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Abstract: Decision forest is a well-renowned machine learning technique to
address the detection and prediction problems related to clinical data. But, the tra-
ditional decision forest (DF) algorithms have lower classification accuracy and
cannot handle high-dimensional feature space effectively. In this work, we pro-
pose a bootstrap decision forest using penalizing attributes (BFPA) algorithm to
predict heart disease with higher accuracy. This work integrates a significance-
based attribute selection (SAS) algorithm with the BFPA classifier to improve
the performance of the diagnostic system in identifying cardiac illness. The pro-
posed SAS algorithm is used to determine the correlation among attributes and to
select the optimum subset of feature space for learning and testing processes.
BFPA selects the optimal number of learning and testing data points as well as
the density of trees in the forest to realize higher prediction accuracy in classifying
imbalanced datasets effectively. The effectiveness of the developed classifier is
cautiously verified on the real-world database (i.e., Heart disease dataset from
UCI repository) by relating its enactment with many advanced approaches with
respect to the accuracy, sensitivity, specificity, precision, and intersection over-
union (IoU). The empirical results demonstrate that the intended classification
approach outdoes other approaches with superior enactment regarding the accu-
racy, precision, sensitivity, specificity, and IoU of 94.7%, 99.2%, 90.1%,
91.1%, and 90.4%, correspondingly. Additionally, we carry out Wilcoxon’s
rank-sum test to determine whether our proposed classifier with feature selection
method enables a noteworthy enhancement related to other classifiers or not.
From the experimental results, we can conclude that the integration of SAS and
BFPA outperforms other classifiers recently reported in the literature.

Keywords: Data classification; decision forest; feature selection; healthcare data;
heart disease prediction; penalizing attributes

1 Introduction

The explosion of heterogeneous clinical records is increasing exponentially due to the digitization of the
medical industry. The massive and devastating volumes of healthcare data and unremitting flow of colossal
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records make big data processing a more critical and imperative process. Medical data processing provides a
real-time analytic capability for disease surveillance and accurate assessment to help healthcare specialists
make the appropriate clinical decision during emergencies [1]. The provision of better quality medical
facilities that are reasonably priced to patients is a serious issue in the healthcare industry. The provision
of a better medical facility needs both accurate diagnosis and identification of appropriate therapy for
victims while circumventing erroneous diagnoses.

Cardiovascular disease is a deadly illness that causes possibly life-threatening problems including
cardiac arrests. The WHO (world health organization) lists heart attack as the primary cause of fatality
worldwide and accounts for about 30% of total deaths (around 17.9 million individuals) per year [2]. This
condition is critically more solemn in middle- and low-income countries [3]. In most countries, there is a
deficiency of cardiac specialists and a substantial amount of inaccurately identified cases. This could be
solved by implementing an effective and precise cardiac illness classification and decision-making system
using electronic health records [4,5]. The timely identification of heart disease helps medical
professionals create appropriate verdicts about patients’ health to avert them from further harm.
Moreover, timely recognition of the cardiac disease is an essential factor to reduce mortality and cost.

Of late, we have witnessed the utilization of non-invasive clinical methods including a smart
computational system to develop a diagnosis system for timely identification of cardiac illness at a low.
Different classification models employ machine learning (ML) algorithms to classify the clinical records
into normal (negative) and diseased (positive) accurately according to the prevailing information [6].
Generally, ML classifiers are trained using a colossal volume of raw electronic health records. ML
classification algorithms including Naïve Bayes (NB), K-nearest neighbor (KNN), support vector machine
(SVM), logistic regression (LR), decision tree (DT), random forest (RF), and adaptive boosting method
(ABM) perform a vital role in classifying heart diseases [7]. Nevertheless, the classification of the cardiac
problem is a very challenging endeavor. The growing size of health databases has made it a complex
process for physicians to understand the correlations among attributes. According to data science, strong
ML algorithms might be beneficial for mining patient information and conducting a rapid, lucrative study
on huge clinical data. In the learning phase, ML algorithms need a large number of data samples to evade
overfitting problems [8]. But, adding more attributes is not obligatory due to the curse of dimensionality [9].

To handle the high-dimensional datasets, only the attributes which are meticulously associated with the
output class should be selected and given as inputs to ML techniques. Feature (attribute) selection is an
important phase in healthcare informatics for finding an optimal subset overhead of attribute space and
solving problems related to the imbalanced dataset to improve the effectiveness of the classification
algorithms. By selecting the best attribute, we can select the most significant disease risk factors. Most
significant attributes selection aids to eliminate redundant and irrelevant attributes, which enables fast and
improved classification performance. In view of that, this study aims to select the most significant risk
factors from a high-dimensional database that aids to predict cardiovascular problems with improved
classification accuracy. The key contributions of this study are four-fold.

1. To realize an efficient and correct prediction of heart disease, we propose a diagnostic model that
takes advantage of the attribute selection approach and a DF classifier.

2. To decrease the size of the attribute space, we propose a significance-based attribute selection
algorithm to calculate the relationship among attribute pairs. The proposed SAS algorithm
implements Enhanced RelieF (ERelief) algorithm to compute the quality (merit) of features. Then,
we rank the attributes based on this merit and we use top-ranked attributes for learning and testing
processes.

3. We propose a BFPA using penalizing attributes classifier to classify the given clinical record of a
patient into normal or heart disease with higher accuracy.
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4. The combined BFPA-SAS algorithm is implemented and the results are compared with other ML-
based classification models in terms of performance measures on a workbench using a real-world
database viz., the Heart disease dataset.

The following sections of this manuscript are organized as follows. In Section 2, we explore related
cardiac disease classification methods. Section 3 discusses the intended classifier in detail. Sections 4 and
5 discuss the experimental arrangement and outcomes achieved from a heart disease dataset. We analyze
the effectiveness of the proposed classifier by relating its performance with other germane classification
approaches. Finally, we conclude this work in Section 6.

2 Literature Survey

Several researchers have suggested various diagnostic models using ML techniques to identify heart
disease. Le et al. proposed an automated cardiac disease classification model by applying an attribute
selection and data processing approach [10]. In this technique, features of heart problems are selected
using their merit and weights are allotted through the infinite latent attribute selection technique. The
authors used an SVM classifier to differentiate a set of the designated features into various types of heart
disease. Ahmad et al. proposed an effective cardiac disease classification model using an ML algorithm
[11]. The authors employed mixed ML approach for effective classification of heart disease by
recognizing the categorical and numerical attributes.

Jackins et al. developed a smart cardiac problem prediction model using NB and RF classifiers to test
whether a person is affected by a cardiac problem or not [12]. The authors analyzed the effectiveness of
the intended system for NB and RF classification algorithms individually. Maheswari and Pitchai
proposed a heart disease prediction system using DT [13]. Ayon et al. used different computational
intelligence techniques including SVM, RF, LR, KNN, DT, NB, and deep neural networks on different
real-world datasets such as Cleveland and Statlog heart disease datasets with numerous assessments
methods [14]. Amarbayasgalan et al. developed an effective classification approach for coronary heart
disease risk using two deep neural networks trained on efficient databases [15]. The authors used a two-
step process to organize the learning database: (1) divide the initial learning database into two groups,
commonly distributed and highly biased using principal component analysis, (2) improve the highly
biased group by variational autoencoders. Then, two deep neural network classification algorithms are
trained by learning data samples individually. In the classification phase, a neural network-based
classification algorithm is employed to identify the cardiac illness by determining the relationship
between attributes and the target class.

Mohan et al. proposed an efficient cardiac problem classification model using a hybrid ML technique
called hybrid RF linear model (HRFLM) to identify cardiovascular disease on the UCI Cleveland dataset
[16]. The HRFLM exploits ANN with backpropagation. Also, it calculates and applies DT entropy for
selecting appropriate features. Absar et al. proposed four ML methods including DT, RF, KNN, and
ABM to identify cardiac problems [17]. A comprehensive algorithm is used to examine the potential of
the germane parameters that participate in identifying the cardiac problem. Also, the study utilized the
cloud computing paradigm, Streamlit to design an automatic and intelligent model for disease
classification. This study demonstrates that the ML techniques will perform a vital role in classifying
heart disease in a more expedient way. Almustafa carried out a comparative study of different ML-based
prediction methods including KNN, NB, DT, SVM, ABM, and stochastic gradient descent used to predict
cardiac disease from the Heart Disease dataset with a minimum number of attributes [18]. Albeit the
classification performance of these heart disease diagnostic systems is enhanced using the aforementioned
ML algorithms, the accuracy, and other computational overheads are still deprived. This motivates us to
develop a new classifier to classify medical data into normal and diseased accurately. The proposed
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model exploits an attribute selection approach by calculating correlation among features and eliminates
unnecessary features based on the rank of the features. A BFPA is proposed to classify the data sample
into normal or diseased with higher classification accuracy.

3 Description of Proposed Method

This research develops and implements a BFPA to identify heart disease in online mode with an
optimum number of decision trees. This work integrates a significance-based attribute selection approach
with the BFPA algorithm to improve the performance of the diagnostic system. SAS algorithm is used to
determine the significance of attributes by applying the concept of correlation between attributes and to
select the optimum subset for learning and testing processes. BFPA selects an optimal number of samples
in learning and testing datasets as well as the number of trees in the forest so as to realize higher
prediction accuracy in classifying imbalanced and multi-class datasets effectively.

3.1 Significance-Based Attribute Selection

Feature engineering is the process of identifying optimal attributes as well as eliminating insignificant
and redundant information from the dataset. Thus, this process reduces the size of the feature space and
enables learners to run fast and proficiently. Sometimes, the performance of the classifier can be
improved; in others, the feature selection process provides a more compact result and consequently, the
interpretation of the target class is easily achieved. This study attempts to select optimal features by
applying the concept of correlation between attributes (i.e., a degree of reliance or predictability of one
parameter with another). The following sections describe the effectiveness of SAS in cardiac disease
identification under various conditions and show that SAS can excerpt suitable as well as most
appropriate features for BFPA classifiers employed in this work.

3.1.1 Estimation of Significance
The input to any MLmethod is a set of n training data samples. Each record in datasetD contains a set of

features such asD1 �D2 � . . .Dm whereDi is the domain of the ith feature. Generally, the training dataset is
defined as a tuple 〈D;L〉where L is the output (class label). For a particular dataset, the term di represents the
value of feature Di. The induction algorithm is used to create a DT for a particular dataset and it is possible to
compute the target class appropriately. This study sets a probability q on the feature
space D1 �D2 � . . .Dm � L. In other words, a feature is useful if it is predictive of or related to the
class; or else it is irrelevant. Kohavi and John formulate the following definitions to describe the
characteristics of the attributes [19].

Definition 1: A feature Di is considered significant to a target output L if Di exists in every Boolean
expression that signifies L and insignificant otherwise.

Definition 2: A feature Di is significant if and only if there is some di and l for which q Di ¼ dið Þ is a
non-negative value as given in Eq. (1).

q L ¼ l Di ¼ dijð Þ 6¼ q L ¼ lð Þ (1)

The featureDi in Eq. (1) is significant if it impacts the value of class label L (i.e., L is dependent on Di).
It is noteworthy that this statement fails to indicate the significance of attributes in the notion of parity.
However, it may be improved as follows. Consider Ei is the set of all attributes excluding Di, i.e.,
Ei ¼ D1; ::;Di�1;Di�2 . . . ::Dmf g. The term ei signifies a value assigned to each feature in Ei.

Definition 3: A featureDi is relevant if and only if there exists some di, l, and ei for which q Di ¼ dið Þ is
a non-negative number. That is,Di is significant if the likelihood of the label (for each attribute) can fluctuate
when the value of Di is excluded as given in Eq. (2).
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q L ¼ l Ei ¼ eijj Di ¼ dið Þ 6¼ q L ¼ l; Ei ¼ eið Þ (2)

Definition 4: A featureDi is relevant if and only if there is some di, l, and si for p Di ¼ di; Ei ¼ eið Þ is a
non-negative value as given in Eq. (3).

q L ¼ l Di ¼ di; Ei ¼ eijð Þ 6¼ q L ¼ l; Ei ¼ eið Þ (3)

The following instance exemplifies all these definitions. Let features D1; D2; . . . :D5 be Boolean. The
attribute space is in such a manner that D2 and D3 are unfavorably correlated to D4 and D5,
correspondingly, i.e., D4 ¼ D2 and D5 ¼ D3. There are only eight possible combinations, and they are
considered equiprobable. The class label (deterministic) is calculated as given in Eq. (4).

L ¼ D1 �D2 (4)

where � symbol signifies XOR function. It is noteworthy that the class label has an equivalent Boolean
function, viz., L ¼ D1 �D4. The features D3 and D5 are irrelevant in the robust possible sense. D1 is
significant, and one of D2, D4 can be excluded, but we must have one of them. The significant and trivial
attributes of each definition are shown in Table 1. From Definition 1, the features D3 and D5 as well as
D2 and D4 are trivial to each other since each one can be nullified by the other. From Definition 2, each
attribute is trivial since, for any label l and feature significance d, two samples agree with the values.
From Definition 3, each attribute is important, as calculating its value alters the likelihood of 4 out of the

8 probable combinations from
1

8
to zero. From Definition 4, the features D3 and D5 as well as D2 and

D4 are irrelevant as they do not provide any useful statistics to E4 and E2, correspondingly.

Albeit the weak confrontational correlations are implausible to occur, domain restrictions provide a
similar result. When a trivial attribute is coded as input to a classification algorithm, it is common to
exploit a local coding, where all the values are denoted by corresponding pointer variables. Definition
4 defines the most significant features. The most significant feature denotes that the feature is
indispensable since it cannot be excluded without degrading the classification performance.

Definition 5: (Trivial or Least significant): A feature Di is trivial if and only if it is not the most
significant, and there is a subsection of attributes E0

i of Ei and there is some di, l, and e0i with
p Di ¼ di; E0

i ¼ e0i
� �

is a non-negative number as given in Eq. (5).

p L ¼ l Di ¼ di; E0
i ¼ e0i

��� � 6¼ p L ¼ l E0
i ¼ e0i

��� �
(5)

Trivial features specify that the feature can rarely participate in predicting the class of the test sample.
Attributes are significant if they are either most or least significant, and are insignificant or else. Insignificant
attributes can never participate in predicting the class label. In the above-mentioned example, feature D1 is
the most significant; featuresD2 andD4 are trivial; andD3 andD5 are irrelevant. If the correlation between

Table 1: Significant and trivial attributes

Significant attributes Trivial attributes Definition

D1 D2;D3; D4;D5 1

– D1; D2;D3; D4;D5 2

D1; D2;D3; D4;D5 – 3

D1 D2;D3; D4;D5 4
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the features in a data sample and the external parameter kð Þ is computed and the association between each
pair of features is given, then the correlation between combined samples having the aggregated features and k
can be calculated from Eq. (6).

Akc ¼ kAkiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k þ k k � 1ð ÞAii

q (6)

here i, k and c represent the component, external parameter, and composite variable, correspondingly. The
term Akc represents the correlation among the aggregated features and k is the number of attributes, and
Aii is the average value of correlation between features. Eq. (6) provides Pearson’s relationship factor in
which all parameters have been normalized. It divulges that the relationship between an external
parameter and a composite is a function of k and the value of the correlation amongst them, along with
the value of the relationships between the features. Eq. (6) is solved by utilizing two descriptive values
for Aki and permitting the values of k and Aii to modify.

From this Eq. (6), we can draw the following conclusions: (i) the higher correlation between the features
and k increases the correlation between k and the composite; (ii) the lower the correlation among the features
reduces the value of the relationship between k and the composite; and (iii) as the number of features in the
composite upturns (assuming the additional features are identical to the original features in terms of their
mean value of correlation with the other features and with k), the correlation between k and the
composite increases. In this study, Eq. (6) is used as a heuristic estimate of the quality of feature
subsections in the data classification. In this case, k becomes L; the problem remaining is to determine
suitable techniques for computing the feature-class correlation and feature-feature correlation.

3.1.2 Attribute Discretization
Generally, ML techniques comprise different types of features such as ordinal, nominal, continuous, and

binary. To have a common base for calculating the correlation, it is essential to have a common approach for
dealing with different forms of features. Discretization is used as a preprocessing task to convert continuous
features into nominal. The redundant attributes should be excluded to achieve effective classification. More
precisely, if the classification performance of a particular feature is dependent on another feature then it can
be eliminated. Several ML methods implement this feature elimination process to improve predictive
performance. In data mining applications, where whole outputs are of the highest relevance, it is not
always clear that redundant features should be eliminated. For example, a rule may give more sense to a
user if an attribute is replaced by a most significant one. Our SAS approach accepts this condition by
providing a report generation capacity. For a particular attribute in the final subset, SAS can list its close
alternatives; either about the total quality of the final subset of the attribute was to be replaced by one of
the alternatives or only correlated to the attribute.

3.1.3 Measuring the Quality Index of Attributes
When all features and the target labels are treated in the same way, the feature-class correlation and

feature-feature correlation in Eq. (6) is calculated. Study on DF construction has given different methods
for computing the merit of an attribute (i.e., how predictive one attribute is of another). Attribute quality
measure define the uncertainty that presents in the set of data related to the values of a particular
attribute. Hence, they are known as impure data samples [20]. A set of data is called pure if each data is
the same with respect to the value of other attribute; the set of data is impure (to some degree) if it varies
with the value of the other attribute. DF induction frequently defines in what way the predictive attributes
are related to the target label. This is based on correlation between the feature and the class in Eq. (6). To
estimate the quality of a feature, the feature-feature correlation is computed. Since DF executes a greedy
simple-to-complex hill-climbing search, their complete inductive bias is used to construct compact trees
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over bigger ones. One aspect that can impact both the dimension of the trees in the forest and in what way it
generalizes to new inputs is the bias inherent in the attribute merit. This is used to select optimal attributes to
check at the nodes of the tree.

Some quality metrics are selected to illegitimately favor attributes with higher values over those with
smaller values. This can cause the generation of larger trees that may overfit the training dataset and poor
generalization. Similarly, if such metrics are used as the relationship in Eq. (6), a feature set
encompassing feature with more values may be designated—a situation that could cause poor
performance by a DF model if it is regulated by such a subset. In a research, Kononenko analyzed the
biases of measures for computing the merit of features [21]. For the correlation among two features, an
estimate is essential that defines the analytical skill of one feature for another and vice versa. This works
implements an algorithm known as Enhanced RelieF (ERelief) to calculate the merit of attributes. ERelief
is a new version of the Relief algorithm.

3.1.4 Identification of Significant Attributes
The Relief algorithm computes an alternative value for each attribute that can be utilized to estimates

feature merit (or quality or significance) to the class label (i.e., output) [22]. The conventional Relief
computes the merit of attribute through a KNN algorithm that selects neighbors (samples) using the
attribute value.

Algorithm 1: ERelief algorithm

Input: attributes (Di), number of top-ranked attributes (n) required,

Output: quality of each attribute

for i = 1 to n do

Execute Relief algorithm and compute feature merit

Sort features based on quality

Exclude features with the lower merits

end for

return last Relief merit of remaining attributes

The merit of each feature is computed based on whether the nearest neighbor (nearest hit, H) of a
randomly selected sample from the same label and the nearest from the other label (nearest miss, M) have
identical or diverse values. This procedure of adapting weights is repeated for m data points. But, the
conventional Relief approach is restricted to handling binary classification applications and had no
technique to manage missing values. Therefore, effective methods are required to solve this issue. This
work implements an ERelief algorithm to compute the merit of features in the SAS process. The
proposed ERelief uses a much weaker iterative method that can simply be used in any other basic relief-
based algorithms. ERelief is a recursive feature exclusion technique. In each iteration, the attributes with
lower merit are eliminated from further computation based on both feature weight updates and distance
calculations.

3.2 Bootstrap Decision Forest Using Penalizing Attributes

After selecting the optimal features using the SAS algorithm, the DF is constructed, which is
demonstrated to be more accurate and fast in producing prediction results. A new classifier called BFPA
is presented in this study. It has the facility for penalizing attributes in the forest creation process.
Contrasting some traditional classifiers found in the literature, BFPA uses a part of the non-class
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attributes. This decision forest creates a set of trees with better accuracy by taking the advantage of the power
of all non-class attributes present in a database. The BFPA employs the classification and regression trees
(CART) as an effective decision-making algorithm. Analogous to the RF classifier, the proposed BFPA
generates bootstrap samples b from the initial training dataset T. The trees are constructed upon these
datasets in which the quality score hð Þ of the attributes defines the optimum point of partition as defined
in Eq. (7).

h ¼ di � hi (7)

here di represents the classification ability and hi indicates the weights of attributes. The primary tree is
constructed with the default weight 1. Then, it is gradually improved in the tree creation procedure. The
height of the tree defines the ultimate weight of the features. Therefore, weight distribution and weight
increasing strategies are considered to improve prediction performance and strong diversity. BFPA will
randomly select the weights for attributes that exist in the latest tree. The weight range (hi) is computed
using Eq. (8).

ha ¼
0:00; e�

1
a

h i
; a ¼ 1

e�
1

a�1þb; e�
1
a

h i
; a > 1

8><
>:

9>=
>;

(8)

In Eq. (8), the term a represents the feature level. The variable b is used to ensure that the range of weight
for different hierarchies is non-overlying. We set a ¼ 1, if the attribute appears in the root node, we set
a ¼ 1. We assign a ¼ 2 if the attribute presents at a child node. Similarly, to define the negative effect
of assigned weights that do not present in the latest tree, BFPA has a method to gradually increase the
feature weights. Assume a feature Di is tested at hierarchy b of Tk�1 th tree with height h and its weight
is hi. The addition of weight ’i is calculated using Eq. (9).

’i ¼ 1� hi

hþ 1ð Þ � a
(9)

The method of adaptive weight allocation allows the DTs to process the unclassified data points. The
decisions of the DTs are integrated and the ultimate decision is computed using a voting mechanism. In
this study, we implement an average of probabilities (AoP) approach to aggregate the decisions of
individual trees and provide a final result. In this study, the target class is designated according to the
maximum mean likelihoods. Let n represents the number of trees in the decision forest
T ¼ T1; T2; . . . : Tnf g with L labels. The tree Ti :Rn ! 0; 1½ �c accepts an input data di 2 Rn and provides
the result as a vector qci h1jdð Þ; qci h2jdð Þ; . . . :qciðhcjdÞ, where qci hk jdð Þ denotes the likelihood assigned
by Ti that input data sample d fits into hk . Consider Dk is the average of probabilities assigned by the
trees for each label. It can be calculated using Eq. (10).

Dk ¼ 1

n

Xn

i¼1
qci hk jdð Þ (10)

Let D ¼ D1;D2; . . .Dc½ � is the collection of average probabilities for L label and d is assigned to the
weight hc if Dk represents the maximum value in D.

4 Performance Evaluations

The effectiveness of the proposed BFPA-SAS model is evaluated by relating its performance with that of
6 similar classifiers such as SVM [10], RF [12], DT [23], LR [24], ABM [17], and HRFLM [16]. In our
evaluation, the experimentation is carried out using an Intel Core i7-4790 CPU with 3.06 GHz, 16 GB
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RAM, and Windows 10 operating system. In this study, Python version 3.8.5 is used for investigation, and
Weka version 3.8.3 is used as a mining tool to carry out the experiments.

4.1 Dataset Preparation

This study uses the Heart disease dataset collected from the UCI repository to evaluate this BFPA-SAS
model. The data samples in this database contain 13 attributes. Table 2 shows the statistical specifics of each
attribute.

The database comprises 1025 medical data comprising 312 females and 713 males of various age groups
where 48.68% (499) records are negative and 51.32% (526) records have cardiac problems. Among the
cardiac patients, 42.97% (226) patients are female and 57.03% (300) patients are male. The database has
been standardized in the range of [−1, +1] before applying our prediction algorithm. Actually, separate
samples for testing do not exist in the dataset. Hence, we have intentionally fragmented the prevailing
database into 70% for training and 30% for testing. To realize a more precise calculation of
the performance of the classifier, the k-fold cross-validation (CV) is used. We set k = 10. This means that
the whole database is split into 10 parts during training. For every iteration, one part is used to test the
proposed model and the remaining parts are combined to build the learning samples. Then, the average
value of standard deviation across all the autonomous trials is computed. It is important to note that a
single repetition of the 10-fold CV cannot generate acceptable outcomes for assessment due to the
uncertainty in data partitions. Hence, each output is calculated on a mean value of 10 runs to achieve
accurate results.

4.2 Evaluation Measures

To demonstrate the effectiveness of the proposed diagnostic system using the BFPA-SAS approach, we
used six imperative evaluation metrics such as prediction accuracy (ACC), specificity (SPE), sensitivity
(SEN), precision (PRE), IoU, and p-value from Wilcoxon statistical test. The effectiveness is computed
regarding the accuracy using Eq. (11).

Table 2: Statistics of heart disease database

Label Attribute Description Average value

F1 cp The type of chest pain (4 values) 3.16

F2 ca Number of major vessels (0–3) colored by fluoroscopy Categorical

F3 oldpeak ST depression induced by exercise relative to rest 1.04

F4 thal normal = 1; fixed defect = 2; reversible defect = 3 Categorical

F5 thalach Maximum heart rate achieved 149.61

F6 trestbps Resting blood pressure (in mm Hg on admission to the hospital) 131.69

F7 age Age in years 54.4

F8 chol Serum cholesterol in mg/dl 246.69

F9 slope The slope of the peak exercise ST segment 1.60

F10 exang Exercise induced angina (1 = yes; 0 = no) 0.33

F11 fbs Fasting blood sugar > 120 mg/dl (1 = true; 0 = false) 0.15

F12 restecg Resting electrocardiographic results 0.99

F13 sex Female = 0; Male = 1 0.68
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ACC ¼ TP þ TN

TP þ TN þ FP þ FN
(11)

In the above equation, TP represents true positive (i.e., the number of records correctly pigeonholed as
cardiac patients); TN represents true negative (i.e., the number of records correctly categorized as a normal
person); FN denotes false negative (i.e., the number of records incorrectly recognized as the normal person);
and FP represents false positive (i.e., the number of normal persons incorrectly classified as the cardiac
patient). The aptitude of a classification algorithm to classify only the appropriate instances is called
precision. It describes the number of positive cases that belongs to the positive class. It is calculated
using Eq. (12).

PRE ¼ TP

TP þ FP
(12)

Sensitivity and specificity represent how the classifier distinguishes positive and negative records.
Sensitivity states the classification rate and specificity represents the false alarm rate as defined by Eqs.
(13) and (14).

SEN ¼ TP

TP þ FN
(13)

SPE ¼ TN

TN þ FP
(14)

The intersection over-union is an evaluation metric employed to compute the enactment of any ML
classifier. For any dataset, the IoU gives the similarity between the standard reference and the classified
data. The IoU metric can consider the class imbalance problem usually present in the dataset. IoU is
calculated by Eq. (15).

IoU ¼ TP

TP þ FN þ FP
(15)

The Wilcoxon statistical test is carried out to find out whether the intended BFPA-SAS model provides a
significant enhancement related to other classifiers or not. This analysis is conducted by analyzing the
impacts of the developed BFPA-SAS model and related to all other classifiers at the level of 5%
significance. If the p-value <0.05, then the null hypothesis is excluded, i.e., there is a substantial
difference at the level of 5% significance. The p-values >0.05 indicate that the difference among the
related values is trivial.

5 Results and Discussion

Attribute significance and the corresponding merit score are calculated for all the employed classifiers
and listed in Table 3 according to the participation in identifying cardiac disease. The same values are
illustrated in Fig. 1 for an improved understanding of the calculation of attribute ranking and the
significance of each classifier. Figs. 1a–1g show the attribute ranking using the significance-based merit
scores for all the applied classifiers. The figure also tends to denote the highly accountable features for
cardiac problem disease. The proposed BFPA-SAS classifier is trained using data samples collected from
the Heart disease dataset and it is tested using testing samples. Table 5 displays the inclusive results
realized by the proposed model. To prove the efficacy of the intended BFPA-SAS classifier, we compare
its enactment with other state-of-the-art classifiers. The numerical outcomes obtained from different
classifiers are listed in Table 6.
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From these results, we observed that the SVM classifier has achieved reasonable prediction enactment
with 76.4% accuracy, 97.6% sensitivity, 61.4% specificity, 64.2% precision, and 63.2% IoU. In the logistic
regression model, the predicted parameters (trained weights) provide a better interpretation of the attribute
significance. It realizes improved classification performance regarding prediction accuracy of 86.7%,
sensitivity of 98.1%, specificity of 76.4%, precision of 78.8%, and IoU of 77.7%. The decision tree-based
classifier achieves better results than LR with 87.7% accuracy, 98.2% sensitivity, 77.9% specificity,
80.4% precision, and 79.3% IoU.

Table 4 lists the 5 most important attributes based on their significance and association value. From the
table, it is observed that chest pain (cp) is selected as the most important attribute by the majority of the
classifiers considered in this study for identifying cardiac disease.

Our proposed SAS approach selects the five most important features in the order of merit score. It selects
chest pain (cp) as the most vital attribute with a merit score of 0.345, ST depression generated by workout
related to relaxation (oldpeak) with a merit score of 0.301, the number of major vessels stained by
fluoroscopy (ca) with a merit score of 0.287, Serum cholesterol (chol) with a score of 0.262, and age with
a score of 0.255. Then, we applied these selected features to six different ML classification algorithms,
SVM, DT, RF, LR, ABM, and HRFLM to identify cardiac disease. The performance of each classifier is
assessed based on the metrics such as accuracy, precision, specificity, sensitivity, IoU, and p-value.

In the RF classifier, a large number of DTs have been generated to construct the forest during the training
process. All the DTs in the forest predict the output for each data sample at the testing phase. When an output
is generated by every DT, then majority voting is employed to make the ultimate output for every testing
sample. Hence, the RF achieves improved enactment with respect to accuracy (91.0%), sensitivity
(93.4%), specificity (85.2%), precision (86.3%), and IoU (85.1%).

Table 3: Attribute significance in terms of merit score of different classifiers

Feature SVM DT RF LR ABM HRFLM BFPA-SAS

cp 0.133 0.242 0.135 0.883 0.041 0.145 0.345

oldpeak 0.101 0.092 0.121 −0.542 0.101 0.123 0.301

ca 0.121 0.154 0.115 −0.714 0.082 0.101 0.287

thalach 0.087 0.088 0.115 0.029 0.183 0.072 0.189

thal 0.056 0.075 0.112 −0.849 0.042 0.094 0.166

age 0.081 0.098 0.087 0.006 0.104 0.056 0.255

chol 0.074 0.078 0.075 −0.005 0.324 0.065 0.262

trestbps 0.021 0.050 0.071 −0.010 0.043 0.034 0.008

exang 0.031 0.064 0.056 −0.945 0.022 0.022 0.001

slope 0.044 0.000 0.049 0.733 0.022 0.011 0.001

restecg 0.014 0.034 0.033 −1.610 0.061 0.001 0.002

sex 0.015 0.024 0.019 0.399 0.001 0.052 0.084

fbs 0.002 0.000 0.009 −0.285 0.001 0.001 0.002
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Figure 1: (a) Feature selection in SVM classifier. (b) Feature selection in DT classifier. (c) Feature selection
in RF classifier. (d) Feature selection in LR classifier. (e) Feature selection in ABM classifier. (f) Feature
selection in HRFLM. (g) Feature selection in BFPA-SAS classifier
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Table 5: The results obtained BFPA-SAS for the selected feature subset of the heart disease dataset

Fold ACC SEN SPE PRE IoU ρ-value

#1 0.930 0.995 0.866 0.900 0.890 0.015

#2 0.944 0.997 0.884 0.919 0.903 0.025

#3 0.948 0.981 0.913 0.883 0.914 0.035

#4 0.961 0.998 0.931 0.880 0.907 0.046

#5 0.963 0.998 0.915 0.888 0.911 0.041

#6 0.910 0.996 0.936 0.965 0.876 0.029

#7 0.962 0.986 0.886 0.896 0.916 0.008

#8 0.947 0.995 0.913 0.905 0.913 0.038

#9 0.948 0.986 0.891 0.941 0.924 0.023

#10 0.954 0.993 0.868 0.931 0.890 0.029

Mean 0.947 0.992 0.901 0.911 0.904 0.029

S.D 0.016 0.006 0.025 0.028 0.015 0.012

Table 4: Selected attributes with top merits score for cardiac disease

Rank SVM DT RF LR ABM HRFLM BFPA-SAS

1 cp cp cp cp chol cp cp

2 ca ca oldpeak slope thalach oldpeak oldpeak

3 oldpeak age ca restecg age ca ca

4 thalach oldpeak thalach thalach oldpeak thal chol

5 age thalach thal age ca thalach age

Table 6: The results gained from the heart disease database regarding evaluation metrics

Classifier Criteria ACC SEN SPE PRE IoU ρ-value

SVM Avg 0.764 0.976 0.614 0.642 0.632 0.045

SD 0.037 0.010 0.054 0.042 0.039 0.020

LR Avg 0.867 0.981 0.764 0.788 0.777 0.044

SD 0.043 0.010 0.031 0.045 0.019 0.020

DT Avg 0.877 0.982 0.779 0.804 0.793 0.051

SD 0.060 0.009 0.025 0.042 0.039 0.020

RF Avg 0.910 0.934 0.852 0.863 0.851 0.047

SD 0.050 0.008 0.041 0.038 0.033 0.008

ABM Avg 0.915 0.950 0.881 0.886 0.847 0.037

SD 0.051 0.011 0.031 0.029 0.018 0.016
(Continued)
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The adaptive boosting method implements an adaptive improvement method and provides better
prediction outputs by assimilating several weak classifiers into a sturdy classifier. It achieves improved
performance in terms of accuracy (91.5%), sensitivity (95.0%), specificity (88.1%), precision (88.6%), and
IoU (84.7%). The HRFLM employs various combinations of attributes and numerous recognized prediction
methods with the voting mechanism. It exploits an artificial neural network with backpropagation. By
applying these techniques HRFLM realizes 92.4% accuracy, 97.1% sensitivity, 88.4% specificity,
885 precision, and 85.7% IoU. Our proposed approach BFPA-SAS outperforms other approaches in terms
of evaluation measures. It achieves superior classification performance with 94.7% accuracy, 99.2%
sensitivity, 90% specificity, 91.1% precision, and 90.4% IoU. The benefits like significance-based feature
selection, removal of irrelevant features, and integration of the power of all non-class attributes present in a
database, BFPA-SAS enable an effective classification approach for the cardiac diagnosing system.

The average and SD values of evaluation metrics obtained from the Heart disease database by each
classifier are demonstrated in Figs. 2 and 3. It can be observed that the BFPA-SAS outperforms all other
methods regarding evaluation metrics. Figs. 2 and 3 also demonstrate that the p-values of BFPA-SAS
related to other classifiers obtained by Wilcoxon’s statistical test. This evaluation is carried out to
determine whether the dissimilarity between the outputs obtained by BFPA-SAS and the outputs of other
classifiers is noteworthy or not. More precisely, the p-value <0.05 denotes that the results achieved by
BFPA-SAS have substantial deviations from those of the other classifiers utilized for performance
assessment. If the p-value >5%, then there is no considerable difference between the results of BFPA-
SAS and the other classifiers. In this study, it can be observed that the p-values <5% in most cases, which
exhibits the improved results of BFPA-SAS. Furthermore, it is interesting to note that the standard
deviation obtained by the BFPA-SAS classifier is lower than that of all the classifiers which demonstrate
that the BFPA-SAS classifier can enable more accurate classification results.

Table 6 (continued)

Classifier Criteria ACC SEN SPE PRE IoU ρ-value

HRFLM Avg 0.924 0.971 0.884 0.880 0.857 0.031

SD 0.017 0.004 0.029 0.038 0.029 0.014

BFPA-SAS Avg 0.947 0.992 0.900 0.911 0.904 0.029

SD 0.016 0.006 0.025 0.028 0.015 0.012

Figure 2: Results obtained by various classifiers in terms of average value of the performance measures
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6 Conclusions and Future Work

Cardiac problem is a deadly disease and it slays lots of individuals annually. The identification of the
cardiac problems is a challenging endeavor. Using ML algorithms, the cardiac problem can be identified
quickly and at a low cost. The growing dimension of health databases has made it a complex process for
physicians to realize the intricate attribute relations and make disease classification complicated. This
work intends a BFPA algorithm to identify the cardiac disease with higher accuracy. This work integrates
a SAS algorithm with BFPA to improve the performance of the diagnostic system in identifying cardiac
illness. The proposed SAS algorithm is used to determine the correlation among attributes and to select
the optimum subset of feature space for learning and testing processes. BFPA-SAS selects an optimal
number of learning and testing samples as well as the density of trees in the forest to realize higher
prediction accuracy effectively. The efficiency of the proposed classifier is cautiously assessed on the
Heart disease database by relating its enactment with many advanced classifiers in terms of ACC, PRE,
SEN, SPE, and IoU. The empirical outcomes demonstrate that the developed approach outdoes other
approaches with superior performance. Additionally, Wilcoxon’s rank-sum test is carried out to determine
whether our classification approach provides a significant enhancement related to other classifiers or not.
Accordingly, we can conclude that the integration of SAS and BFPA is the better data stream
classification model related to other state-of-the-art classifiers. However, the proposed method does not
consider the false alarm rate including false postive and false negative rate as well as timing complexity
of the proposed classofier. We intend to analyze the performance of this proposed model in terms of other
evaluation metrics including false alarm rate and processing oevrheads in future.
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