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Abstract: Accurate handwriting recognition has been a challenging computer
vision problem, because static feature analysis of the text pictures is often inade-
quate to account for high variance in handwriting styles across people and poor
image quality of the handwritten text. Recently, by introducing machine learning,
especially convolutional neural networks (CNNs), the recognition accuracy of
various handwriting patterns is steadily improved. In this paper, a deep CNN
model is developed to further improve the recognition rate of the MNIST hand-
written digit dataset with a fast-converging rate in training. The proposed model
comes with a multi-layer deep arrange structure, including 3 convolution and acti-
vation layers for feature extraction and 2 fully connected layers (i.e., dense layers)
for classification. The model’s hyperparameters, such as the batch sizes, kernel
sizes, batch normalization, activation function, and learning rate are optimized
to enhance the recognition performance. The average classification accuracy of
the proposed methodology is found to reach 99.82% on the training dataset and
99.40% on the testing dataset, making it a nearly error-free system for MNIST
recognition.

Keywords: MNIST dataset; deep learning; convolutional neural network;
handwriting recognition

1 Introduction

The Modified National Institute of Standards and Technology (MNIST) handwritten digit database, one
of the most important areas of research in pattern recognition, has excellent research and practical value.
Generally speaking, handwriting classification techniques can be divided into either statistical feature-
related methods or structural feature-related approaches [1–7]. The former is usually caused by features
other than the beginning and end points, intersections, contours, and unevenness; whereas the latter is
mostly due to the density and feature area of handwritten pointers, and it is easier to mitigate the impact
of irregular writing. However, traditional image processing algorithms focusing on static feature analysis
at pixel level meet tremendous difficulties in MNIST handwriting recognition due to the two primary
causes: 1) the glyph information for Arabic numerals is scarce and may share common features over
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different numbers; 2) the handwriting varies dramatically from person to person, and some features may only
occur under very specific but rare scenarios. These challenges mandate the use of dynamic information, such
as the coordinates of the stroke trajectory point [8–13]. In recent years, there is a growing interest in using
prevailing machine learning (ML) techniques in handwriting classification with outstanding performance and
generalization capabilities. By combining aforementioned typewritten features with traditional classification
methods, such as k-Nearest Neighbor (k-NN) and histogram of dimensional gradient (HOG) features [5,11],
statistical classification model [14–18], support vector machine (SVM) [19–21] and clustering [22,23], the
classification and recognition accuracy has been tremendously promoted.

In comparison to these approaches that rely on manual feature extraction, convolutional neural network
(CNN)-based deep learning (DL) architectures, which is also known as deep neural networks (DNNs), can
automatically extract the implicit correlation within and amongst data to find useful patterns [5,24–26].
DNNs can process both shallow and deep features of the data in a thorough manner to produce more
abstract and higher-level features with stronger semantic information [27–32]. Additionally, they are
easier to design, modularize, and modify for different applications. By replacing the fully linked layer
section of CNNs by Gated Recurrent Units (GRU), Vantruong Nguyen merged CNNs and GRU and
achieve a recognition accuracy of up to 99.21% [20]. Typically, in order to achieve a higher recognition
rate, more complex algorithm is required, which demands more computational time and higher space
usage. However, the increasing number of hidden layers in the DNN may degrade the network’s capacity
for generalization. As a result, using CNNs to accomplish error-free MNIST recognition remains difficult,
and there really is no methodology which can reach a 100% classification performance for distinct
character traits.

This paper is organized as follows. The key CNN design method is introduced in Section 2, focusing on
the design of feature extraction, classification method, hyper-parameter optimization, over-fitting prevention
strategy, and model verification strategy. The model structure design and optimization analysis, particularly
the experimental results of model performance validation, are discussed in Section 3. Finally, the fourth part
summarizes the paper.

2 The Proposed Approach for MNIST Handwritten Digit Classification

The core steps of CNN-based recognition model primarily include extraction, classification yield, and
backpropagation to alter parameters in the network. The overall algorithm design process is presented in
Fig. 1, where training, validation and testing share the similar process, except for using different datasets
and the trained parameters are fixed during the validation and testing process. The validation samples are
utilized for cross-validation at the end of each training epoch/iteration. In order to maximize CNN
classification accuracy and highlight extraction for MINST recognition, a multi-layer deep arrange
structure is constructed upon Keras and/or Tensorflow, which includes three convolution and activation
layers for feature extraction and two fully connected layers (i.e., dense layers) for classification (Fig. 2).
The optimization strategy of hyperparameters (e.g., batch sizes, kernel sizes, batch normalization,
activation function, dropout rate, etc.) is illustrated afterwards to get the best performance from the model.

2.1 Deep Neural Network Design

CNNs rely on multiple convolutional layers and non-linear layers (e.g., activation layer) for feature
extraction, and key features can be retained through feature reduction techniques (e.g., max pooling, etc.).
Detail steps can be specified as follows: 1) convolution layers can be employed multiple times throughout
the DNN; each convolution layer can be individually implemented by the Keras/Tensorflow built-in two-
dimensional (2D) convolution function, with appropriate kernel size, stride steps, input and output
channels; “Padding” is set to ‘SAME’ so that the output of the convolution function remains the same
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size as the input; 2) initialize each neuron/kernel in each CNN layer with a weight matrix and a bias scalar; to
avoid the vanishing gradient problem and break the symmetry of neurons, a truncated normal distribution
with a standard deviation of 0.1 is employed to initialize the weight matrix; in addition, for sake of
avoiding the “death” of the neuron node (i.e., the output is always 0), a small positive number (e.g., 0.1)
needs to be used to initialize the bias term; 3) batch normalization may be exploited to regulate the
convoluted results within a certain range, to facilitate the following Rectified Linear Unit (ReLU) as the
activation function to extract the features; 4) max pooling and/or other data reduction techniques are
optionally applied to reduce the data dimension and computational cost, as well as to retain the key features.

The output of the last convolutional layer includes the extracted features, which are flattened into a one-
dimensional tensor and then forwarded to two fully connected (i.e., dense) layers. A Softmax layer is
connected after the last fully connected layer to predict the likelihood of each category for each sample.
The class with the highest probability is chosen as the sample’s predicted category.

In this study, three convolution layers are exploited for feature extraction (Fig. 2). The first layer is
equipped with a kernel of 3 × 3 and a stride of (1, 1), while the other two use a kernel of 6 × 6 and a
stride of (2, 2) for two main purposes: 1) speeding up the converging rate with larger kernel size in
deeper layers, and 2) use larger stride as an alternative to the max pooling layer for data dimension
reduction. After three convolution layers, each of which is accompanied with a batch normalization and
an activation layer, a total number of 1568 features are extracted and fed to two dense layers for
classification. Finally, the output layer has 10 nodes for the 10 different number digit categories.

2.2 Model Hyperparameter Optimization Strategy

Once a CNN backbone architecture is established, detailed hyperparameters (e.g., batch size, learning
rate, etc.) need to be tweaked to determine the best shape of this CNN model to fit the training and
validation dataset, with a hope of achieving the best performance (e.g., accuracy, loss, etc.) upon other
general data of the same kind.

2.2.1 Batch Size Analysis and Selection Method
The training batch size frequently has a significant impact on the training outcomes. Too small batch size

results in long training time and even may generate severe gradient oscillations, which will make the models
converge slowly or even impossible. In contrast, too large value may lure the model to converge to a local
rather than a global optimal value. Consequently, it is challenging to get the ultimate ideal solution through
training. Thus, by appropriately adjusting the batch size, it is possible to effectively increase memory
utilization, increase the parallel efficiency of high-dimensional matrix multiplication, reduce training time
and the likelihood of gradient oscillation, pushing the model convergence to the optimal results.
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Figure 1: The proposed DL-based data processing diagram
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Empirically, the global batch size can be set as Batch_size = 128*Number of Accelerators (e.g., parallel
network replicas); tf.data will automatically split the global batch size among all replicas.

Figure 2: The architecture of the designed CNN model
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2.2.2 Learning Rate Decay Technique
When an alternative mini-batch gradient descent method is available for training because of the

intriguing project’s noise, employing a fixed learning rate leads the error to decline and evolves toward
the local minimum, but may eventually oscillate around rather than truly converges at the global optimal
point. Thus, the learning rate should be gradually decreased throughout the training process to minimize
this problem. The research uses the attenuation of learning rate to strike a compromise between rapid
convergence and stability. A relatively large initial training step size can be utilized to speed up the
training convergence at early stage, and then it is gradually decreased to approach the global optimum, or
swing back and forth in the vicinity of the optimum, as the strategic alignment and hidden layers are
intensified to improve the training accuracy at convergence. This prevents gradient descent from falling
into local minimum values or even gradient divergence.

2.2.3 Techniques to Prevent Overfitting
Generally speaking, deep learning networks are susceptible to overfitting problems: the model’s

performance on both the training and validation datasets improves over the training iterations, but drops
on the validation dataset after a certain number of iterations while it continues to rise on the training
dataset. This indicates that the model fits the training sample too closely, limiting its generalizability. In
addition, encoding sample labels (e.g., one-hot encoding) may unnecessarily increase the difference
between the full probability and zero probability categories, causing the prediction model to rely
excessively on the predicted category, thereby increasing the likelihood of overfitting.

Common approaches to ameliorate this issue includes 1) reasonable data fitting and 2) using one or more
“Dropout” layers to nullify a random portion of the trained parameters in the CNN after each training epoch.
This work analyzes the incorrect predictions on the dataset to avoid overfitting and achieve the highest
classification accuracy. Whenever the model’s performance on the validation set begins to deteriorate
during the training process, the model’s training is interrupted and the trained parameters are preserved to
avoid the overfitting induced by excessive training. By doing so, a model with the minimum validation
loss and potentially better test outcomes can be achieved. In this study, if the validation loss stops
dropping and starts to converge or increase in two consecutive training epochs, the training process
should be stopped, and the epoch when the local validation loss is the lowest, or validation accuracy is
the highest, must be noted to ease the process of reloading model parameters for model deployment.

2.2.4 Model Validation and Evaluation
In order to evaluate the built model, the cross-entropy, Eq. (1), is employed as the COST function to

quantify the loss of the model outcomes. The index is minimized over the training process to improve the
recognition ability of the model.

Hy0 ðyÞ ¼ �
X

i2^ y
0
i logðyiÞ (1)

where y and y0 are the classifications of model prediction and the real classifications (i.e., ground truths or
labels) of samples respectively, and i 2 ^ is the sample indicator corresponding to the dataset. The
accuracy rate and losses are calculated separately for each category, and these two indicators could
describe the efficacy of the proposed model more comprehensively.

3 Experiments

3.1 MNIST Handwritten Digit Dataset

MNIST database is one of the foremost classical imaging datasets within the field of machine learning,
and is broadly utilized for benchmarking in image classification. The MNIST database contains
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60,000 training samples and 10,000 testing samples (Table 1), each consisting of a 28*28 pixel grayscale
image of a handwritten Arabic digit. The number sample in each image is normalized/standardized and
centered. The 60,000 training samples are further divided into 55,000 training dataset and
5,000 validation dataset.

3.2 Model Hyperparameter Optimization

i) Placeholder and parameter setting.

A placeholder is created for each input image and its label: X represents the one-dimensional (1*784)
vector associated with a 28*28 image, and Y represents the corresponding label (i.e., the ground truth of
classification). Subsequently, the one-dimensional image vector is transformed into a two-dimensional
matrix, i.e., the image data vector of 1*784 is converted into the original structure of 28*28. Since the
MNIST is a grayscale image dataset, the color channel for each image is 1 (3 for RGB images). For
training and testing with different numbers of images, the conversion number is set to −1, indicating an
indefinite number, for automatic matching of the number of images.

ii) The design of convolutional layer and activation layer.

In the first layer, the size of the convolution kernel is set to be 3 × 3, and the weight and bias terms are
initialized. The output channel is 12 to extract 12 different features. Then, the inner product of the
convolution kernel and the input is computed, and the bias term is added to the convolution result. A
batch normalization layer is employed to regulate the convolution results, followed by an ReLU
activation function/layer for non-linear processing and feature extraction. The second layer is also a
combination of convolution, batch normalization and activation functions, but with a kernel size of
6*6 and a stride of (2, 2) in the convolution layer, which reduces the image tensor size to a half, i.e.,
14*14. In addition, the number of features is increased to 24. The third layer is similar to the second in
kernel size and stride, but is extended to 32 features in total. In the end, the output of the third layer is
flattened to a 1* (7*7*32) = 1*1568 tensor, fed to the following fully connected layers for classifications.

iii) Fully connected layers and dropout layer for classification and overfitting reduction.

The first fully connected layer has 200 hidden nodes, and an ReLU activation function is applied
afterwards to make the input with bias terms have nonlinear characteristics. The Dropout is employed
during training to randomly discard 40% of the trained neurons (i.e., weights and biases) to reduce
overfitting. The output of the second dense layer is connected to the Softmax classifier to obtain the
probability of each category of classification, and the class with the highest probability is selected as the
predicted class of the corresponding sample. When the neural network model is validated, all nodes are
retained to obtain the best predictive classification performance.

3.3 Learning Rate Attenuation and Classification Analysis

As aforementioned that a variable learning rate should be considered to achieve the optimum training
outcomes, in this paper, exponential decay is used as the learning rate decay method. The initial learning

Table 1: MNIST dataset

Dataset object Sample amount Role

Data_sets.train 55,000 Training dataset

Data_sets.validation 5,000 Validation dataset

Data_sets.test 10,000 Testing dataset
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rate is set at 0.001 and the learning rate decay factor is set at 0.99. As a result, the recognition accuracy of the
model has been significantly improved by 2.9% on the test set, while the loss has been drastically reduced.
The improvements in accuracy of various numbers/classes are also observed. This shows that the learning
rate decay can effectively improve the recognition accuracy of the MNIST handwritten dataset.

3.4 Model Optimization and Performance Evaluation

By defining the cross-entropy loss function and a small value of the initial learning rate (i.e., 1*10−3), the
Adam optimizer is used to automatically to minimize the loss function during the training process. In this
process, the loss will be backpropagated to adjust the network parameters to better fit the training sample
data. Here, the batch size is set to 1000, which means 1000 training samples are sent to the model for
training with random gradient descent. The proper batch size can reduce computational overhead while
generalize the overall characteristics of the dataset. The dropout rate is set to 0.4. One can see that the
training loss and accuracy converge within 10 iterations (Table 2) and each iteration uses 5000 validation
samples for cross-validation (Table 1 and Fig. 3). Some of the predicted digit with recognition rate are
shown in Fig. 4. Over the training process, the model’s classification accuracy improves, the loss
decreases, yet the best validation performance is achieved at Epoch 8 (Fig. 3). Visualization of the
training and validation dataset is provided in Fig. 5, and some of the validation digits with incorrect
predictions are provided in Fig. 6.

The testing dataset is finally examined to verify the entire training and validation process, and achieve an
accuracy of 99.40% and loss of 0.0171. The performance of the model on the test set resembles the training
results. On the other hand, the accuracy rates vary on different digits. For example, 97% of number “6” are
correctly classified while “1” reaches 100%. Fig. 7 displays figures that are challenging to recognize
correctly. Additionally, the convolution kernels provide the feature set of the input pictures, and they can
be used to visualize the characteristics of the input images. However, there is currently no efficient
analysis method for thoroughly evaluating and modelling the significance of each neuron in convolutional
layers because it contains lots of high-dimensional elements which are difficult to comprehend intuitively.
Nevertheless, assessing the features extracted by each convolution kernel by analyzing the model with a
larger sample and displaying the output of each layer is still beneficial. The classification accuracy of the
proposed structure is compared with other state-of-the-art models (Table 3), and has demonstrated
significant improvement in classification accuracy.

Table 2: Model training accuracy, loss and learning rate

Epoch Training accuracy Training loss Learning rate

1 0.9598 0.1311 1.00e-02

2 0.9874 0.0400 5.01e-03

3 0.9927 0.0238 2.52e-03

4 0.9950 0.0153 1.20e-03

5 0.9966 0.0115 6.25e-04

6 0.9975 0.0090 3.12e-04

7 0.9980 0.0078 1.56e-04

8 0.9982 0.0072 7.81e-05

9 0.9981 0.0068 3.90e-05

10 0.9939 0.0070 1.95e-05
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Figure 3: Training and validation accuracies

Figure 4: Some of the predicted digit with recognition rate
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Figure 5: Visualization of the training and validation dataset

Figure 6: Some of the validation digits with incorrect predictions

Figure 7: (a) Numbers with high recognition rates; (b) Numbers with low recognition rates

Table 3: Comparison with the benchmark approaches

Methods Train. acc. Train. loss Val. acc. Val. loss Test. acc. Test. loss

Googlenet [33] 0.98 0.0064 0.97 0.0029 0.98 0.0014

InceptionV3 [34] 0.95 0.0020 0.95 0.0042 0.96 0.0013

Xception [35] 0.96 0.0035 0.96 0.0141 0.96 0.0019

VGG16 [36] 0.96 0.0065 0.97 0.0391 0.97 0.0024

Basic CNNs 0.98 0.0237 0.97 0.0578 0.98 0.0901

Proposed 0.99 0.0260 0.99 0.0174 0.99 0.0136
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4 Conclusions

This study elaborates the details of developing a light-weight DNN for handwriting digital recognition/
classification using the MNIST dataset. The CNN-based backbone architecture and the methodology of
numerous hyperparameter optimizations, including batch size, learning rate, etc., are explored in detail to
enhance the training and testing outcomes. The developed neural network model is evaluated upon Keras/
Tensorflow framework, and the overall accuracy of the developed model can reach 99.4% on the MNIST
dataset, compatible with the results from other state-of-the-art models.
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