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Abstract: Renewable energy has become a solution to the world’s energy
concerns in recent years. Photovoltaic (PV) technology is the fastest technique
to convert solar radiation into electricity. Solar-powered buses, metros, and
cars use PV technology. Such technologies are always evolving. Included in
the parameters that need to be analysed and examined include PV capabilities,
vehicle power requirements, utility patterns, acceleration and deceleration
rates, and storage module type and capacity, among others. PVPG is intermit-
tent and weather-dependent. Accurate forecasting and modelling of PV sys-
tem output power are key to managing storage, delivery, and smart grids. With
unparalleled data granularity, a data-driven system could better anticipate
solar generation. Deep learning (DL) models have gained popularity due to
their capacity to handle complex datasets and increase computing power. This
article introduces the Galactic Swarm Optimization with Deep Belief Network
(GSODBN-PPGF) model. The GSODBN-PPGF model predicts PV power
production. The GSODBN-PPGF model normalises data using data scaling.
DBN is used to forecast PV power output. The GSO algorithm boosts
the DBN model’s predicted output. GSODBN-PPGF projected 0.002 after
40 h but observed 0.063. The GSODBN-PPGF model validation is compared
to existing approaches. Simulations showed that the GSODBN-PPGF model
outperformed recent techniques. It shows that the proposed model is better at
forecasting than other models and can be used to predict the PV power output
for the next day.

Keywords: Photovoltaic systems; solar energy; power generation; prediction
model; deep learning

1 Introduction

The advancement of the universal economy constantly increases demand for electricity and has
a great influence on the atmosphere. The enormous utilisation of fossil fuels results in severe issues
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relating to greenhouse gas discharges, which also result in global warming and metrological changes
across the globe [1]. In this regard, a growing amount of electrical energy has been produced from
renewable energy sources in recent decades, with photovoltaic (PV) energy being the primary source,
with a higher penetration level in the energy marketplace [2]. Photovoltaic (PV) power generation
is a possible source of electricity in many regions. High penetration of PV energy complicates grid
operations and planning due to its intermittent nature. Short-term projections are useful in power
generation planning and in power markets where PV power and energy storage can be sold or hedged.
Accurately predicting how much power will be produced by PV is important for making the energy
market work better, cutting down on reserves, and keeping the system safe.

PV power is particularly auspicious because of its availability and potential. The aggregate volume
of solar energy which the Earth gets from solar radiation at any single instant is almost 1.8 x 1011
MW, which could completely address the demand for human action worldwide [3]. Precise prediction
of PV power generation (PVPGQG) is very significant because it could find a decision-making device
in power system processes [4]. Certainly, it is helpful for power systems as well as power providers.
The output efficiency and performance of a PV system are affected by the solar tracking system, sun
angle, shade or partial shading, dust, and cell operating temperature. The impact of these factors on
the practical operation of the PV system has received scant attention. Throughout the development of
the PV industry, PVPG forecasting has been an important subject of substantial research.

Data transmission costs should be considered for renewable energy estimates and grid connection
needs. A solar PV power generation system must record power generation, real-time power, fault
warnings, etc. through network transmission. Uninterrupted data transmission costs more, which is an
economic issue for solar PV owners. To save on data transmission costs, the electricity operator’s metre
data management system (MDMS) delays obtaining solar PV power generation information. This
strategy reduces data transmission costs but complicates solar PV power forecasts. Power suppliers
must acquire accurate data regarding PVPG to set up dedicated marketable offers, thus increasing
profit and decreasing production rates. In the meantime, it could further alleviate the adverse influence
caused by PV power uncertainty, thereby assuring the reliability and stability of the power system [5].
However, PV output is primarily determined by the strength of solar irradiance and the variety of
weather conditions, which can be generally uncontrollable and uncertain [6].1t is impossible to predict
or control the output of a PV system because of the unpredictable nature of solar irradiation and a
wide range of weather conditions. Because of the erratic nature of the weather, a photovoltaic system’s
output changes constantly throughout time. The PV system power generation changes dynamically
with time because of the changeability of weather conditions. Thus, a stable and accurate prediction
of PVPG is significantly tougher and remains a challenging one. It is of the utmost importance to
have an accurate prediction of photovoltaic power generation (PVPG), as this can serve as a tool
for decision-making in the operations of power systems. It is to the advantage of both the power
suppliers and the power systems. To establish specific business offers, power suppliers need to gather
exact information about PVPG. This will allow them to lower their production costs and increase their
profits. In the meantime, it may also offset the negative impact that is generated by the unpredictability
caused by PV power, which ensures the stability and reliability of the power system. However, the
amount of electricity that can be generated by a PV system is mostly determined by the amount of
solar irradiation as well as several different meteorological conditions. These aspects of the weather are
typically unpredictable and difficult to control. The way a photovoltaic (PV) system makes electricity
changes over time because the weather is always changing.

Numerous forecasting approaches are suggested in the literature related to ML for solar PV
generation [7]. Fig. 1 illustrates the process of a solar PV power generation system. However, no single
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technique is capable of performing precisely on all of the cases examined. Converting from a single
solar PV plant (dataset) to another suggests numerous kinds of changeability for ML techniques.
The result of distinct methods utilising similar power and weather data or a similar technique with
dissimilar internal hyper-parameter scenery might result in distinct estimations. The methods were
stated to have volatility problems, that is, a minor variation in input data might lead to substantial
differences in the estimation values, which influence the model’s reliability [8]. The modelling could
not be able to produce similar outcomes on a new dataset due to its uncertainties in the PV system
properties, long-term effects, data collection faults, and system output results [9]. Solar photovoltaic
(PV) cells directly convert sunlight into electricity. The process of transforming light (photons) into
electricity is referred to as PV (voltage). Each solar panel contains approximately 60 cells, although new
technology is increasing efficiency, and many panels now contain XX cells. When the sun shines on a
solar panel, the energy is absorbed by the PV cells in the panel. This energy generates electrical charges
that move in reaction to an internal electrical field in the cell, resulting in the flow of electricity. As a
result, during the last decade, an increasing amount of electricity has been generated from renewable
energy sources, with photovoltaic (PV) energy being a prominent source with a high penetration rate
in the energy market. Because of its potential and availability, PV electricity is extremely promising.
At any given time, the Earth gets about MW of energy from the sun in the form of solar radiation,
which is enough to meet the needs of everyone on Earth.
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Figure 1: Process in solar photovoltaic power generation system
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DL has been acquiring interest in recent times because of its capability in managing complicated
data and the developments in computational power. In contrast, ML methods are highly stable on
new datasets as varying the input to some extent does not influence the original hypothesis studied by
the algorithm [10]. Numerous substructures of ANNs were implemented in a successful manner for
forecasting renewable energy, from simpler ANN networks to more complicated methods such as self-
organizing maps, LSTM networks, and auto-encoders. Self-organizing maps and Auto-encoder are
unverified DL methods for encoding and classifying data, while LSTM network systems are utilised
for time-sequence data prediction as a supervised learning methodology.

This article introduces a new Galactic Swarm Optimization with Deep Belief Network based
Photovoltaic Power Generation Forecasting (GSODBN-PPGF) model. The presented GSODBN-
PPGF model majorly focuses on the prediction of PV power output generation. The presented
GSODBN-PPGF model applies a data scaling technique to normalise the data into a uniform format.
In addition, the DBN model is applied to forecast the PV power generation output. To boost the
forecasting output of the DBN model, the GSO algorithm has been utilized. The experimental
validation of the GSODBN-PPGF model is assessed against existing methods.

2 Literature Review

The researchers in [! 1] suggest a hybrid method which incorporates ML techniques with Theta
statistical methodology for a more precise estimation of upcoming solar power production from
renewable energy machineries. The ML techniques involve gate recurrent unit (GRU), Auto Encoder
long-short-term memory (Auto-LSTM), LSTM, and a newly presented Auto-GRU. For advancing
the precision of the suggested Statistical Hybrid Model (MLSHM), ML uses 2 different methods: data
diversity and structural diversity. In [12], an innovative short-term solar power estimation method is
provided by using the learning capability of an LSTM-related DL approach and the idea of wavelet
transform (WT). The LSTM with dropout related DL method has been proposed for predicting future
solar energy production values over different time horizons.

The researchers in [13] provide an easier but efficient univariate method for predicting solar
PV energy output many steps ahead. The goal is to maintain the higher level of preciseness of ML
techniques for several steps ahead of estimation. At every prediction level, the suggested method
initially acquires an innovative depiction of the novel time sequences on the basis of the resampling
process. A separate prediction method was then applied for single-step estimation on the re-sampled
time sequences. Theocharides et al. [14] evaluate the execution of distinct ML methods to estimate
the power output of PV modules. In particular, a diversity of approaches has been seen, inculcating
support vector regression (SVR), regression trees (RT), and ANNs with different features and hyper-
parameters.

In[15], an enhanced applicable stacked ensemble method (DSE-XGB) was recommended by using
2 DL techniques such as LSTM and ANN as base methods for solar energy prediction. The estimations
from those base methods have been validated with the use of an extreme gradient boosting technique
for enhancing the precision of the solar PV production forecast. Zazoum [16] uses ML techniques to
examine the relationship between solar photovoltaic (PV) power and a variety of input variables. Two
diverse ML techniques like Gaussian process regression (GPR) and support vector machine (SVM)
are compared. Dairi et al. [17] plan to offer effective short-term forecasting of solar power generation
by utilising the Variational AutoEncoder (VAE) method. Implementing the VAE-driven DL method
is anticipated to enhance forecasting precision due to its appropriate outcomes in flexible nonlinear
approximation and time series modelling.
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For the day-ahead forecasting of solar power output, Wang et al. [18] created a model based on
the combination of CNN and LSTM that, when the input sequence is increased, exhibits superior
forecasting accuracy than either method alone. More accurate hour-ahead solar power forecasting
has been demonstrated by a physical constrained LSTM model (PC-LSTM) than by statistical
and traditional machine learning models. This method’s predicting accuracy outperforms other
benchmark approaches by 18.34%. Using actual field data, five-minute power production predictions
have been made for a variety of PV technologies [19]. To maintain model robustness, none of this
research has included deep learning-based PV power estimates for different PV power plants. To the
authors’ knowledge, there is also a lack of a comparison between the deep learning approach and
the regression, neural network, machine learning, and hybrid (ANFIS) methods put together. So, it is
still possible to make a deep learning method that can predict the power output of a PV plant over a
four-year period.

Olatomiwa et al. used a similar model in [20] to investigate the potential of support vector
regression (SVR) for predicting solar radiation in Nigeria. They concluded that for estimating solar
radiation at the study site, SVR with a polynomial basis outperforms SVR with a radial basis function
and other approaches. To forecast the monthly mean horizontal global solar radiation, they suggested
a hybrid machine learning strategy that combines a support vector machine (SVM) with a firefly
algorithm (FFA). They concluded that the created SVM-FFA model might be rated as an effective
machine learning method for precisely predicting horizontal global solar radiation. The approach,
though, works best with linear data—not multivariate data.

The organisation of this paper is as follows: In Section 2, it gives an overview of the deep belief
network approach. In Section 3, the proposed method and the solution procedures are described. Sec-
tion 4 presents the test results obtained by using the proposed and other methods under comparison.
It is followed by the conclusions in Section 5.

3 The Proposed Model

In this study, a novel GSODBN-PPGF technique has been developed for the prediction of
PV power output generation. The presented GSODBN-PPGF model primarily utilised a min-max
normalization-based data scaling technique to normalise the data into a uniform format. In addition,
the GSODBN model is applied to forecast the PV power generation output.

3.1 Data Preprocessing

Several spikes and non-stationary modules to predictive technique input data represented that
the PV power production method was unsuitable for training and that this is an effort for higher
forecast error. While the problems continuously occur, one of the techniques employs meteorological
data and historical PV power output data as inputs, which are variable and unpredictable owing to
meteorological conditions [21]. So, pre-processing of the input data could diminish the computational
cost and unsuitable training issues, enhancing the accuracy of the model significantly. The accumulated
data of PV power output involves night time values, in which case there is an existence of multiple zeros
in the PV power output. The data sparsity issue arises since so many zero values result in an unwell
trained method, influencing the execution of the method. So, the lack of data in the input data is seen
as an important factor that could affect how accurate the predictions are.

The generation of electrical power by a photovoltaic (PV) system shifts in a dynamic manner
with the passage of time due to the changeability of various meteorological conditions. As a result,
developing a PVPG forecast that is both accurate and consistent is extremely complex and will likely
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continue to be so. The dataset utilised contains variables that are distinct in scale. In similar cases,
whereas distinct variables may be entirely distinct scales, they may lead to false prioritisation from the
method of any variable. Therefore, the feature scaling of the dataset was executed to help accelerate
the computation under this technique and improve the convergence rate. If the dataset was trained, it
would need fewer tests.

The purpose of processing data entries that fall within a variety of ranges into a single consistent
range is to achieve the goal of reducing the amount of error caused by regression while keeping the
correlation among the datasets intact. For this examination, the min-max normalisation technique is
utilized. This method confines the data to falling somewhere in the range of zero to one. Normaliza-
tion, which is executed at this point, is a general pre-processed approach that decreases the dispersion
of gathered data. Every piece of data has been rescaled in a specific range from zero to one. The dataset
has been normalised by calculating:

X — Xmin

X =t (1)

Xmax — Xmin
where as x refers the observed value and x’ signifies the normalized value.

The works revealed that normalised data has a significant impact on the outcome of several
techniques, as the main goal of normalised data is to ensure the quality of data before it can be fed
into many techniques.

3.2 DBN Based Prediction Model

Once the input data is pre-processed, the DBN model is applied to forecast the PV power
generation output. The DBN comprises multiple layers of neural networks that can be classified into
hidden and visible layers [22]. The hidden layer is utilised for extracting features, and the visible layer
is utilised for accepting inputs. The DBN is considered a DNN model that is comprised of single-layer
BPNN and multi-layer unsupervised RBM networks. The DBN is layer-wise trained, which initialises
the vector in the first unit, viz., layer-wise mapping from the initial layer. The v visible layer unit of
DBN attains the /2 hidden layer unit via mapping, then the /# The hidden layer unit would be the visible
layer unit of the following DBN, and the hidden layer unit would be further attained via mapping, and
so forth until the training of multi-layer DBN. During the training process, the weight of all the layers
is upgraded based on the relationship between the hidden and visible layers. The error that has been
reconstructed is sent from the first layer of the DBN to the next layers.

Likewise, the reconstructed error of the secondary layer of the DBN is transmitted to the next
layer, and so forth until it reaches the final layer of the DBN. The DBN is layer-wise trained. It
cannot guarantee that the eigenvector of the entire network layers is mapped nonlinearly to the best
via training, but it only guarantees that the weight of all the layers is mapped non-linearly to the
eigenvector of the present layer to accomplish the best. Thus, the output dataset of DBN is inputted
to the BPNN for learning the trained dataset, besides the learning rate ¢ and module parameter
0 = (W,b,c) are attained afterward the pre-training model. Next, the o; error gradients of each v,
visible layer element can be computed by:

o= 0,1 -0)(e — 0, (2)
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In Eq. (2), the desired output is represented as e; and the output unit of the visible layer is denoted
by Q.. The o; error gradients of each A, hidden layer element is calculated by the following expression:

0,=0,(1-0)> b,0h,. A3)

As per the abovementioned error gradient value, the concrete structure durability predictive
module is established. The gradient at time ¢ is represented as g, and the expected value coefficient
is denoted by the term C.

E=0+0-y)g, 4)

In the durability predictive module of concrete structure, the training and testing dataset are
inputted for model training, and output layer can be denoted by P.

P, =ECH, (5

In Eq. (10), the state of the DBN memory model is characterized by the term C and the output
of memory model is denoted as H. Fig. 2 depicts the framework of DBN technique.

A

Y
we| (00-0O)
F 3

(000-000)
(@000-0000)

©@0000-00000

Figure 2: Structure of DBN model

3.3 Hyperparameter Tuning Process

Subbulakshmi et al. [23] propose Global Galactic Swarm Optimization. GSO is inspired by stars,
motion clusters, and superclusters. In GSO, algorithm stars orbit the galaxy. Superclusters revolve
cosmically. Each cosmic system presented the global-best solutions, and GSO had many algorithms
to mimic a solution search, starting in a random area. GSO investigates the behaviour of supercluster



1098 IASC, 2023, vol.37, no.1

stars. First, PSO uses exploration and exploitation cycle patterns to find better and new solutions.
GSO uses real-life issues and global advancements to test the effectiveness of its algorithms.

First, GSO is affected by gravity, pulling stars toward other stars with strong gravity. Based on
this idea, the growth of stars in the universe is the growth of cosmic systems that can be used to make
GSO calculations.

e Individual systems led to greater ones (better arrangements) in the universe. PSO calculates
fascination.

e Globally, the best cosmic systems are treated as a super swarm. PSO uses another time to
calculate super swarm particle growth. The GSO Algorithm presents Muthiah-Nakarajan’s
GSO pseudocode.

For improving the forecasting output of the DBN model, the GSO algorithm has been utilised
for the hyper-parameter tuning process. Muthiah-Nakarajan et al. developed a GSO algorithm that
has been shown to act properly when confronting multi-modal problems and with a higher number
of dimensions. Meanwhile, it exhibits multiple cycles of exploitation and exploration that increase the
chance of getting the best solution and not getting trapped in local minimal. In GSO [24,25], a set X
characterizes a swarm viz. made up of X;” elements that comprise of M partition denominated sub-
swarms X; of size N. Each element of the swarm are randomly initialized in the searching region space
[Xiax> Xmin]?, Whereby D characterizes the dimension number of the searching region [26-28].

The purpose of having numerous swarms exploring simultaneously is to result in a good explo-

ration of probable solutions because every sub-swarm individually explores the searching region
[29,30]. The GSO approach begins the iteration by evaluating the velocity and location of the particle.

)= Wt er () = x7) 4+ e (g7 — X)) (6)

J
X < x4 (7)
From the equation, the present velocity is v, p{” indicates the personal best of particles x|, g?

denotes the global optimal solution of sub-swarm X;, ¢, and ¢, indicates the direction toward the
optimal local and global solutions, W, represent an inertia weight, r, & r, are evaluated as follows:

K
W, =1—m, (®)
r=U(=11). 9)

The present iteration is K ranges between 0 to I;, and r, is utilized for obtaining arbitrary numbers
selected from the interval of —1 to 1.

Here, the global optimal solution is of greater significance because they participated in the
supercluster formation, we have a super-swarm Y i.e., formed of the optimal solution attained in every
sub-population or sub-swarm X;.

YO = g (10)

Like level 1, here the velocity and location of the particles are evaluated by the PSO approach.
The equation shows small modifications different from those utilised in level 1:

W o W2v<i> + ¢313 (P(D - y(D) + cary (g - y(D) 5 (1)

PO < O 4y (12)
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Here, p® indicates the personal best, g denotes the global optimal solution, ¢; and ¢, indicates the
acceleration constant. W,, r; and r, are evaluated by the equation same as level 1. In the super-swarm,
the best solution is utilised for sub-swarms and exploits the previously evaluated data. The individual
in a super-swarm is more widespread than that of an individual in a sub-swarm because its emphasis
on exploiting the solution found by the sub-swarm is the reason why an independent exploration is
not realized. In GSO, feedback is evaded to preserve the global search ability and the diversity of the
solution.

Here, the sub-swarm movement in level 1 primarily comprises of the exploration phase and level 2
comprises of the exploitation phase, such that the algorithm substitutes amongst the exploitation and
exploration. The process of GSO is summarised in the following. In this case, the GSO technique was
projected for tuning the hyper-parameters of the DBN method. The GSO approach develops a fitness
function (FF) utilising the minimised mean square error (MSE) as provided under. The mean square
deviation between expected and observed data is determined using the MSE. The average difference
between projected and actual values is known as the mean absolute error, or MAE. The correlation
coefficient shows how strong and in which direction two variables are related in a linear way.

1 L M ,- .
MSE=—2> > (v-d). (13)
j=1 =1

where as M and L signify the resultant value of layers and data correspondingly, and y; and d; implies
the accomplished and suitable magnitude for j” unit from the resultant layer of networks from ¢ time.

Algorithm 1: Pseudo-code of GSO algorithm
Begin
The population is separated into M sub-populations.
Randomly initialize the population.
Initiate Level 1:
PSO starts for every M sub-populations.

Fori=1To M
For k =1 To I,
Forj=1To N

Compute the velocity and position of the particle based on the 1 and 2 expressions.
If f(x) < f(@) Then f(p”) = f(x}")
Iff(p) < f(gw) Thenf(gy) =/ (@)
If /' (g») <f(g) Theng =g
End for j
End for k
End for i
Start Level 2:
Initialize the swarm Y@ e Y:i=1,2,..., M. Y? = g®
For k = 0 Hasta I, For i = 1 Hasta M
Compute the velocity and position of the particle based on 6 and 7 expressions.
Iff(Y?) < f(p®) Then £ (p) = f(Y*)
Iff(p”) < f(g) Then g = p?
End for i

(Continued)
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Algorithm 1: Continued
End for k

Return the optimal location g and fitness value f(g)
End

4 Experimental Validation

This section examines the PVPG prediction outcomes of the GSODBN-PPGF model on two
typical PV plants, namely plant 1 and plant 1. In addition, the PVPG values are predicted for a
duration of three months in both plants, namely April, May, and June.

The PVPG prediction outcomes of the GSODBN-PPGF model with other prediction models on
plant 1 for the April month are provided in Table | and Fig. 3. The experimental results indicated that
the GSODBN-PPGF model has accomplished effective predicted outcomes under varying hours of
operation. For instance, with 10 hrs and an observed value of 0.465, the GSODBN-PPGF model has
predicted a closer value of 0.440, whereas the ARMA, LSTM, and KNN models have obtained PVPG
values of 0.349, 0.488, and 0.478, respectively. Besides, with 40 hrs and an observed value of 0.057, the
GSODBN-PPGF model has foreseen a closer value of 0.029, whereas the ARMA, LSTM, and KNN
models have attained the PVPG values of 0.109, 0.179, and 0.008 respectively.

Table 1: PVPG prediction analysis of GSODBN-PPGF technique with existing approaches on plant
1-April month

Normalized PVPG values (Plant 1-April)

No. of hrs Observed Predicted values
GSODBN-PPGF ARMA model LSTM model KNN algorithm

10 0.465 0.440 0.349 0.488 0.478
20 0.000 0.000 0.000 0.000 0.000
30 0.000 0.013 0.110 0.115 0.015
40 0.057 0.029 0.109 0.179 0.008
50 0.000 0.000 0.000 0.000 0.000
60 0.492 0.546 0.382 0.418 0.520
70 0.000 0.000 0.000 0.000 0.000
80 0.135 0.152 0.034 0.051 0.095
90 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000
110 0.042 0.058 0.049 0.015 0.035
120 0.000 0.000 0.000 0.000 0.000
130 0.213 0.208 0.204 0.094 0.244
140 0.000 0.000 0.000 0.000 0.000
150 0.000 0.019 0.035 0.044 0.098

160 0.000 0.000 0.113 0.070 0.003
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Figure 3: PVPG prediction analysis of GSODBN-PPGF technique on plant 1-April month

The PVPG prediction outcomes of the GSODBN-PPGF model with other prediction models
on plant 1-May month are provided in Table 2 and Fig. 4. The experimental results indicated that
the GSODBN-PPGF model has accomplished effective predicted outcomes under varying hours of
operation. For instance, with 10 hrs and an observed value of 0.516, the GSODBN-PPGF model has
predicted a closer value of 0.569, whereas the ARMA, LSTM, and KNN models have obtained PVPG
values of 0.541, 0.552, and 0.609, respectively. Besides, with 40 hrs and an observed value of 0.038, the
GSODBN-PPGF model has foreseen a closer value of 0.061, whereas the ARMA, LSTM, and KNN
models have attained the PVPG values of 0.176, 0.101, and 0.102, respectively.

Table 2: PVPG prediction analysis of GSODBN-PPGF technique with existing approaches on plant
1-May month

Normalized PVPG values (Plant 1-May)

No. of hrs Observed Predicted values
GSODBN-PPGF ARMA model LSTM model KNN algorithm

10 0.516 0.569 0.541 0.552 0.609
20 0.000 0.000 0.000 0.000 0.000
30 0.012 0.087 0.068 0.043 0.131
40 0.038 0.061 0.176 0.101 0.102
50 0.000 0.000 0.000 0.000 0.000
60 0.392 0.464 0.334 0.454 0.389
70 0.000 0.000 0.000 0.000 0.000
80 0.338 0.240 0.393 0.251 0.370
90 0.000 0.000 0.000 0.000 0.000

(Continued)
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Table 2: Continued

Normalized PVPG values (Plant 1-May)
No. of hrs Observed Predicted values
GSODBN-PPGF ARMA model LSTM model KNN algorithm

100 0.000 0.000 0.000 0.000 0.000
110 0.196 0.119 0.133 0.147 0.174
120 0.000 0.000 0.000 0.000 0.000
130 0.303 0.207 0.199 0.299 0.240
140 0.000 0.000 0.000 0.000 0.000
150 0.000 0.002 0.112 0.128 0.139
160 0.686 0.678 0.823 0.602 0.669
1.0
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Figure 4: PVPG prediction analysis of GSODBN-PPGF technique on plant 1-May month

The PVPG prediction outcomes of the GSODBN-PPGF technique with other prediction method-
ologies on plant 1-June month are offered in Table 3 and Fig. 5. The experimental outcomes demon-
strate that the GSODBN-PPGF system has established effective predicted outcomes under varying
hours of operation. For example, with 10 h and an observed value of 0.585, the GSODBN-PPGF
approach has predicted a closer value of 0.541, whereas the ARMA, LSTM, and KNN methods
have reached the PVPG values of 0.671, 0.553, and 0.715 correspondingly. Also, with 40 hrs and an
observed value of 0.024, the GSODBN-PPGF method has foreseen a closer value of 0.085, whereas
the ARMA, LSTM, and KNN algorithms have reached the PVPG values of 0.080, 0.098, and 0.013
correspondingly.
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Table 3: PVPG prediction analysis of GSODBN-PPGF technique with existing approaches on plant
1-June month

Normalized PVPG values (Plant 1-June)

No. of hrs Observed Predicted values
GSODBN-PPGF ARMA model LSTM model KNN algorithm
10 0.585 0.541 0.671 0.553 0.715
20 0.000 0.000 0.000 0.000 0.000
30 0.024 0.032 0.042 0.069 0.081
40 0.024 0.085 0.080 0.098 0.013
50 0.000 0.000 0.000 0.000 0.000
60 0.451 0.408 0.541 0.421 0.352
70 0.000 0.000 0.000 0.000 0.000
80 0.218 0.184 0.147 0.169 0.234
90 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000
110 0.454 0.515 0.568 0.488 0.506
120 0.000 0.000 0.000 0.000 0.000
130 0.487 0.531 0.467 0.542 0.465
140 0.000 0.000 0.000 0.000 0.000
150 0.009 0.024 0.042 0.146 0.137
160 0.033 0.028 0.031 0.016 0.014
—— Observed Predicted - LSTM Model
1.0 Predicted - GSODBN-PPGF —— Predicted - KNN Algorithm

—— Predicted - ARMA Model
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Figure 5: PVPG prediction analysis of GSODBN-PPGF technique on plant 1-June month
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Table 4 and Fig. 6 present the PVPG prediction results of the GSODBN-PPGF system with
other prediction techniques on plant 2-April month. The experimental outcomes represented by
the GSODBN-PPGF method have established effective predicted outcomes under varying hours of
operation. For instance, with 10 hrs and an observed value of 0.558, the GSODBN-PPGF approach
has predicted a closer value of 0.547, whereas the ARMA, LSTM, and KNN models have gained
the PVPG values of 0.653, 0.445, and 0.478 correspondingly. In addition to this, with 40 hrs and an
observed value of 0.112, the GSODBN-PPGF methodology has foreseen the closer value of 0.160,
whereas the ARMA, LSTM, and KNN algorithms have acquired the PVPG values of 0.238, 0.225,
and 0.220 correspondingly.

The PVPG prediction outcomes of the GSODBN-PPGF system with other prediction models on
plant 1-May month are shown in Fig. 7 and Table 5. The experimental results show the GSODBN-
PPGF method has established effective predicted outcomes under varying hours of operation. For
example, with 10 hrs and an observed value of 0.589, the GSODBN-PPGF algorithm has predicted a
closer value of 0.611, whereas the ARMA, LSTM, and KNN models have gained the PVPG values of
0.485, 0.619, and 0.679 correspondingly.

Table 4: PVPG prediction analysis of GSODBN-PPGF technique with existing approaches on plant
2-April month

Normalized PVPG values (Plant 2-April)

No. of hrs Observed Predicted values
GSODBN-PPGF ARMA model LSTM model KNN algorithm

10 0.558 0.547 0.653 0.445 0.478
20 0.000 0.000 0.000 0.000 0.000
30 0.009 0.009 0.040 0.129 0.127
40 0.112 0.160 0.238 0.225 0.220
50 0.000 0.000 0.000 0.000 0.000
60 0.649 0.662 0.628 0.581 0.776
70 0.000 0.000 0.000 0.000 0.000
80 0.204 0.120 0.115 0.179 0.251
90 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000
110 0.158 0.089 0.122 0.239 0.129
120 0.000 0.000 0.000 0.000 0.000
130 0.466 0.485 0.352 0.423 0.420
140 0.000 0.000 0.000 0.000 0.000
150 0.106 0.104 0.112 0.196 0.212

160 0.054 0.051 0.140 0.164 0.057
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Figure 6: PVPG prediction analysis of GSODBN-PPGF technique on plant 2-April month
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Figure 7: PVPG prediction analysis of GSODBN-PPGF technique on plant 2-May month
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Table 5: PVPG prediction analysis of GSODBN-PPGF technique with existing approaches on plant
2-May month

Normalized PVPG values (Plant 2-May)

No. of hrs Observed Predicted values
GSODBN-PPGF ARMA model LSTM model KNN algorithm

10 0.589 0.611 0.485 0.619 0.679
20 0.000 0.000 0.000 0.000 0.000
30 0.059 0.068 0.053 0.079 0.169
40 0.139 0.071 0.218 0.064 0.095
50 0.000 0.000 0.000 0.000 0.000
60 0.367 0.358 0.454 0.461 0.269
70 0.000 0.000 0.000 0.000 0.000
80 0.201 0.291 0.241 0.193 0.314
90 0.000 0.000 0.000 0.000 0.000
100 0.000 0.000 0.000 0.000 0.000
110 0.402 0.388 0.390 0.497 0.295
120 0.000 0.000 0.000 0.000 0.000
130 0.376 0.396 0.333 0.293 0.379
140 0.000 0.000 0.000 0.000 0.000
150 0.062 0.084 0.038 0.022 0.053
160 0.506 0.412 0.432 0.587 0.460

Also, with 40 h and an observed value 0of 0.139, the GSODBN-PPGF method has foreseen a closer
value of 0.071, whereas the ARMA, LSTM, and KNN methodologies have gained PVPG values of
0.218, 0.064, and 0.095 correspondingly.

5 Conclusion

In this study, a novel GSODBN-PPGF technique has been developed for the prediction of
PV power output generation. The presented GSODBN-PPGF model primarily utilised a min-max
normalization-based data scaling technique to normalise the data into a uniform format. In addition,
the DBN model is applied to forecast the PV power generation output. To boost the forecasting
output of the DBN model, the GSO algorithm has been utilized. The experimental validation of the
GSODBN-PPGF model is assessed against existing methods. An extensive set of simulation analyses
highlighted the improved performance of the GSODBN-PPGF model over recent approaches. There
is a discrepancy between what the algorithm anticipated (0.002) and what was observed (0.063) after
40 h. As revealed by the experiments, the GSODBN-PPGF model beat the other PVPG prediction
models. Thus, the GSODBN-PPGF technique can be applied for effectual PVPG prediction outcomes.
In the future, the proposed GSODBN-PPGF model can be extended to the design of ensemble voting-
based fusion models. Increasing PV plant penetration as a source of electricity has brought attention
to forecasting their power output across different time horizons. Due to PV’s intermittent nature,
it’s hard to anticipate short-term output for operations planning. This work proposes integrating
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a data pre-processing based on grey theory and a DBN with supervised learning to forecast 24-h
PV output. Observing test results, the suggested model’s forecast accuracy is better than the DBN
model alone, especially when PV output changes widely. The suggested model’s forecast accuracy and
computational efficiency are superior to other models.

Applications of these techniques include solar-powered transportation systems such as buses and
cars. The technologies required to run such a system are in continuous development. The parameters
that need to be assessed and examined do not only include the PV capabilities but also aspects that
are related to the vehicles, such as power requirements, utility patterns, the required acceleration and
deceleration rate, and the type and capacity of the storage modules, among many others. To expand
the applicability of the presented model, future research will examine novel strategies that integrate the
DBN for multi-area, large-scale PV power output projections while accounting for PV output changes
caused by meteorological and geographical variables. Thus, the overall PV output may be adjusted
more precisely to improve system operation planning and maintain dependability requirements.
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