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Abstract: Tongue image analysis is an efficient and non-invasive technique
to determine the internal organ condition of a patient in oriental medicine,
for example, traditional Chinese medicine (TCM), Japanese traditional herbal
medicine, and traditional Korean medicine (TKM). The diagnosis procedure
is mainly based on the expert’s knowledge depending upon the visual inspec-
tion comprising color, substance, coating, form, and motion of the tongue.
But conventional tongue diagnosis has limitations since the procedure is
inconsistent and subjective. Therefore, computer-aided tongue analyses have
a greater potential to present objective and more consistent health assess-
ments. This manuscript introduces a novel Simulated Annealing with Transfer
Learning based Tongue Image Analysis for Disease Diagnosis (SADTL-
TIADD) model. The presented SADTL-TIADD model initially pre-processes
the tongue image to improve the quality. Next, the presented SADTL-TIADD
technique employed an EfficientNet-based feature extractor to generate useful
feature vectors. In turn, the SA with the ELM model enhances classification
efficiency for disease detection and classification. The design of SA-based
parameter tuning for heart disease diagnosis shows the novelty of the work.
A wide-ranging set of simulations was performed to ensure the improved
performance of the SADTL-TIADD algorithm. The experimental outcomes
highlighted the superior of the presented SADTL-TIADD system over the
compared methods with maximum accuracy of 99.30%.

Keywords: Tongue color images; disease diagnosis; transfer learning; simulated
annealing; machine learning

1 Introduction

Coronary heart disease (CHD) has become a crucial part of cardiovascular disease (CVD) and the
leading factor which causes death and disability across the world. CHD is considered a major health
issue which burdens medical treatment and society [1]. Improving the prevention level and treatment
of CHD is highly significant because of the rising mortality of CHD in China [1]. Current research on
TCM syndromes of CHD display that phlegm and blood stasis syndrome (PBSS) accounts for a rising
percentage of CHD syndromes [1,2]. The most dominant disease of Traditional Chinese Medicine
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(TCM) is CHD, accumulating 2,000 years of treatment practice [2]. TCM contains unique benefits
in CHD treatment and displays favourable efficiency. The worldwide demand for basic healthcare
assistance and technology development allows the platforms for point-of-care (POC) diagnostics
[3]. Despite the current advancements in automatic disease diagnosing tools, the requirement of
blood serum through recognition time, inexperience, reliability, precision, and the need for a second
confirmatory test were the problems that must be overtaken. Therefore, skin color, temperature,
retinopathy, facial expressions, tongue diagnosis, and surface are vital variables for future smartphone-
oriented clinical expert systems for attaining non-invasiveness, simplicity, automatic analysis, and
immediacy [4].

Tongue diagnosis becomes an effectual non-invasive process to measure the inner organ condition
of the patient. The diagnosis procedure is reliable based on experts’ opinions on visual inspection
encompassing the tongue’s form, color, coating, motion, and substance [5]. Conventional tongue
diagnosis was inclined to identify the syndrome instead of the abnormal appearance and disease of the
tongue [6]. For example, the tongue coating’s yellow-dense and white-greasy appearance specify hot
and cold syndromes, which can be linked with health conditions like endocrine disorders or immune,
infection, stress, and inflammation, which can be 2 parallel but correlated syndromes from TCM.
Abolishing the dependence on the subjective and experience-related valuation of tongue analysis might
raise the scope for broader usage of tongue diagnosis globally, including in Western medicine [7].
Computerized tongue examination containing geometry study, color correction, image investigation,
tongue segmentation, light estimation, etc., is a potential tool for diagnosing disease targeting to
overcome such concerns.

The benefit of tongue diagnosis, it is a non-invasive and simple method. But it becomes hard to
gain a standardized and objective examination. Variations in inspection conditions, like light sources,
influence outcomes significantly [8]. Furthermore, because the diagnosis depends on the knowledge
and experience of the clinician, it becomes difficult to gain a standardized outcome. Currently, several
research works are being conducted to solve such issues. This study summarises the advancement of
current technologies and tongue diagnosis [9]. The general computerized tongue diagnosis procedure is
classified into 2 methods. Firstly, the conventional machine learning (ML) technique. This technique
generally segregates the raw tongue image, extracts features like shape, color, spectrum, and texture
from the tongue image segmented and chooses the classifier to attain tasks like recognition and
classification at the end [10]. Secondly, the deep learning (DL) technique generally utilizes raw data
for feature extraction and training by convolution functions.

This manuscript introduces a novel Simulated Annealing with Transfer Learning based Tongue
Image Analysis for Disease Diagnosis (SADTL-TIADD) model. The presented SADTL-TIADD
model focuses on detecting and classifying diseases using tongue images, namely CVD and pneumonia.
To accomplish this, the SADTL-TIADD model was initially Bilateral Filter (BF) based pre-processing
and CLAHE-based contrast enhancement. Next, the presented SADTL-TIADD technique employed
an EfficientNet-based feature extractor to generate useful feature vectors. The SA with the extreme
learning machine (ELM) model enhances classification efficiency for disease detection and classifi-
cation. To ensure the improved performance of the SADTL-TIADD system, a wide-ranging set of
simulations can be performed.
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2 Related Works

The author in [11] utilises deep transfer learning (DTL) to analyse tongue images. First, tongue
features are extracted using the pre-trained networks (Inception_v3 and ResNet), and later modifica-
tion of the resultant layer of the original network with fully connected (FC) and global average pooling
layers to output classification result. In [12], a lightweight segmentation method for tongue images
is developed under the elementary encoding-decoding architecture. MobileNet v2 is accepted as the
backbone network because of its lower computational complexity and fewer parameters. The lower-
level positional and higher-level semantic data are combined to identify the tongue-body boundary.
Then, the dilated convolutional operation is implemented on the last feature map of networks to
expand the receptive field, capturing rich global semantic data.

In [13], the authors presented a Chinese Medicine based diabetes diagnosis dependent upon
examining the extracting feature of the panoramic tongue image, namely texture, colour, shape, fur,
and tooth markings. The extracting feature can be performed using Convolutional Neural Network
(CNN)—ResNet50 model, and the classifier can be done using the presented Deep RBFNN approach
based on an autoencoder (AE) learning module. Zhou et al. [14] developed an end-to-end mechanism
for multi-task learning of tongue segmentation and localization, termed TongueNet, where pixel-level
previous data is exploited for supervised training Deep CNN (DCNN). A feature pyramid network
(FPN) is primarily introduced based on the context-aware residual block for extracting multiscale
tongue features. Next, the tongue candidate’s region of interest (ROI) is positioned in the extracting
feature map. Lastly, finer segmentation and localization of the tongue body were carried out based on
the feature map of ROI.

In [15], the authors developed a computer-aided intelligent decision support mechanism. The
CNN and DenseNet architecture was applied to identify the tongue images’ essential features, namely
the fur coating, colour, texture, red spots, and tooth markings. The classifier support vector machine
(SVM) has been applied to enhance the accuracy of the SVM parameter is tuned using the PSO
algorithm. The authors in [16] proposed a 2-stage methodology dependent upon tongue landmarks
and tongue region recognition through DL. Initially, a cascaded CNN is introduced for simultaneously
detecting the tongue region and tongue landmark to maximize discriminatory data and minimize the
redundancy data explicitly. Next, the identified region and landmark of the tongue are sent to a fine-
grained classifier system for the last detection.

Wang et al. [17], an AI architecture with DCNN for detecting the tooth-marked tongue. Firstly,
a larger dataset with 1548 tongue images is applied. Next, ResNet34 CNN infrastructure is used
for extracting features and implementing classifiers. Mansour et al. [18] designed an automatic IoT
and synergic DL-based tongue colour image (ASDL-TCI) investigation mechanism to classify and
diagnose diseases. Initially, we used the IoT device to capture the human tongue image and transferred
it to the cloud for detailed examination. Moreover, SDL-based feature extraction techniques and
median filtering (MF) based image pre-processed is executed. In addition, DNN-based classification
was employed to define the presence of diseases. Finally, enhanced black widow optimization (EBWO)
based parameter tuning is performed to improve the detection accuracy. Though several ML and
DL models for tongue image analysis are available in the literature, it is still needed to enhance the
classification performance. Owing to the continual deepening of the model, the number of parameters
of ML and DL models also increases quickly, which results in model overfitting. Since the trial and
error method for parameter tuning is tedious and erroneous, metaheuristic algorithms can be applied.
Therefore, in this work, we employ the SA algorithm for the parameter selection of the ELM model.
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3 The Proposed Model

This study introduced a novel SADTL-TIADD approach to detect and classify diseases utilizing
tongue images. To accomplish this, the SADTL-TIADD approach initially BF-based pre-processing
and CLAHE-based contrast enhancement. Next, the presented SADTL-TIADD technique employed
an EfficientNet-based feature extractor to generate useful feature vectors. For disease detection and
classification, the SA with the ELM model is applied, and using SA enhances the classification
efficiency. Fig. 1 depicts the block diagram of the SADTL-TIADD approach.

Figure 1: Block diagram of SADTL-TIADD approach

3.1 Image Pre-Processing
Primarily, the SADTL-TIADD model follows BF-based pre-processing and CLAHE-based

contrast enhancement. Consider the BF employed to a 2D grayscale image x. Where p ∈ Z2 shows
the location of the objective pixel and xp ∈ R

1 denotes their pixel intensity, and q ∈ Np represents an
adjacent pixel of p, let Np ⊂ Z2 be the set of adjacent pixels at p, viz., a rectangular domain reinforced
in a filter window [19]:
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BF(p) : =
∑

qεNp
ws(p, q) · wr(gp, gq) · xq∑

qεNp
ws(p, q) · wr(gp, gq)

. (1)

In Eq. (1), gp refers to the objective pixel in a guide image, and gq is among their adjacent pixels.
The description is similar to the original BF once it can be self-guided, i.e., gp = xp and gq = xq.

The previous weight ws(p, q) demonstrated the location of the pixel region was represented as the
spatial kernel. The last weight wr(GP, gq), which represents the pixel domain’s intensity, was denoted
as the range kernel. They set as even-symmetric unimodal operation, for instance, a Lorentzian or
Gaussian function:

ws(p, q) : = exp
(

− 1
2σ 2

s

‖p − q‖2
2

)
, (2)

wr(gp, gq) : = exp
(

− 1
2σ 2

r

(gp − gq)
2

)
The BF smooths an objective image using the adjacent pixel with the same intensity value

that the objective pixel xp, as demonstrated in Eq. (1). This process might prevent smoothing edges
equivalent to individuals of guide images since the colours or intensities nearby the edge region
changes dramatically. CLAHE is a type of Adaptive Histogram Equalization (AHE) technique [20].
The CLAHE resolves the over-amplification problems of traditional AHE through the number of
tiles parameters and the clip limit. CLAHE splits the image as MxN local tiles. For all the tiles, the
histogram has been separately calculated. The histogram first evaluates each region’s average number
of pixels for computers.

NA = NX × NY

NG

(3)

Here, Na represents the average count of pixels, Nx indicates the count of pixels from the X
dimensional, NY shows the count of pixels from theY dimensional, and NG shows the number of gray
levels. Next, determine the clip limit from Eq. (4) for clipping the histogram.

NCL = NA × NNCL (4)

In the following, NCL denotes the clip limit, and NNCL shows the normalization clip limit between
zero and one. Then, for all the tiles, the clip limit was employed for the height of the histogram.

Hi =
{

NCL if Ni ≥ NCL

Ni else i = 1, 2, . . . , 1 − 1 (5)

Let, Hi be the height of the histogram of i-th tiles, Ni shows the histogram of i-th tiles, and L
indicates the number of grey levels. The overall number of clipped pixels is calculated as follows.

Nc= (NX × NY) −
∑L−1

i=0
Hi (6)

where NC indicates the count of clipped pixels. After computing NC, redistribute the clipped pixel. The
pixel is redistributed uniformly/non-uniformly. Calculating the count of pixels that redistribute is as
follows.
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NR = NC

L
(7)

where NR denotes the count of pixels that redistribute. Afterwards, the clipped histogram was
normalized as follows.

Hi =
{

NCL if Ni + NR ≥ NCL

Ni + NR else
i = 1, 2, . . . , 1 − 1 (8)

Eqs. (6) and (7) compute the number of un-distributed pixels. Eq. (8) is repeated until each pixel
is redistributed. At last, the cumulative histogram of the context region is formulated as follows.

Ci = 1
(NX × NY)

∑i

j=0
Hj (9)

Afterwards, the calculation was done, and the histogram of context region corresponded with
uniform, Rayleigh, or exponential possibility distribution that provides an attached brightness and
visual quality. The pixel P(X , Y) with the value of s and 4 centre points belongs to the neighbouring
tiles as R1, R2, R3, and R4. The weight sums are calculated over these 4 context regions. To the
resultant image, tiles are combined, and the bilinear interpolation completes the removal of artefacts
amongst the independent tiles; the novel value of s can be represented by s′ is attained by the following
expression.

s′ = (1 − y)((1 − X) × R1(s) + X × R2(s)) + y((1 − X) × R3(s) + X × R4(s))) (10)

Lastly, the enhanced image is attained.

3.2 Feature Extraction
At this stage, the presented SADTL-TIADD technique employed an EfficientNet-based feature

extractor to generate useful feature vectors. The EfficientNet-B0 network exploits the recombination
coefficient to automatically adjust the model’s resolution, depth, and width and has features of high
recognition accuracy and small parameters [21]. The input of EfficientNet-B0 is RGB (Red, blue,
green) three-channel oil tea image with 224 × 224 pixel resolution, involving 2 convolution layers,
16 Mobile Inverted Bottleneck Convolution (MBConv) modules, 1 classification layer, and 1 global
average pooling layer. MB Conv uses a drop connect rather than a conventional dropout, which plays
a major role in preventing the model from overfitting.

EfficientNet-B0 scaling tries to extend the resolution (Hi, Wi), length (Li), and width (Ci) of the
network without changing Fj predetermined in the baseline network and restrict the uniform scaling
of each layer at a constant ratio to decrease the design space. To obtain the maximum model accuracy
under any given resource constraints, the target is expressed through the following optimization
problem:

max
d,w,r

Accuracy (N (d, w, r))

s.t.N (d, w, r) =
⊙

i=1,...s
F̂ d·L̂i

i

(
X〈r·Ĥi,r·Ŵiw·Ĉi}

)
(11)

Memory (N) ≤ tar−memory

Flops (N) ≤ tar−flops
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In Eq. (11), w and r denote the scaling network’s depth, width, and resolution coefficients.
Furthermore, F̂i, L̂i, and Ĉi refer to the predetermined network architecture, predetermined layers, and
channels correspondingly, and Ĥi and Ŵi denotes predetermined resolutions. Furthermore, < Ĥi, ŵi,
Ĉj > signifies the shape of input tensor X corresponding to layer i, Memory (N) and Flops (N) are
the parameters and floating point of the network operation, correspondingly. Lastly, tar-flops and
tar-memory are floating points of the operation and the threshold of the parameter correspondingly.

In EfficientNet-B0, the compound coefficient ϕ is used for uniformly scaling the resolution, depth,
and width of the network to obtain better accuracy and efficiency and balance the relationships
between the three dimensions in the following:

d = αφ, w = βφ, r = γ φ

s.t. α · β2 · γ 2 ≈ 2 (12)

α ≥ 1, β ≥ 1, γ ≥ 1

Let φ be a user-defined coefficient controlled based on available resources. Instinctively, β and γ

represent the resource control coefficient that determines how to correspondingly assign the resource
to the resolution, depth, and width.

3.3 Image Classification
For disease detection and classification, the SA with the ELM model enhances classification

efficiency. ELM is an ML system that depends on an FFNN with an individual layer [22]. In ELM,
computing the hidden state parameter is the method to determine the output weight, and the hidden
state is stochastically constructed. This architecture approaches have a fast convergence rate and low
computation difficulty. Also, it has benefits in generalization performance and fitting ability that
of conventional gradient-based learning model. The typical ELM three-layer architecture has been
demonstrated in Fig. 2.

Figure 2: ELM structure

The complete overview of the ELM traffic flow forecasting method is shown in the following.
Firstly, the traffic flow at a measurement position at the i-th time interval is represented by μ

(a)

i . Next,
we employed {(e(i), t(i))}N

i=1 for demonstrating N traffic flow training instances. Then, the traffic flow
at the historical and existing ν − 1 time interval is fixed to e(i) = [μ(a)

i−ν+1, . . . , μ(a)

i ]A
a=1, while A indicates
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the number of measurement positions and ν indicates the time lag. Then, the factual dataset of the i
specimen for the traffic flow predictive method is characterized as f (i) = [μ(a)

i+1]A
a=1. The FFNN with a

w0 hidden nodes are shown below:

Hβ = T , (13)

Now H = (gij)i=1,...N,j=1,...w0
designates the output matrix of hidden state. Amongst them, gij =

f (χT
j ei + ωj) means the resultant of jth hidden nodes concerning ei. The input node and j-th hidden

neurons are connected through a weighted vector χj = [χj1, χj2, . . . , χjn]T . ωj signifies the bias of jth
hidden neurons. The matrix of output weight is stated as β = [β1, β2, . . . , βw0

]T , and connected the
output node and the equivalent jth hidden neurons through the weighted vector j = 1, . . . , w0. The
objective matrix is signified by T = [t1, t2, . . . , tN]T . The functioning method of ELM is to modify
the input weight and hidden deviance randomly. Next, a rational activation function is selected for
ascertaining the matrix H. Then, by estimating the linear scheme’s least square (LS) solution that
performs a role in FFNN training, the output weight ψ is evaluated as follows.

β̂ = H†T , (14)

Here H† signifies the Moore-Penrose (MP) generalized inverse of matrix H.

3.4 Hyperparameter Tuning
The SA is utilised in this work to optimally adjust the ELM parameters such as several neurons,

alpha, pairwise metric, and batch size. A search algorithm describes a process for defining a solution
for the problem while discovering a mathematically well-defined searching space. Hill Climbing (HC)
or Steepest ascent is an example of this model. It initiates with a primary solution replaced iteratively
through the best neighbour until no more improvement is possible. This algorithm is completed if there
exists an assurance of the result, a possible solution, and an optimum when it is assurance for defining
an optimum amongst each solution. HC is either optimal or complete. Another searching technique
is the Random Walk; at each step, a novel solution has been completely sampled at arbitrary or as a
blind perturbation of the existing solution. This process is optimal and whole and provides an immense
quantity of computation resources.

The SA is the middle ground between the two techniques; the metallurgy’s annealing process
stimulates this technique. The gradual cooling assists the condition for reaching a lower energy state, so
metallic alloy atomic composition generates solid alloys with various properties of interest to industry.
Once the heating and cooling process takes place rapidly, the metal alloy, in the end, may become brittle
and won’t have a better internal structure. On the other hand, a low temperature makes them hard to
accept candidate solutions of the worst quality. Hence, if the temperature is high, the model performs
a random search at an early stage. In the end, if the temperature is low, it becomes similar to HC.

Algorithm 1 defines the pseudocode for SA. The process begins by producing an arbitrary primary
solution and assigning the maximum value (Tmax) for the current temperature. It iteratively attempts
to increase the existing solution still the temperature reaches a value of Tminor until a specific amount
of iterations is accomplished [23]. It employs a perturbation process to the present solution producing
an adjacent solution. Once the novel solution is superior to the present one, it exchanges the present
solution. Or else, assume a maximized problem, it exchanges the existing solution with probability

p = e

eval(SV) − eval(sp)

T , (15)
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Let T be the current temperature, sP shows the existing solution, and sv indicates the candidate
solution. The eval function measures the comparative quality of the presented. Lastly, the present
temperature T is different by a factor r.

With a suitable temperature variation policy, the model can escape from local minima and progress
to the best candidate solution, finally finding a better quality solution. To use the idea of annealing
schedule and Genetic Programming (GP) to select amongst exchanging an individual parent with
its children or not. In other words, the author uses SA to evolve the expression tree’s mathematical
constant. The SA method would derive a fitness function (FF) for obtaining superior classifier results.
It sets positive values for denoting superior outcomes of candidate solutions. During this article, the
reduction of the classifier error rate has been regarded as the FF as provided below in Eq. (16). A good
solution contains less error rate, and the worst one gains a higher error rate.

fitness (xi) = number of misclassified samples
Total number of samples

∗ 100 (16)

Algorithm 1: Pseudocode of SA
Provide a particular profile for the hyperparameter r along the iteration.
sP ←random solution
T ← Tmax

while T ≥ Tmin or Niteration ≤ Nmax do
sv ← perturb(sP)

if Eval (sv) ≥ Eval(sp) or random[0, 1) ≤ e
e◦al(sv)−eval(sp)

T

then
sP ← sv

end if
T ← rT

end while
return sp

4 Experimental Validation

The presented model is simulated using the Python tool. Before the experimental validation
process, data augmentation was carried out to increase the size of the dataset. The proposed approach
uses a benchmark tongue image dataset containing images under various 12 class labels. We have taken
78 images in this study under CHD, pneumonia, and health class.

Fig. 3 depicts some original sample images. During this work, the data augmentation takes place
in different ways:

• zoom_range = 0.15,
• rotation_range = 90,
• horizontal_flip = True,
• height_shift_range = 0.2,
• fill_mode = “nearest”,
• shear_range = 0.15,
• width_shift_range = 0.2
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Figure 3: Original images

Figs. 4 and 5 demonstrate some sample pre-processing and extracted feature images.

Figure 4: Pre-processed images
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Figure 5: Extracted features

Table 1 provides the optimal parameter values of the ELM approach derived by the SA. The
experimental values indicated different values obtained by the SA at the execution time. The optimal
values are marked in bold font. The optimal ELM parameters are n_neurons: 0.0764, pairwise_metric:
city block; batch size: 64, and score: 0.9859. Table 2 depicts a detailed description of the dataset.

Table 1: Optimal parameter values

N_neurons Alpha Pairwise_metric Batch_size Score

1100 0.0156 Euclidean 256 0.9437
1300 0.0762 Cosine 512 0.9718
1400 0.0044 Euclidean 256 0.9577
1500 0.0762 Manhattan 256 0.9577
1900 0.0866 Cosine 128 0.9718
1800 0.0866 Cosine 128 0.9718
1900 0.0156 Manhattan 1024 0.0000
1900 0.0764 City block 64 0.9859
1000 0.0156 City block 64 0.0000
1000 0.0156 Manhattan 1024 0.0000

Table 2: Dataset details

Class names No. of samples

Coronary heart disease 78
Pneumonia 78
Healthy 78
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Fig. 6 represents a detailed investigation of the SADTL-TIADD approach during the Training
phase. Fig. 6a portrays the confusion matrix offered by the SADTL-TIADD technique. The figure
demonstrated that the SADTL-TIADD model had identified 54 instances under class 1, 57 instances
under class 2, and 52 instances under class 3. Afterwards, Fig. 6b illustrates the precision-recall
analysis of the SADTL-TIADD model. The figures stated that the SADTL-TIADD technique had
obtained maximal performance over distinct classes. Lastly, Fig. 6c illustrates the ROC investigation
of the SADTL-TIADD model. The figure revealed that the SADTL-TIADD technique had obtained
superior ROC values under distinct class labels.

(c)(b)

(a)

Figure 6: Classification analysis of SADTL-TIADD approach under training phase (a) confusion
matrix, (b) precision-recall, and (c) ROC curve

Fig. 7 showcases a brief investigation of the SADTL-TIADD technique during the testing phase.
Fig. 7a depicts the confusion matrix offered by the SADTL-TIADD system. The figure stated that
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the SADTL-TIADD methodology had identified 24 instances under class 1, 21 instances under
class 2, and 25 instances under class 3. Next, Fig. 7b demonstrates the precision-recall analysis of
the SADTL-TIADD approach. The figures reported that the SADTL-TIADD model had obtained
higher performance over distinct classes. Finally, Fig. 7c depicts the ROC investigation of the SADTL-
TIADD technique. The figure stated that the SADTL-TIADD model had obtained higher ROC values
under distinct class labels.

(c)(b)

(a)

Figure 7: Classification analysis of SADTL-TIADD approach under testing phase (a) confusion
matrix, (b) precision-recall, and (c) ROC curve

Table 3 provides comprehensive classification results offered by the SADTL-TIADD model. The
experimental values indicate that the SADTL-TIADD approach has achieved effectual performance
in all aspects.
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Table 3: Result analysis of the SADTL-TIADD approach with distinct measures

Metrics Training set Testing set Average
values

Accuracy 100 98.59 99.30
Precision 100 98.48 99.24
Recall 100 98.72 99.36
F1-score 100 98.57 99.29
AUC score 100 99.85 99.93

For sample, on the training set, the SADTL-TIADD model has achieved accuy of 100%, precn of
100%, recal of 100%, F1score of 100%, and AUCscore of 100%. At the same time, on the testing set, the
SADTL-TIADD approach has accomplished accuy of 98.59%, precn of 98.48%, recal of 98.72%, F1score

of 98.57%, and AUCscore of 99.85%.

To demonstrate the enhanced performance of the SADTL-TIADD approach, a brief comparison
study with recent models is carried out in Table 4 [18]. The experimental values inferred that the
GF, SVM, Geometric Features using Sparse Representation-based Classification (GF-SRC), and
K-Nearest Neighbor (KNN) models had reported lower accuy values of 75.96%, 76.16%, 79.34%,
and 74.69% respectively. Moreover, the GA-SVM model has reached a moderately improved accuy

of 82.93%. Next, the Automated IoT and Synergic Deep Learning based Tongue Color Image
(ASDLTCI) model has resulted in a reasonable accuy of 97.93%.

Table 4: Comparative analysis of the SADTL-TIADD approach with recent algorithms

Methods Accuracy (%)

SADTL-TIADD 99.30
ASDLTCI model 97.93
GF model 75.96
SVM 76.16
GA-SVM 82.93
GF-SRC 79.34
KNN algorithm 74.69

However, the presented SADTL-TIADD model outperformed the other models with a higher
accuy of 99.30%. From the detailed results and discussion, it can be confirmed that the SADTL-
TIADD model has shown enhanced performance over other models.

5 Conclusion

This study established a novel SADTL-TIADD system for detecting and classifying diseases
using tongue images. To accomplish this, the SADTL-TIADD approach initially BF-based pre-
processing and CLAHE-based contrast enhancement. Next, the presented SADTL-TIADD technique
employed an EfficientNet-based feature extractor to generate useful feature vectors. For disease
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detection and classification, the SA with the ELM model is applied, and using SA enhances the
classification efficiency. A wide-ranging set of simulations was performed to ensure the improved
performance of the SADTL-TIADD system. The experimental outcomes highlighted the superior
of the presented SADTL-TIADD algorithm over the compared methods. Therefore, the SADTL-
TIADD technique can be employed for productive tongue image analysis. In the future, the SADTL-
TIADD methodology’s performance will be enhanced using feature reduction techniques.
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