outcomes. A series of simulations were conducted to
validate the improved outcomes of the proposed ECSADL-CAD model. The
experimental outcomes confirmed the superiority of the proposed ECSADL-
CAD model over other existing methodologies.
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1 Introduction

The Internet of Things (IoT) network is an interconnected and distributed network of embedded
mechanisms that interact via wired or wireless communication technology [1]. It can also be described
as a network of physical devices empowered with limited computation, memory and interactions
abilities. These abilities are embedded in network connectivity software and electronic devices such
as the actuators and the sensors for multiple purposes such as collecting, exchanging and processing
the data [2]. The IoT gadgets produce a huge volume of data, due to which the conventional
processing, collection and storage methods cannot meet the quality requirements or the customer’s
needs. The huge volumes of data are utilized for multiple activities such as predictions, assessments,
pattern analyses and behavioural analyses [3]. Moreover, the existing data processing systems find it
challenging to handle the heterogeneous data generated by IoT gadgets. So, a need exists to develop
novel data processing systems to gain insights from the data produced by IoT devices. Machine
Learning (ML) is one of the data processing techniques suitable for evaluating computational patterns
and providing embedded intelligence in IoT gadgets [4]. Fig. 1 illustrates the infrastructure of the
Software-Defined Networking (SDN) approach.

Figure 1: Structure of the SDN architecture

ML techniques help companies and individuals to gain insights from human-generated data using
smart devices and a set of relevant machines. It is described as the capability of a smart gadget
to automate or change the behaviour or a situation related to the information and is considered
to play an important role in IoT solutions [5]. ML methods are utilized in density estimation,
classification, and regression tasks. Various applications like malware detection, Computer Vision
(CV), bio-informatics, speech recognition, authentication and fraud detection utilize ML techniques
[6]. Similarly, it is also used in the IoT platform to offer intelligent services. There is no integrated
approach to secure the entire IoT structure. IoT security is an important networking parameter, and
the history of cyberattacks imposes a severe need to develop security measures [7]. Currently, the
SDN-assisted structure not only improves the heterogeneous capability of the IoT network and its
dynamic atmosphere but also provides a chance to ease the network management process [8]. It offers
an effective and efficient identification method without exhaustion and a platform for resource-limited
gadgets that do not burden a security solution [9]. For SDN surveillance, an optimal technique was
proposed by incorporating the Intrusion Detection System (IDS) in SDN architecture. Due to the
quick evolution of the Artificial Intelligence (AI) technique that possesses the programmable attributes
of the SDN environment, the security stages are enhanced by combining the SDN mechanism into
an AI-related security solution [10]. Several AI-related methods are used as network traffic detection
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techniques, such as Decision Trees (DT), Genetic Algorithms (GA), Fuzzy Logic (FL), Naive Bayesian
(NB), k-Nearest Neighbor (KNN) and ANNs with phenomenal accuracy levels and ideal outcomes.

Aslam et al. [11] devised an Adaptive ML-related SDN-assisted Distributed Denial of Service
(DDoS) attack Detection and Mitigation (AMLSDM) structure. The presented AMLSDM structure
involves the SDN-assisted security system for IoT gadgets with the help of the adaptive ML classifica-
tion method. This study aimed to achieve an effective detection and mitigation of DDoS assaults. The
presented structure used the ML approaches in an adaptive multi-layered feed-forwarding technique to
successfully identify the DDoS assaults so as to evaluate the static attributes of the examined network
traffic. Alzahrani et al. [12] illustrated the application of an ML technique as an IDS to observe the
network traffic and identify the malicious performance in the SDN controller. Traditional tree-related
ML approaches were selected and developed to demonstrate the attack detection outcomes.

Dake et al. [13] formulated a novel MADDPG-compiled multi-agent structure in SDN for
effective multi-path routing optimization and malevolent DDoS traffic prevention and detection in the
networks. Both the MARL negotiators collaborated in a similar atmosphere to accomplish a network
optimization task in a short period. Nguyen et al. [14] introduced a new traffic monitoring structure
like DeepMonitor for SDN-related IoT networks. This method aimed to provide a finely-grained
traffic analysis report for various IoT traffic forms at the network edges. To be specific, the author
initially used an intellectual flow rule match-field control scheme named DeepMonitor agent for the
SDN-related IoT edges. In this study, the authors considered their maximal flow-table capability and
the need for different granularity levels. The author applied the control optimization issue for every
edge node by following the Markov Decision Procedure (MDP). Then, the author projected a Double
Deep Q-network (DDQN) method to gain an optimum flow rule match-field method.

In the study conducted earlier [15], an SDN-enabled Deep Learning (DL)-driven structure was
devised to detect the threats in the IoT atmosphere. The existing Cuda-Deep Neural Network (DNN)-
Gated Recurrent Unit (GRU), i.e., Cu-DNNGRU and Cuda-bidirectional LSTM (Cu-BLSTM)
methods, were implemented for an effectual threat detection outcome. Ribeiro et al. [16] introduced
an anomaly-related technique that employed the ML approaches over continuous data streams for
the purpose of identifying intrusions in the SDN-enabled IoT atmosphere. In order to characterize the
anomalies, the author examined structure assault, a type of DDoS assault. This attack type considered
the effects of resource depletion and bandwidth depletion. Further, these kinds of attacks exert a heavy
impact on the complete SDN environment. The other type of attack, i.e., the bandwidth depletion
attack, targets the channel between the controller and the switches either by HTTP or UDP flooding
protocols.

The current study introduces an effective Enhanced Crow Search Algorithm with Deep Learning-
Driven Cyberattack Detection (ECSADL-CAD) model for the SDN-enabled IoT environment. The
presented ECSADL-CAD approach aims to identify and classify the cyberattacks in the SDN-enabled
IoT environment. To attain this, the proposed ECSADL-CAD model pre-processes the initial data.
In the presented ECSADL-CAD model, the Reinforced Deep Belief Network (RDBN) model is
employed for attack detection. At last, the ECSA-based hyperparameter tuning process is executed
to boost the overall classification outcomes. A series of experiments were conducted to ensure the
improved outcomes of the proposed ECSADL-CAD model.

2 The Proposed ECSADL-CAD Model

The current study introduced a new ECSADL-CAD model for attack detection in the SDN-
enabled IoT environment. The presented ECSADL-CAD approach aims to identify and classify the
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cyberattacks in the SDN-enabled IoT environment. To attain this, the proposed ECSADL-CAD model
pre-processes the data at the initial stage. In the presented ECSADL-CAD model, the RDBN model is
employed for attack detection. At last, the ECSA-based hyperparameter tuning process is executed to
boost the overall classification outcomes. Fig. 2 illustrates the overall process of the ECSADL-CAD
approach.

Figure 2: Overall process of the ECSADL-CAD approach

2.1 RDBN-Based Data Classification
In the presented ECSADL-CAD model, the RDBN model is employed for attack detection.

Restricted Boltzmann Machine (RBM) is an undirected probability graph method that depends on
the energy using the visible layer (VL) and the hidden layer (HL) [17]. The RBM structure is denoted
by (a). The VL is comprised of N input parameter, v = (v1, v2, . . . , vN); and HL is comprised of M
input parameter, h = (h1, h2, . . . , hM). In this work, every VL is interconnected to the HL with the
weighted variable W , and the similar layer remains unrelated. Suppose vj ∈ {0, 1}, hj ∈ {0, 1}; the joint
likelihood distribution of v and h is represented as follows.

P (v, h) = 1
Z

exp (−E (v, h)) , (1)

In Eq. (1), Z refers to the normalization constant.

Z =
∑

v

∑
h
exp (−E (v, h)), (2)

The energy function is determined as follows.

E (v, h) = −
∑N

i=1
aivi −

∑M

j=1
bihi −

∑N

i=1

∑M

j=1
wijvihj′ (3)

In Eq. (3), ai and bj show the biases of v and h, wij indicates the weight between vi and hj, and W
indicates the weight matrix between VLs and the HLs.
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In this study, the HL input is a binary value, and the VL input v is a real value. Hence, the RBM
exploits the Gaussian-Bernoulli method.

E (v, h) = −
∑N

i=1

(vi − ai)
2

2σ 2
i

−
∑M

j=1
bihi −

∑N

i=1

∑M

j=1
wij

vi

σi

hj. (4)

Based on the conditional distribution, P(h|v, θ) and P(v|h, θ) is determined as follows.

P
(
hj = 1|v, θ

) = s
(

bj +
∑

i
viwij

)
,

P (vi = 1|h, θ) = N
(

ai + σi

∑
j
hjwij′σi2

)
, (5)

Now, (x) = 1/(1 + exp (−x)) and
(
μ, σ 2

)
indicate the Gaussian distribution. The variance

parameter σi2 is normally set as the predefined value instead of learning from the trained dataset.
The σi2 = 1 is valued for a suitable calculation. The RBM variable θ = {a, b, W} is trained based on
the Contrastive Divergence (CD) method.

�wij = [
ED

(
vihj

) − EM

(
vihj

)] · α (6)

Here, ED shows the observed values, EM denotes the predicted values of the distribution, and α

shows the learning factor. In addition, the offset that upgrades �ai and �bj is estimated correspond-
ingly.

The DBN approach has multiple HLs and a two-hidden layer. It represents a combination of
the undirected and the directed relations. The two topmost layers are directly connected, whereas the
others are directly connected. The L-layer DNB has L weight matrix: W (1), W (2), . . . , W (L), L+1 offset
vector: a(0), a(1), . . . , a(L) and a(0) indicate the offset of VL as shown below.

P
(
h(l)

i = 1|h(l+1)
) = s

(
a(l)

i + W (l+1)T
:,i h(l+1)

)
,

P
(
vi = 1|h(1)

) = s
(
a(0)

i + W (1)T
:,i h(1)

)
, (7)

In Eq. (7), l = 1, 2, . . ., L, s indicates the sigmoid function. If v is a real value, then VL and the
initial HLs are defined using Eq. (5). In DBN, the previous layer is assumed to be the VL of the upper
HLs. Once the primary RBM is trained, the network parameter is retained. The second RBM is also
trained then until it acquires the topmost layer. At the time of training the DBN, the unsupervised
learning approach is utilized for training the previous RBM. The supervised learning process finishes
the classification of the topmost layer and accomplishes an optimized output through the BP model.

The RDBN training method is the same as that of the DBN approach. The supervised and
unsupervised learning methods are integrated into the training method. Initially, the previous training
model exploits the unsupervised learning method to attain the primary RBM network parameter.
Next, the RL model is incorporated with the trained RBM to establish the reinforced RBM (RRBM).
Then, the RRBM contains the stacked RDBN. The supervised learning approach completes the
network training process through the labels that are interconnected with the topmost layer using the
BP approach.

The weight matrices in the RRBM are trained to complete the representation among its neigh-
bouring layers. In this study, the distribution of the weighted matrix W (k) reflects the features of the
input emitter signal dataset. After executing the unsupervised training process, the interconnected
weight matrix is retained. Then, the supervised training process completes the last distribution of
W (k) to identify eight kinds of radar-emitted signals. Here, W (k) and the distinct w(k)

ij values worked
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differently. If the complete value of w(k)

ij is higher, then its significance, i.e., h(k−1)

i (vi) of the VL, increases
up to h(k)

j in the HL. Hence, the RRBN approach handles the interconnected weighted matrixes after
completing the unsupervised learning process in every RBM. The RL process is employed upon
W (k) and involves three parts: initially, the threshold ε is evaluated for every row of W (k). Then, the
ε is compared using all the weighted values of wij. Afterwards, the wij value is adapted based on
the comparison outcomes, and then the value is returned. This study follows a concrete adjustment
approach, whereas each output Ŵ (k) replaces the old interconnected weighted matrix W (k) for the
following supervised learning.

2.2 ECSA Based Hyperparameter Tuning
The ECSA-based hyperparameter tuning process is executed to boost the overall classification

outcomes. The CSA approach has some specific limitations that get reflected in two subsequent
features [18]. (1) The population diversity is adapted using Awp in the CSA approach. However, the
Awp parameter denotes some specific values to limit the iterative model’s coordinative capability and
(2) The fight step size in the CSA approach is a predetermined value and does not change with the
iteration count. Thus, the local exploitation and the crow’s global search abilities are limited.

Various CSA techniques are suggested to resolve this limitation. The chaotic CSA method
exploits the chaotic searching method’s randomness and ergodicity to enhance its optimization
capability. But, in the case of a large space with multi-parameter optimization issues, the chaotic
CSA approach experiences a few challenges, for instance, lengthy computation time. Further, it is also
incapable of finding the optimum solution. The dynamic CSA approach and an adoptive CSA method
upgrade the location dynamically based on the adoptive approach to fit into the iteration variations.
In the fuzzy-based CSA approach, the fuzzy concept is presented in the CSA method that accelerates
the convergence efficacy to a specific range. The ENCSA approach follows two methods such as
the periodic fight migration approach and an adaptive fight step adjustment method. The local
development and the global exploration capabilities can be improved via an adaptive fight step
adjustment approach. Furthermore, the diversity of the population is also preserved with the help
of the periodic fight migration approach to prevent the model from getting trapped in local maxima.

Periodic fight migration strategy

The Migration Frequency (MF) is incorporated by preserving the crow population diversity.
Initially, the crows that are judged should migrate. When a crow needs to migrate, the crow flies to
another place to search. Once there is no need for a crow to migrate, the crow either follows or searches
for others, as shown below:{

Positer+1
j = Positer

j + R × L × (
mbest − Positer

j

)
L = e

fj−j−fbest

fj+ε

(8)

In Eq. (8), R characterizes an arbitrary value within [0, 1]; mbest denotes the location of the
optimum crow in a crow group; fj signifies the targeted value of the crow j; fbest characterizes the targeted
value of an optimum individual and ε signifies the minimum value that guarantees the significance of
the fraction.

The crow’s migration formulation is devised so that the crow group doesn’t transfer to an arbitrary
location. However, it follows the crow with an optimum location from the group.
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Adaptive fight step adjustment strategy

In this work, the fight distance is a predetermined value. Hence, the searching capability of a crow
cannot be modified by increasing the number of iterations. An adoptive fight step size is developed. The
searching capability of the crows has altered once the iteration count increases, which is mathematically
expressed below.

FLi;er
j = 0.2 × e

Miter
iter (9)

By expanding the search, the fight step size becomes progressively smaller. Initially, the crow is a
large fight step size that makes the crow have a strong global searching ability. Then, the fight step size
of the crow becomes small, which in turn makes the crow reinforce the local development ability.

Acceleration search factor

The adaptive searching step can reinforce local development and global searching abilities. The
Acceleration Search Coefficient (ASC) is proposed to improve the optimization ability additionally
and is mathematically expressed herewith.

ASC = ASCmin + (ASCmax − ASCmin) × e(−15× iter
Miter)

5
(10)

In Eq. (10), ASCmax (ASCmax = 0.9) and ASCmin (ASCmin = 0.2) denote the maximal and minimal
values respectively.

Initially, the ASC values make the crows have a strong global searching ability. When the
ASC values become smaller, this phenomenon makes the crows develop a strong local development
capability. ACS creates a fine balance between the global and local convergences. This characteristic
increases the efficiency of the presented method. The updated formula of the crow’s location is shown
below.

Positer+1
j = ASC × Positer

j + R × FLiter
j × (

miter
j − Positer

j

)
(11)

3 Experimental Validation

The proposed ECSADL-CAD approach was experimentally validated utilizing the CICIDS-2018
dataset. The test dataset includes a total of 84,792 samples under six class labels, and the details are
depicted in Table 1.

Table 1: Dataset details

Labels Classes No. of instances

0 Benign 69654
1 Bot 2977
2 Brute Force-FTP 3066
3 DDoS-Loic-UDP 3015
4 DDoS-Hoic 3037
5 Infiltration 3043
Total number of instances 84792
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The classification outcomes of the proposed ECSADL-CAD model are presented in the form of
a confusion matrix in Fig. 3. With the entire dataset, the proposed ECSADL-CAD model categorized
69,047 samples as class 0, 2,865 samples as class 1, 3,020 samples as class 2, 2,956 samples as class 3,
2,946 samples as class 4 and 2,825 samples as class 5. On the other hand, with 70% of the TR dataset,
the ECSADL-CAD approach categorized 48,328 samples under class 0, 2,012 samples under class
1, 2,123 samples under class 2, 2,046 samples under class 3, 2,075 samples under class 4 and 1,961
samples under class 5. Moreover, with 30% of the TS dataset, the proposed ECSADL-CAD system
categorized 20,719 samples as class 0, 853 samples as class 1, 897 samples as class 2, 910 samples as
class 3, 871 samples as class 4 and 864 samples as class 5.

Figure 3: Confusion matrices of the ECSADL-CAD approach (a) Entire dataset, (b) 70% of TR data,
and (c) 30% of TS data
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Table 2 and Fig. 4 depict the results of the proposed ECSADL-CAD technique on the entire
dataset. The ECSADL-CAD method recognized the class 0 samples with accuy, precn, recal, Fscore

and MCC values such as 99.14%, 99.82%, 99.13%, 99.47% and 97.11%, respectively. Further, the class
1 samples were identified with accuy, precn, recal, Fscore and MCC values such as 99.68%, 94.62%,
96.24%, 95.42% and 95.26%, correspondingly. Moreover, the class 2 samples were classified with
accuy, precn, recal, Fscore and MCC values such as 99.74%, 94.64%, 98.50%, 96.53% and 96.42%,
correspondingly. In addition to these, the class 3 samples were categorized with accuy, precn, recal,
Fscore and MCC values such as 99.54%, 89.90%, 98.04%, 93.80% and 93.65%, correspondingly. At

last, the class 4 samples were identified with accuy, precn, recal, Fscore and MCC values such as 99.64%,
93.14%, 97%, 95.03% and 94.86%, correspondingly.

Table 2: Analytical results of the ECSADL-CAD approach on entire dataset

Entire dataset

Labels Accuracy Precision Recall F-score MCC

0 99.14 99.82 99.13 99.47 97.11
1 99.68 94.62 96.24 95.42 95.26
2 99.74 94.64 98.50 96.53 96.42
3 99.54 89.90 98.04 93.80 93.65
4 99.64 93.14 97.00 95.03 94.86
5 99.60 95.80 92.84 94.29 94.10
Average 99.55 94.65 96.96 95.76 95.23

Figure 4: Analytical results of the ECSADL-CAD approach on the entire dataset
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Fig. 5 provides the average results of the ECSADL-CAD model on different classes. These results
confirmed the effectual performance of the proposed ECSADL-CAD model with average accuy, precn,
recal, Fscore, and MCC values such as 99.55%, 94.65%, 96.96%, 95.76% and 95.23%, respectively.

Figure 5: Average analytical results of the ECSADL-CAD approach on entire dataset

Table 3 and Fig. 6 demonstrate the outcomes of the proposed ECSADL-CAD approach on 70%
of the TR data. The ECSADL-CAD technique recognized the class 0 samples with accuy, precn, recal,
Fscore and MCC values such as 99.12%, 99.81%, 99.11%, 99.46% and 97.05%, correspondingly. Besides,
the class 1 samples were identified with accuy, precn, recal, Fscore and MCC values such as 99.68%,
94.77%, 96.31%, 95.54% and 95.38%, respectively. Additionally, the class 2 samples were categorized
with accuy, precn, recal, Fscore and MCC values such as 99.74%, 94.48%, 98.47%, 96.43% and 96.32%,
correspondingly. Followed by the class 3 samples were categorized with accuy, precn, recal, Fscore and
MCC values such as 99.52%, 89.42%, 98.04%, 93.53% and 93.39%, correspondingly. Eventually, the
class 4 samples were classified with accuy, precn, recal, Fscore and MCC values such as 99.63%, 93.22%,
96.74%, 94.94% and 94.77%, correspondingly.

Table 3: Analytical results of the ECSADL-CAD approach on 70% of the TR dataset

Training phase (70%)

Labels Accuracy Precision Recall F-score MCC

0 99.12 99.81 99.11 99.46 97.05
1 99.68 94.77 96.31 95.54 95.38
2 99.74 94.48 98.47 96.43 96.32
3 99.52 89.42 98.04 93.53 93.39
4 99.63 93.22 96.74 94.94 94.77
5 99.59 95.61 92.67 94.12 93.92
Average 99.55 94.55 96.89 95.67 95.14
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Figure 6: Analytical results of the ECSADL-CAD approach on 70% of the TR data

Fig. 7 offers the average outcomes of the ECSADL-CAD approach under distinct classes. These
outcomes reveal the effectual performance of the ECSADL-CAD approach with average accuy, precn,
recal, Fscore and MCC values such as 99.55%, 94.55%, 96.89%, 95.67% and 95.14%, correspondingly.

Figure 7: Average analytical results of the ECSADL-CAD approach on 70% of the TR dataset

Table 4 and Fig. 8 illustrate the outcomes of the ECSADL-CAD approach on 30% of the TS data.
The ECSADL-CAD technique recognized the class 0 samples with accuy, precn, recal, Fscore and MCC
values such as 99.18%, 99.83%, 99.17%, 99.50% and 97.25%, correspondingly. In addition, the class
1 samples were classified with accuy, precn, recal, Fscore and MCC values such as 99.66%, 94.25%,
96.06%, 95.15% and 94.98%, respectively. The class 2 samples were also categorized with accuy, precn,
recal, Fscore and MCC values such as 99.76%, 95.02%, 98.57%, 96.76% and 96.66%, correspondingly.
Likewise, the class 3 samples were categorized with accuy, precn, recal, Fscore and MCC values such as
99.58%, 91%, 98.06%, 94.40% and 94.25%, correspondingly. Finally, the class 4 samples were classified
with accuy, precn, recal, Fscore and MCC values such as 99.66%, 92.96%, 97.65%, 95.24% and 95.10%,
correspondingly.
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Table 4: Analytical results of the ECSADL-CAD approach on 30% of the TS data

Testing phase (30%)

Labels Accuracy Precision Recall F-score MCC

0 99.18 99.83 99.17 99.50 97.25
1 99.66 94.25 96.06 95.15 94.98
2 99.76 95.02 98.57 96.76 96.66
3 99.58 91.00 98.06 94.40 94.25
4 99.66 92.96 97.65 95.24 95.10
5 99.62 96.21 93.20 94.68 94.50
Average 99.58 94.88 97.12 95.96 95.46

Figure 8: Analytical results of the ECSADL-CAD approach on 30% of the TS data

Fig. 9 illustrates the average results accomplished by the proposed ECSADL-CAD technique
under different classes. These outcomes reveal the effectual performance of the ECSADL-CAD
technique with average accuy, precn, recal, Fscore and MCC values such as 99.58%, 94.88%, 97.12%,
95.96% and 95.46%, correspondingly.

Both Training Accuracy (TRA) and Validation Accuracy (VLA) values, acquired by the proposed
ECSADL-CAD approach on the test dataset, are shown in Fig. 10. The experimental results infer
that the proposed ECSADL-CAD approach achieved the maximal TRA and VLA values, whereas
the VLA values were superior to the TRA values.

Both Training Loss (TRL) and Validation Loss (VLL) values, realized by the ECSADL-CAD
methodology on the test dataset, are depicted in Fig. 11. The experimental results reveal that the
ECSADL-CAD system achieved the least TRL and VLL values, whereas the VLL values were lesser
than the TRL values.
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Figure 9: Average analysis results of the ECSADL-CAD approach on 30% of the TS data

Figure 10: TRA and VLA analyses results of the ECSADL-CAD approach
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Figure 11: TRL and VLL analyses results of the ECSADL-CAD approach

In order to validate the superior performance of the ECSADL-CAD approach, an extensive
comparative analysis was conducted, and the results are shown in Table 5 [15]. Fig. 12 reports the
detailed accuy inspection outcomes achieved by the ECSADL-CAD approach and other recent DL
techniques. The outcomes reveal that the CNN and the GRU-RNN models accomplished poor
performance with minimal accuy values such as 90.91% and 88.67%. Then, the 2L-ZED-IDS model
reported a slightly increased accuy of 95.57%. The LSTM-CNN model reached a considerable
performance with an accuy of 98.48%. Next, the hybrid DL model produced a near optimal accuy of
99.32%. But, the proposed ECSADL-CAD model achieved enhanced results with an accuy of 99.58%.

Fig. 13 shows the detailed CT inspection results of the ECSADL-CAD approach and other recent
DL techniques. The outcomes denote that 2L-ZED-IDS and the GRU-RNN systems attained the
least performance with maximum CT values such as 1.13 and 1.10 s correspondingly. Afterwards,
the LSTM-CNN technique reported a low CT value of 1.08 s. Besides, the CNN technique gained
considerable performance with a CT of 0.96 s.

Table 5: Comparative analysis results of the ECSADL-CAD approach and other recent algorithms

Methods Accuracy Computational time (s)

ECSADL-CAD 99.58 0.53
Hybrid DL model 99.32 0.88
CNN 90.91 0.96
GRU-RNN 88.67 1.10
LSTM-CNN 98.48 1.08
2L-ZED-IDS 95.58 1.13
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Figure 12: Accuy analysis results of the ECSADL-CAD approach and other recent algorithms

Figure 13: CT analysis results of the ECSADL-CAD approach and other recent algorithms

Following, the hybrid DL algorithm produced a near-optimum CT of 0.88 s. But, the proposed
ECSADL-CAD technique demonstrated an enhanced outcome with a CT of 0.53 s. Hence, the
ECSADL-CAD model can be established as a productive tool to secure the IoT environment.

4 Conclusion

The current article introduced a new ECSADL-CAD model for attack detection in the SDN-
enabled IoT environment. The presented ECSADL-CAD approach aims to identify and classify the
cyberattacks in the SDN-enabled IoT environment. To attain this, the ECSADL-CAD model pre-
processes the data at the initial stage. In the presented ECSADL-CAD model, the RDBN model is
employed for attack detection. At last, the ECSA-based hyperparameter tuning process gets executed
to boost the overall classification outcomes. A series of simulations were conducted to validate the
enhanced outcomes of the proposed ECSADL-CAD model. The experimental values confirmed
the superior performance of the ECSADL-CAD model over other existing methodologies with a
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maximum accuracy of 99.58%. In the future, the feature selection approaches and the outlier removal
processes can be incorporated to improve the classification results.
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