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Abstract: Clustering analysis is one of the main concerns in data mining.
A common approach to the clustering process is to bring together points that
are close to each other and separate points that are away from each other.
Therefore, measuring the distance between sample points is crucial to the
effectiveness of clustering. Filtering features by label information and mea-
suring the distance between samples by these features is a common supervised
learning method to reconstruct distance metric. However, in many application
scenarios, it is very expensive to obtain a large number of labeled samples.
In this paper, to solve the clustering problem in the few supervised sample
and high data dimensionality scenarios, a novel semi-supervised clustering
algorithm is proposed by designing an improved prototype network that
attempts to reconstruct the distance metric in the sample space with a small
amount of pairwise supervised information, such as Must-Link and Cannot-
Link, and then cluster the data in the new metric space. The core idea is to
make the similar ones closer and the dissimilar ones further away through
embedding mapping. Extensive experiments on both real-world and synthetic
datasets show the effectiveness of this algorithm. Average clustering metrics
on various datasets improved by 8% compared to the comparison algorithm.

Keywords: Metric learning; semi-supervised clustering; prototypical network;
feature mapping

1 Introduction

Nowadays, we are facing the challenge of processing a massive amount of data generated by
various applications. Data analysis methods are beneficial for uncovering the internal structure of data.
Given similarity measure, the clustering algorithm groups a set of data such that samples in the same
collection are similar and in different collections are dissimilar [1]. Traditional clustering algorithms
include K-means [2], Mean Shift [3], and Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [4,5]. These algorithms have been widely used in engineering [6], computer sciences [7],
life and medical sciences [8], earth sciences [9], social sciences [10] and economics [11], and many other
fields [12].
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However, the traditional unsupervised clustering algorithm has two limitations. First, unsuper-
vised clustering algorithms, which do not need prior knowledge, can not work well for clustering data
with more complex structures. Not all actual data have no labels. Although manual annotation is
expensive, we can still obtain some prior knowledge of data, such as sample labels and paired con-
straints annotations. Semi-supervised clustering algorithms are the improved generalization methods
of machine learning. They can utilize prior knowledge to guide the clustering [13]. Second, there are
increasing high-dimensional data such as digital images, financial time series, and gene expression
microarrays, from which it is urgent to discover new structures and knowledge. However, it is difficult
for traditional unsupervised and semi-supervised clustering algorithms to find an appropriate distance
metric in the original high-dimensional feature space [14].

Therefore, some researchers propose a few dimensionality reduction algorithms to map the data
into a lower-dimensional space, such as Principal Component Analysis (PCA), Isometric Mapping
(Isomap) [15], and Local Linear Embedding (LLE) [16]. PCA is a linear dimensionality reduction
algorithm, which is essentially a linear transformation of the data and is less effective in reducing the
dimensionality of data that is linearly indistinguishable; LLE attempts to reduce the dimensionality
while maintaining linear relationships within the data neighborhood, thus effectively reducing the
dimensionality of stream-shaped data. Isomap calculates the geodesic distances between data samples
and reduces the dimensionality of the data while maintaining the distances between the samples,
preserving the global information of the data, which can also be applied to streamlined data. These
methods can reduce data dimension while not destroying the data distribution. But they do not utilize
any data prior information and cannot group the samples in the new feature space.

Metric learning can solve this problem with supervised information. Euclidean distance is a
representative metric that defines the distance between elements in metric space. K-means uses the
Euclidean distance to calculate the distance between a sample with each cluster center. KNN algorithm
uses Euclidean distance to find the K nearest neighbors of a sample. Metric learning aims to learn a
feature mapping that minimizes the intraclass distance and maximizes the interclass distance, which
helps to discriminate different classes of samples in the original metric space [17–19]. The schematic
diagram of metric learning is shown in Fig. 1.

Figure 1: Metric learning. Mapping data from the original space to a new, more discriminatory special
space

Deep neural networks are often used to construct mappings for metric learning due to their
powerful non-linear fitting capacity. The Prototypical Network is a metric learning method that uses
neural networks to learn the feature mapping of data with few labels [20]. Prototypical Network can
reconfigure the spatial metric and facilitate the classification and clustering of data, therefore it and its
variants are widely used in many research fields [21–23]. The Prototypical Networks divide the labeled
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data of a category into a Support set and a Query set. Each class center is the mean vector of the
embedded support points belonging to its class. Finally, learning proceeds by minimizing a distance
function between query points and the class center via Stochastic Gradient Descent (SGD).

To compensate for the shortcomings of unsupervised clustering algorithm that can not use any
prior information and hard to find an appropriate distance metric for high-dimensional data, this
paper combines the ideas of semi-supervised clustering and metric learning and proposes a semi-
supervised clustering algorithm based on deep feature mapping (SSFM). SSFM uses a modified
prototype network and a small number of data priors to learn a non-linear mapping that maps all
data to a new metric space with higher discrimination, increasing the separability of the samples. The
data is then clustered in this metric space. The main contributions of this paper are.

• Applying the ideas of prototypical networks and metric learning to semi-supervised clustering
and achieving good results.

• Performing metric learning using neural networks and the learned feature mapping has a closed-
form solution that enables feature mapping of unsupervised data as well.

• Designing a new feature mapping method using a modified prototypical network loss function
that allows samples of different categories to be better separated in the new feature space, with
improved clustering results.

• An algorithm is given for clustering semi-supervised data in a high-dimensional space where
Euclidean distance is not applicable.

The remainder of the article is organized as follows. In Section 2, the related works are introduced.
In Section 3, the metric-based K-means algorithm and the basic framework of the Prototypical
Network algorithm are briefly illustrated. Our SSFM algorithm is presented In Section 4. Further
more, Section 5 shows the experimental data, experimental methods, comparative experimental results,
feature mapping performances and parameter impact analysis. Section 6 concludes the paper and
outlooks future work.

2 Related Works

Semi-supervised clustering algorithms usually use pairs of constraints as supervised information,
i.e., Must-Link and Cannot-Link constraints [24–26], where Must-Link constraint indicates that two
or more samples belong to the same class. In contrast, Cannot-Link constraint indicates that two or
more samples do not belong to the same class.

Semi-supervised DenPeak Clustering (SSDC) is a representative of the Semi-supervised clustering
algorithms. It generates some clusters (much more than the actual number of categories) using Density
Peak Clustering (DenPeak) [27] without violating the Cannot-Link constraint and then traversing all
clusters. The algorithm will contact two clusters if they have sample points that satisfy the Must-Link
constraint [28]. SC-Kmeans algorithm [29] is proposed for how to make full use of the efficient prior
knowledge in semi-supervised clustering algorithms. The algorithm expands the pairwise constraints
by using both pairwise constraints and independent class labels to obtain a new set of ML and CL
constraints, which improves the clustering accuracy of K-means method. However, the efficiency
of SC-algorithm is not high for processing large scale data. Semi-supervised fuzzy clustering with
fuzzy pairwise constraints (SSFPC) [30] extends the traditional pairwise constraint (i.e., Must-Link
or Cannot-Link) to fuzzy pairwise constraint and avoids eliminating the fuzzy characteristics. Chen
et al. proposed a semi-supervised clustering algorithm (ASGL) using only pairwise relationships,
learning both similarity matrices in feature space and label space, exploring the local and global
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structures of the data respectively, and obtaining better clustering results [31]. Yan et al. proposed the
semi-supervised density peaks clustering algorithm (SSDPC) [32]. Instead of clustering in the original
feature space of the data, SSDPC uses the semi-supervised information of pairwise constraints Must-
Link and Cannot-Link to learn a linear mapping, where the samples of Must-Link are close to each
other, and the samples of Cannot-Link are far from each other in the mapped space. Clustering is
done using the classical DenPeak algorithm in the new feature space. SSDPC makes effective use
of the prior information of the data and improves the clustering performance, but it still has some
limitations. First, the linear mapping method used by SSDPC has difficulty handling data with more
complex distributions, such as manifold data. Second, its distance metric is the Euclidean distance,
which is not applicable to high-dimensional data. Third, SSDPC uses the eigendecomposition of the
matrix to calculate the projection direction, which is inefficient when the amount of data is large.

The above semi-supervised clustering algorithms achieve good clustering results on low-
dimensional datasets, but they cannot handle high-dimensional data because the ordinary metrics are
not applicable in the high-dimensional space. Snell et al. proposed Prototypical Networks which use
a small amount of supervised information and neural network embedders to map high-dimensional
data to low-dimensional space, and successfully bring similar samples close to each other in low-
dimensional space. But dissimilar samples are not significantly far away from each other due to its
loss function. We improve the architecture of the prototype network and its loss function and propose
the SSFM algorithm, which has a better feature mapping effect.

3 Preliminaries and Motivation
3.1 K-means Algorithm and Metric Learning

Many machine learning algorithms rely on metrics. For example, the K-means algorithm relies
on a specific metric to assign a sample to the cluster center nearest to it. Suppose there is a dataset
D = {X1, X2, . . . , Xn}, where the number of samples is n, and the dimension of the data is m. The K-
means algorithm aims to group n samples into a specified k cluster based on similarity. Each point can
only be crowded into the nearest cluster center. The algorithmic procedure of K-means is summarized
as follows.

Firstly, initializing k cluster centers {C1, C2, . . . , Ck}, 1 < k ≤ n, and computing the distance
d

(
Xi, Cj

)
between samples and each cluster center. If the distance metric is chosen as a Euclidean

distance, then

d
(
Xi, Cj

) =
√∑m

t=1

(
Xit − Cjt

)2
(1)

where Xi denotes the ith point, 1 ≤ i ≤ n; Cj denotes the jth cluster center, 1 ≤ j ≤ k; Xit denotes
the tth feature of the ith sample, 1 ≤ t ≤ m; Cjt denotes the tth center attribute of the jth cluster. The
distance of object to each cluster center is compared in turn, and the object is assigned to the cluster
of the nearest cluster center to obtain k clusters {P1, P2, . . . , Pk}. Recalculate the cluster centers based
on the obtained k clusters

Cl = 1
|Pl|

∑
Xi∈Pl

Xi (2)

where Cl denotes the center of the lth cluster, 1 ≤ l ≤ k, |Pl| denotes the number of objects in the lth
cluster, Xi denotes the ith object in the lth cluster, 1 ≤ i ≤ |Pl|. The distance from objects to the center
of each cluster is then calculated based on the new cluster centers, and so on, iterating until the cluster
centers almost not change.
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However, the Euclidean distance is not applicable in all data scenarios. Choosing a good metric
can improve the generalization of a model. We want to start with the data itself and find an appropriate
metric for that data. Metric learning uses supervised information to map the data into a more
discriminative metric space [33], which is beneficial for bringing similar samples close to each other and
separating dissimilar samples under the new metric. Combining the K-means algorithm with metric
learning can effectively improve the algorithm’s performance.

3.2 Prototypical Network
Similar to the semi-supervised clustering scenario, the Prototypical Network also uses a small

amount of prior information to learn the essential features of the data. Snell et al. proposed the
Prototypical Network structure in 2017 for solving image recognition problems in the few shot
dilemmas. Denote the few shot training set as X = {(x1, y1) , (x2, y2) , . . . , (xN, yN)}, which contains
C classes of data with only a small number of samples in each class. The samples of each class in the
training set are divided into a Support set (S) and a Query set (Q). The main idea of the prototype
network is to map the data into a new feature space through metric learning. A feature prototype is
found for each class on the new feature space. When the feature mapping of the image to be tested is
obtained, a distance metric is applied to the mapped test image and the feature prototype of each class
separately to obtain the prediction result. The class prototypes are defined as follows

ck = 1
|Sk|

∑
(xi ,yi)∈Sk

fφ (xi) (3)

where Sk denotes the support set for the kth class, consisting of some samples from that class. |Sk|
denotes the cardinality of the set Sk, and fφ represents the non-linear mapping, represented as a four-
layer fully convolutional neural network in Snell’s article. The similarity between query points and
class prototypes is represented by the SoftMax value of the negative Euclidean distance

pφ (y = k|x) = exp
(−d

(
fφ (x) , ck

))
∑

k′ exp
(−d

(
fφ (x) , ck′

)) (4)

Learning proceeds by minimizing the negative log-probability J (φ) = − log pφ (y = k|x) of the
entire Query set via gradient descent. Fig. 2 shows a schematic representation of the loss calculation
of Prototypical Network in the new feature space.

Figure 2: Prototypical Network feature space
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3.3 Motivation
The semi-supervised data prior information Must-Link and Cannot-Link provide some useful

prior knowledge of the data, i.e., which samples are supposed to be similar and which samples
are highly divergent. With the idea and framework of the Prototypical Network, we use the prior
information to learn an embedding mapping that embeds the data into a new metric space and
then clusters them. Although the Prototypical Network performs well in few shot image recognition
problems, applied to semi-supervised clustering it has the following shortcomings.

• The loss function of the Prototypical Network is mainly considered to bring similar sample
points closer, while the constraint on dissimilar sample points is not obvious enough, resulting
in dissimilar samples not being clearly distinguished (subsequent experiments will demonstrate
the existence of this problem).

• The traditional Prototypical Network is targeted at image data and therefore constructs embed-
ding mappings using convolutional neural networks, which cannot be extended to embedding
mappings of general data.

In this paper, we propose a semi-supervised clustering algorithm based on the Prototypical
Network with corrected loss, which makes the differences between the embedding of heterogeneous
samples more obvious. In particular, we build the network architecture according to the type of dataset
so that data of different types can be mapped to the new metric space.

4 SSFM Algorithm

The semi-supervised clustering problem is defined as to cluster the entire dataset where a large
number of samples are unlabeled, with the help of a small portion of labeled samples. These labeled
samples are usually called semi-supervised information. Generally, except for labels on samples, the
semi-supervised information could also be given in the form of pairwise constraints or other prior
information. In this paper, we mainly focus on the clustering method with pairwise constraints as semi
supervised information, where a pairwise constraint has the form

(
Si, Sj

)
and Si or Sj can be a sample

or a collection of samples. All the pairwise constraints are divided into two categories called Must-
Link, which specifies that the samples belong to the same class, and Cannot-Link, which specifies that
the samples do not belong to the same class. Suppose there are T supervised samples from each class
(T typically occupies only 10% to 20% of all samples in each class). Supervised samples of each class
constitute a Must-Link set, and supervised samples of every two class constitute a Cannot-Link sets
pair. The SSFM algorithm contains three stages.

• Firstly, learning an encoder with supervised information, i.e., Must-Link sets and Cannot-Link
sets. The loss function is designed to maximize the distance between two Cannot-Link sets and
minimize the distance in a Must-Link set.

• Secondly, feature mapping all the data with the trained encoder to the new feature space.
• Thirdly, Clustering samples in the new feature space using an unsupervised clustering algorithm.

The overall framework of the algorithm is shown in Fig. 3.

4.1 Calculate Must-Link Loss
Denote the set of Must-Link sets as ML = {M1, M2, . . . , Mn}, where Mk = {

uk,1, uk,2, . . . , uk,σk

}
indicates a Must-Link set. The samples in the Mk belong to the same class. σk is the number of
samples in this set. The set of Cannot-Link sets is denoted as CL = {C1, C2, . . . , Cm}, where Ck ={
ck,1, ck,2, . . . , ck,τk

}
indicates a Cannot-Link set. Any two sets in CL do not belong to the same class. τk
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is the number of samples in this set. Let X = {x1, x2, . . . , xn} be a set of samples, and the center of this
set is defined as

Ave (X) = 1
n

∑n

i=1
xi (5)

Figure 3: Overall framework of SSFM algorithm

In order to keep the distance between samples in the same Must-Link set as small in the new
feature space, a Must-Link set is divided into a Support set and a Query set. Let the Support set be
encoded to obtain the centers of the Support set in the new feature space, and encode the Query set
to obtain its feature mapping. In the new feature space, optimize the following loss function to make
each point in the Query set close to the center of its Support set.

Algorithm 1: Encoder training loss. ML = {M1, M2, . . . , Mn} is the Must-Link cluster. CL =
{C1, C2, . . . , Cm} is the Cannot-Link cluster. IC denotes the mean value of inner distance of Cannot-
Link sets. BC denotes the mean value of outer distance of Cannot-Link sets. T I is the cardinality of
ith Cannot-Link set. Ave (·) is computed by Eq. (5). D (· , ·) denotes Euclidean distance.
Input: Must-Link cluster ML, Cannot-Link cluster CL, cardinality of query set of ith Must-Link set
qI, i = 1, 2, . . . , n, weight factor α, encoder φ

Output: Encoder training loss L
1. Loss1 ⇐ 0, IC ⇐ 0, BC ⇐ 0
2. q ⇐ ∑n

i=1qi, τ ⇐ ∑m

i=1τi

Step1-Compute Must-Link loss (Loss1)
3. for i = 1:n do
4. for j = 1:qi do

5. Loss1 ⇐ Loss1 + log
exp

(−d
(
Ave (Si) , Qij

))
∑n

k=1 exp
(−d

(
Ave (Sk) , Qij

))
6. end

(Continued)
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Algorithm 1: Continued
7. end

8. Loss1 ⇐ −1
q

Loss1

Step2-Compute Cannot-Link loss (Loss2)
9. for i = 1:m do
10. for j = 1:τi do

11. IC ⇐ IC + 1
τ

d
(
Ave (φ (Ci)) , φ

(
Cij

))
12. end
13. for j = 1:m do

14. BC ⇐ BC + 1
m2

d
(
Ave (φ (Ci)) , Ave

(
φ

(
Cj

)))
15. end
16. end

17. Loss2 ⇐ IC
BC

18. L ⇐ Loss1 + α ∗ Loss2

19. Return L

Loss1 = − 1∑n

i=1qi

∑n

i=1

∑qi

j=1
log

exp
(−d

(
Ave (Si) , Qij

))
∑n

k=1 exp
(−d

(
Ave (Sk) , Qij

)) (6)

where Si, Qi, i = 1, 2, . . . , n are the encoded Support set and Query set of the ith Must-Link set. Qij

denotes the jth sample of the ith Query set. qi is the cardinality of the ith Query set, and d (· , ·) denotes
the Euclidean distance. Optimising Loss1 can simultaneously adjust the embedding of samples in S and
Q so that samples of the same class are embedded in a cluster.

4.2 Calculate Cannot-Link Loss
For the data from different classes to be separated further away in the new feature space, the

intraclass distance of any two Cannot-Link sets should be as large as possible compared to the
interclass distance. Cannot-Link loss function is designed as

Loss2 =
1∑m

i=1τi

∑m

i=1

∑τi
j=1d

(
Ave (φ (Ci)) , φ

(
Cij

))
1

m2

∑m

i,j=1d
(
Ave (φ (Ci)) , Ave

(
φ

(
Cj

))) (7)

where φ indicates the feature mapping function. Cij denotes the jth sample of the ith Cannot-Link set,
and τi denotes the cardinality of the ith Cannot-Link set.

The final loss function of the algorithm L is defined as

L = Loss1 + α ∗ Loss2 (8)

where α is a weighting factor to balance the contribution of the two components. Optimize the loss
via gradient descent and adjust the parameters in the encoder until the loss falls steady. This process
is described in Algorithm 1.
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4.3 Encoder Designs
Different encoders apply to diverse semi-supervised clustering data. For low-dimensional data,

a fully connected neural network is adequate. However, a multi-layer convolutional neural network
is more suitable for high-dimensional data, such as image data. Convolutional neural networks
have the advantage of local connectivity and shared parameters, reducing the trained parameters.
Furthermore, convolutional neural networks can use the original image as input, avoiding a complex
feature extraction process. CNN perceives the local pixels of the image, which can effectively learn
the corresponding features from many samples [34]. The data is input into the trained encoder and
crowded into various clusters in the new feature space via an unsupervised clustering algorithm e.g.,
K-means.

5 Experimental Analysis
5.1 Experimental Datasets

We conducted experiments on the simulation datasets, the University of California Irvine (UCI)
datasets, and the image datasets, respectively. The simulation datasets include Aggregation (Aggr) and
Jain. The UCI real-world datasets include Iris, Wine, Synthetic Control, Glass Identification, Balance
Scale and Letter-Recognition (only data of the letter D, O and Q). In addition, we also run experiments
on three image datasets, including the MNIST dataset (selecting 1,000 samples from each class), the
CIFAR-10 dataset (selecting 500 samples from each class), and the ORL face image dataset (selecting
10 samples from each people). Table 1 shows the specific number of samples, feature dimensions, and
categories for each dataset.

Table 1: Datasets details

Data name Instances Attributes Classes

Jain 373 2 2
Aggregation 788 2 7
Iris 150 4 3
Wine 178 13 3
Letter DOQ 450 16 3
Synthetic 600 60 6
Glass 214 10 6
Balance 625 4 3
MNIST 10,000 28 ∗ 28 10
CIFAR-10 5,000 32 ∗ 32 10
ORL 100 112 ∗ 92 10

The UCI real-world datasets can be found at https://archive.ics.uci.edu/ml/datasets.php.

The MNIST dataset can be found at http://yann.lecun.com/exdb/mnist/.

The CIFAR-10 dataset can be found at https://www.cs.toronto.edu/~kriz/cifar.html.

The ORL dataset can be found at http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html.

https://archive.ics.uci.edu/ml/datasets.php
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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5.2 Model Evaluation Indicators
Various metrics have been proposed for the evaluation of clustering algorithms, such as the

Adjusted Mutual Information (AMI) [35] and the Adjusted Rand Index (ARI) [36]. The AMI and
the ARI have [−1, 1] value range. The higher values indicate a better clustering result. In addition,
we used the 1-nearest neighbor (1NN) classification accuracy to evaluate the performance of feature
mapping. A high 1NN classification accuracy means that the original data are easier to distinguish
after feature mapping. We compared our algorithm with some classical unsupervised clustering and
semi-supervised clustering algorithms, including K-means, DBSCAN, DenPeak, SSDC, SSDPC, SC-
Kmeans and Proto-Net.

5.3 Experimental Method
The supervised information is obtained by randomly selecting a small fraction (typically 20%) of

data from each class to form the Must-Link sets and the Cannot-Link sets. To ensure the amount of
supervised information is identical in different algorithms, we converted all the samples in the Must-
Link sets and the Cannot-Link sets into pairs constraints, which have the same number as other semi-
supervised clustering algorithms.

The encoder was designed as a fully connected neural network with only one hidden layer for the
low-dimensional datasets, including Aggregation, Jain, Iris, Wine, Letter DOQ, Synthetic, Balance,
and Glass. In addition, we designed the encoder as a four-layer fully convolutional neural network
for the image datasets. The convolutional kernel size was 3 × 3 and the max-pooling kernel size was
2 × 2. We use Rectified Linear Unit (ReLU) as an activation function, Batch Normalization (BN)
as regularization method and use the Adam algorithm to optimize the loss. The model settings are
presented in Table 2.

Table 2: Model settings

Dataset Encoder

Simulation and UCI datasets Dense, BN1D, ReLU, Dense
MNIST Conv2D(1 × 64 × 3 × 3), BN2D, ReLU, MaxPool2D(2 × 2),

3 × [Conv2D(64 × 64 × 3 × 3), ReLU, BN1D, MaxPool2D(2 × 2)]
CIFAR-10 Conv2D(3 × 64 × 3 × 3), BN2D, ReLU, MaxPool2D(2 × 2),

3 × [Conv2D(64 × 64 × 3 × 3), BN2D, ReLU, MaxPool2D(2 × 2)]
ORL Conv2D(1 × 64 × 3 × 3), BN2D, ReLU,MaxPool2D(2 × 2),

3 × [Conv2D(64 × 64 × 3 × 3), BN2D, ReLU, MaxPool2D(2 × 2)]

5.4 Experimental Results
Each algorithm was performed 10 times for each dataset. The average ARI and AMI are shown

in Tables 3 and 4 The best results on each dataset are bolded.

Tables 2 and 3 show that SSFM outperforms other clustering algorithms for high-dimensional
data and also perform well in low-dimensional data, especially on the DOQ dataset. For the five low-
dimensional datasets of Iris, Wine, DOQ, Synthetic and Glass Balance, the clustering performance of
SSFM is significantly better than the other seven clustering algorithms. For the Jain and Aggregation
datasets, density-based clustering algorithms such as DBSCAN and DenPeak achieved better cluster-
ing results because these two datasets are non-convex datasets. Density-based clustering algorithms
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have better clustering results for such irregularly structured datasets. SSFM also has better clustering
results on two high-dimensional image datasets, MNIST and ORL, due to the fact that the metric loss
designed in SSFM optimizes the parameters of the convolutional neural network constructed for the
image data, extracting features of the images that are conducive to clustering. However, the SSFM
and the Proto-Net algorithms do not perform well for the CIFAR-10 dataset. The reason may be that
the encoder only uses the simplest four-layer fully convolutional neural network, which cannot extract
many valuable features for three-channel images.

Table 3: ARI (%)

Synthetic UCI real world Image

Algorithm Jain Aggr Iris Wine DOQ Synth Glass Balance MNIST CIFAR-10 ORL

K-means [2] 32.14 76.00 73.20 37.11 0.81 56.92 54.17 16.05 35.29 4.02 62.22
DBSCAN [4] 90.50 80.93 52.06 42.28 1.48 48.10 41.12 0.01 0.00 0.00 0.00
DenPeak [27] 14.40 77.97 86.83 24.93 11.67 55.33 38.97 0.62 N/A N/A N/A
SSDC [28] 72.16 71.89 69.72 61.99 15.48 47.09 47.22 10.26 N/A N/A N/A
SSDPC [32] 68.21 72.20 73.78 74.15 28.66 62.98 44.84 12.24 N/A N/A N/A
SC-Kmeans
[29]

72.30 80.02 82.74 70.32 36.75 75.80 59.11 10.37 N/A N/A N/A

Proto-Net [20] 69.60 71.09 81.79 78.30 60.76 50.11 46.17 43.65 81.64 18.10 70.09
SSFM (Ours) 70.55 75.21 92.22 88.10 74.91 80.63 59.39 52.63 83.17 16.59 69.30

Table 4: AMI (%)

Synthetic UCI real world Image

Algorithm Jain Aggr Iris Wine DOQ Synth Glass Balance MNIST CIFAR-10 ORL

K-means [2] 36.77 87.51 75.51 42.27 0.65 72.29 72.26 14.03 48.57 7.93 59.15
DBSCAN [4] 76.60 82.41 59.90 52.08 12.52 67.71 66.35 0.01 0.00 0.00 0.00
DenPeak [27] 40.20 89.48 85.54 38.44 15.50 72.65 69.28 0.72 N/A N/A N/A
SSDC [28] 61.59 75.92 73.80 64.11 33.50 67.87 62.70 11.87 N/A N/A N/A
SSDPC [32] 70.06 77.21 84.16 73.33 31.42 67.72 55.40 11.07 N/A N/A N/A
SC-Kmeans
[29]

70.55 76.29 80.22 68.80 40.64 83.39 63.26 12.44 N/A N/A N/A

Proto-Net [20] 61.71 82.81 79.25 75.73 60.20 82.20 59.25 52.18 80.33 25.57 78.48
SSFM (Ours) 64.39 84.50 91.33 85.89 72.49 81.90 72.60 56.28 82.23 28.33 81.13



826 IASC, 2023, vol.37, no.1

5.5 Feature Mapping Results
Let γ = 0.2 and α = 0.5. The SSFM algorithm map the four datasets, including Iris, Wine, Letter

DOQ, and Synthetic, into the three-dimensional feature space. Fig. 4 demonstrates the performance
of feature mapping. It shows that the SSFM algorithm effectively maps similar samples to one cluster
and heterogeneous samples separate from each other in the new feature space, which is more beneficial
for unsupervised clustering algorithms to group data. In addition, Figs. 5 and 6 show the results of the
image dataset ORL and MNIST projected to a two-dimensional feature space by the SSFM algorithm.
SSFM successfully mapped the photos of different persons’ faces to different clusters in the feature
space. The clusters of person1, person3 and person9 have a little overlap occurring, while the clusters
of the remaining seven people can be clearly separated. The images of each category of the MNIST
dataset are also mapped into distinct clusters that are clearly differentiated.

Figure 4: Mapping of Iris, Wine, Letter DOQ, Synthetic datasets in the 3D feature space
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Figure 5: 2D features of the ORL face dataset by SSFM feature mapping. The outliers have been circled
in red and the corresponding face images have been marked with red boxes

Figure 6: (a) 2D features of the MNIST dataset after SSFM feature mapping. (b) Confusion matrix of
labels predicted by clustering in new feature space and true labels
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In addition, we demonstrate the data feature mapping performance of SSFM algorithm, Proto-
Net algorithm and PCA on two datasets, including Wine and DOQ. Fig. 7 shows the mapping results.
The performance of PCA was poor because it did not use the supervised information at all. SSFM and
Proto-Net both mapped different classes of data into different clusters. However, SSFM can separate
the data of different classes further than Proto-Net and be more able to reflect the differences between
the data in the new feature space. The reason for this is that the loss of SSFM considers separating the
Cannot-Link of the sample sets in the embedding feature space from each other, whereas Proto-Net
does not consider it.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Wine

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3
Wine

-3 -2 -1 0 1 2 3
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Wine

-0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02
-0.1

-0.05

0

0.05

0.1

0.15
DOQ

-2 -1 0 1 2 3 4 5
-6

-5

-4

-3

-2

-1

0

1

2
DOQ

-3 -2 -1 0 1 2 3 4
-3

-2

-1

0

1

2

3
DOQ

Figure 7: Wine, Letter DOQ datasets mapped by PCA (left), Proto-Net (middle) and SSFM (right) for
2D features

5.6 Parameter Impact Analysis
Two parameters, including the loss function weight factor α and the ratio of supervised informa-

tion to the total data γ, influence the performance of feature mapping. We analyze their effect on
different datasets. Firstly, fix the proportion of supervised information γ = 0.2 and adjust the value of
the weighting factor α. Secondly, fix the value of the weighting factor α = 0.5 and adjust the proportion
of supervised information γ . The classification accuracy of the 1NN classifier was chosen as the metric
of feature mapping effectiveness. Specifically, the whole data embedded into the new feature space was
divided into a training set and a test set on a 7:3 ratio. The 1NN classifier was trained to classify the
test set. Fig. 8 shows the impact of the parameters on Iris, Wine, Letter DOQ, and Synthetic datasets.

α = 0 means not considering maximizing the distance between the Cannot-Link sets. The results
show that the Cannot-Link loss is effective. Moreover, even using a small amount of supervised
information, the feature mapping performance is still better than that of the model using more
supervised information by choosing an appropriate α. More supervised information will result in
better feature mapping if the loss function is consistent.
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Figure 8: The effect of loss weighting factor α and supervisory information proportion γ

6 Conclusion

This paper presents a semi-supervised clustering algorithm (SSFM) based on metric learning and
prototype networks. By designing an appropriate network structure and loss function, the algorithm
can learn a feature mapping using semi-supervised information (Must-Link, Cannot-Link). This
mapping embeds the original data into a new metric space and allows samples of the same type to
be placed close to each other and samples of different types to be separated, thus making the data
easier to cluster. Experiments were conducted on synthetic and real-world data (including low and high
dimensional data), and the mapped data were passed to 1NN classification and K-means clustering.
The experimental results show that the mapped data have significantly better classification and
clustering results compared with the original data. Furthermore, by comparing classical unsupervised
and semi-supervised clustering algorithms on a variety of datasets using common clustering metrics
(ARI, AMI), the experimental results validate the effectiveness and robustness of the SSFM algorithm.
SSFM algorithm requires a small amount of supervised information for each class of data, otherwise
it will lead to undesirable clustering results, which is a limitation of the algorithm. One solution is
to first label the data with a small number of pseudo-labels by an unsupervised clustering algorithm.
Re-utilizing the semi-supervised information of the data in the new feature space to assist clustering
is a future work to be accomplished.
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