
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.035389
Article

Levy Flight Firefly Based Efficient Resource Allocation for Fog Environment

Anu* and Anita Singhrova

Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India
*Corresponding Author: Anu. Email: aujlan77anu@gmail.com

Received: 18 August 2022; Accepted: 22 December 2022

Abstract: Fog computing is an emergent and powerful computing paradigm to
serve latency-sensitive applications by executing internet of things (IoT) appli-
cations in the proximity of the network. Fog computing offers computational
and storage services between cloud and terminal devices. However, an efficient
resource allocation to execute the IoT applications in a fog environment is
still challenging due to limited resource availability and low delay requirement
of services. A large number of heterogeneous shareable resources makes fog
computing a complex environment. In the sight of these issues, this paper has
proposed an efficient levy flight firefly-based resource allocation technique.
The levy flight algorithm is a metaheuristic algorithm. It offers high efficiency
and success rate because of its longer step length and fast convergence rate.
Thus, it treats global optimization problems more efficiently and naturally. A
system framework for fog computing is presented, followed by the proposed
resource allocation scheme in the fog computing environment. Experimental
evaluation and comparison with the firefly algorithm (FA), particle swarm
optimization (PSO), genetic algorithm (GA) and hybrid algorithm using
GA and PSO (GAPSO) have been conducted to validate the effectiveness
and efficiency of the proposed algorithm. Simulation results show that the
proposed algorithm performs efficient resource allocation and improves the
quality of service (QoS). The proposed algorithm reduces average waiting
time, average execution time, average turnaround time, processing cost and
energy consumption and increases resource utilization and task success rate
compared to FA, GAPSO, PSO and GA.

Keywords: Fog computing; resource allocation; firefly; IoT; cloud

1 Introduction

An enormous amount of data is generated with the exponential growth of the networks. Data is
being forwarded to the cloud for further processing in traditional networking [1]. Transmitting the
massive amount of computing data generated by a number of internet of things (IoT) devices can
cause extensive delay, increased response time, impaired service experience and bandwidth bottleneck

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.035389
https://www.techscience.com/doi/10.32604/iasc.2023.035389
mailto:aujlan77anu@gmail.com

200 IASC, 2023, vol.37, no.1

of network if cloud computing mode is espoused for processing [2,3]. These problems can be solved
by introducing an intermediate layer between the cloud and IoT devices for processing the data.
Therefore, a key technology, termed fog computing, was developed, which works as an intermediary
between the cloud and the edge of the network [4]. Fog computing is an expansion of cloud computing
that puts storage and computational capabilities nearer to the IoT devices so that network congestion,
latency, and response time can be minimized [5]. Therefore, fog computing is also named “cloud to
the ground” that enables the cloud capabilities near to end-user [6].

The fog layer consists of several geographically distributed highly virtualized fog servers that
bridges IoT users and the cloud [3]. Each fog server is analogous to the lightweight cloud datacenter
equipping on-board storage, computation and communication facility so that cloud-based services
can be moved nearer to edge devices resulting in low latency, reduced network traffic, less power
consumption and minimized operational cost [7]. Local devices with sufficient processing, storage and
networking power to compute latency-sensitive tasks, such as gateways, routers, controllers, embedded
servers etc., can function as fog nodes in a fog environment [4]. Placing resources close to the edge
of the network helps end users’ requests reach the computing node in a minimum time to optimize
the processing time of tasks. Small, critical and latency-sensitive tasks are prioritized for processing
in the fog computing layer due to the restricted power of fog nodes. However, when fog computing
resources are insufficient to process any task, the cloud helps to meet the expanding demands for
large-scale computation-insensitive applications. Although fog computing offers numerous benefits,
this is still a very challenging paradigm, and researchers face many difficulties regarding resource
allocation. The issue of resource allocation in fog computing is very dissimilar to cloud computing
[8]. Cloud datacenters are much more robust in performance than fog nodes, whereas fog nodes have
limited capacity-constrained resources to compute massive amounts of data. Therefore, fog nodes do
not match the processing and storage capabilities of dedicated cloud servers, and if these limited fog
resources are not allocated effectively, then it affects the quality of service (QoS). Thus, satisfying the
IoT user’s computing requirements and effective and optimal allocation of resources has become a
challenge for researchers. Effective resource allocation seeks enormous importance while providing
fog computing services to IoT users.

1.1 Motivation
Significant challenges in fog computing are to provide faster execution, lesser delay and efficient

resource allocation so as to fulfil QoS requirements and improve responsiveness in the highly
unpredictable, dynamic and heterogenous environment, which cannot be resolved by traditional
resource allocation methods. Hence, to achieve an optimal solution resource allocation problem is
expounded by using a metaheuristic technique. This has motivated to propose a novel method using
a metaheuristic approach to address the resource allocation problem in fog computing.

1.2 Contribution
The paper focuses on the efficient and optimal redundant allocation of resources in fog computing.

Resource allocation is a concept to determine the best available resources for user requests in the
fog environment so that all resources can be used effectively and efficiently [8]. Resource allocation
problem is an NP-hard problem, so approximation, heuristic and meta-heuristic algorithms are best

IASC, 2023, vol.37, no.1 201

suited to solve such problems in preference to exhaustive search algorithms [8]. The key contributions
of this paper are summarized underneath:

• The Levy flight-based firefly algorithm (LFFA) is proposed for efficient resource allocation.
• The proposed algorithm allocates the resources in a fog environment in an efficient manner so

that resource utilization is optimized along with minimized delay and waiting time.
• The proposed approach is assessed and contrasted with other metaheuristic resource allocation

algorithms. The simulation results validate the effectiveness of the proposed algorithm in terms
of turnaround time, resource utilization, execution time, processing cost, waiting time, task
success rate and energy consumption.

1.3 Organization of the Paper
The remaining sections of this paper are systematized as follows: Section 2 presents a literature

review in which various techniques for resource allocation are reviewed. The system architecture is
presented in Section 3. The problem is formulated in Section 4. Section 5 presents the explanation for
the proposed algorithm. Simulation results are discussed in Section 6, followed by the conclusion in
Section 7.

2 Literature Review

The resource allocation problem became more challenging in a fog environment as compared
to cloud computing. Many accomplished studies investigated several resource allocation methods
and frameworks. A resource allocation policy based upon priced time petri nets (PTPNs) to select
substantial resources autonomously from a set of pre-allocated resources was proposed in [9]. For
the purpose of encouraging profit awareness in a fog environment, a two-level hierarchical real-time
resource allocation model was expanded to guarantee the service provider minimal revenue [10].

Task priority-based resource allocation (TPRA) algorithm was a distributed fog resource alloca-
tion algorithm which was introduced to assign the computational tasks to fog resources in an efficient
manner so that the conflict of required resources for requesting tasks can be solved [11]. In order
to deal with the heterogeneity of fog nodes, diverse types of tasks, and several transmission paths
among fog nodes, an optimization problem with the objective function of minimum task delay was
established [12]. Allocation of these capacity-limited heterogeneous resources to several competing
tasks, a framework based on market equilibrium was proposed, which provided an appropriate
resource bundle to every service so that high resource utilization was achieved [13].

A fog-enabled resource management technique (ROUTER) was designed to provide efficient
services to IoT devices and to optimize the response time, energy consumption, latency and network
traffic by using particle swarm optimization (PSO) [14]. PSO with a graphics processing unit (GPU)
is used for efficient offloading in mobile edge computing to decrease energy consumption and delay
[15]. For efficient resource utilization in forecasting the mobile traffic for software-defined mobile
networks (SDMN), a nature-inspired whale optimization Algorithm (WOA) was developed [16]. An
efficient resource allocation (ERA) method and an efficient architecture were designed for resource
allocation in a fog environment. This architecture was designed using virtualization to solve the issue
of fault tolerance and resource underutilization and overutilization [17].

202 IASC, 2023, vol.37, no.1

A peer-to-peer (P2P) based architecture along with service-oriented architecture (SOA) was
designed for achieving high-quality computations and for improving the energy efficiency of networks;
a decision-based resource allocation algorithm was proposed [18]. In a dynamic resource prediction
and allocation scheme, fog nodes were ranked by using TOPSIS so that the most suitable fog node was
identified for the incoming tasks. Logistic regression, a machine learning approach, simultaneously
calculated the load of every fog node so that result was forwarded to the fog broker for future decisions
[19]. In order to achieve low latency processing requirements for the requests generated by resource-
constrained IoT devices, a latency minimum offloading technique for optimized offloading decisions
and effective resource allocation of fog nodes was proposed, which effectively alleviated the problem of
resource limitation and improved QoS [20]. An efficient resource allocation algorithm was presented
using a decision tree learning technique based upon service size, virtual machines (VM) capacity and
completion time to manage user requests to balance workload between fog and cloud computing
environment [21].

To achieve the balance between transmission delay and power consumption, a workload allocation
problem was formulated, which further decomposed into subproblems to achieve minimum power
consumption and constrained delay [22]. A firefly algorithm-based framework for efficient resource
allocation and load balancing for fair resource sharing was proposed in [23]. A metaheuristic-based
framework to deal with the heterogeneity of resources and tasks in a fog computing environment using
three metaheuristic techniques: PSO, binary particle swarm optimization (BPSO) and BAT algorithms
were presented to preserve the tradeoff between the makespan and energy consumption [24].

In a novel hybrid bio-inspired algorithm, two metaheuristic algorithms modified particle swarm
algorithm (MPSO) and the modified cat swarm algorithm (MCSO), were combined to manage
the resources in a fog environment and to minimize the response time and maximize the resource
utilization [25]. An energy-efficient algorithm was proposed to allocate the best suitable fog resources
to offloaded tasks so that computation cost was minimized [26]. Issues related to bandwidth, latency,
resource utilization and execution time were resolved with an efficient load-balancing scheduling
algorithm [27]. To maximize resource utilization, an optimized resource allocation [28] and an efficient
hyper-heuristic resource allocation algorithm were proposed. It performed heuristics using machine
learning techniques so that a better solution for workflow scheduling was achieved [29].

3 System Architecture

The system architecture for the fog environment, also depicted in Fig. 1, consists of three layers:
lower layer, intermediate layer and top layer. The lower layer, also termed as a terminal layer, consists
of the IoT devices which generate several application requests to the fog servers.

Fog servers in the intermediate layer, termed the fog layer, are responsible for receiving end-
user requests, providing services and resources to requests, delivering the response to IoT users and
delegating services to other fog or cloud servers if required [7]. Requests that cannot be processed at
the fog layer owing to a high resource requirement are directed to cloud datacenters, which exist in the
top layer, also called the cloud layer.

IASC, 2023, vol.37, no.1 203

Figure 1: System architecture

4 Problem Formulation

Resources can be of different types, such as memory, network bandwidth, processor and storage.
The main objective is to propose an efficient resource allocation in a fog environment using a multi-
objective metaheuristic optimization algorithm. Several researchers have presented various algorithms
for resource allocation, like genetic algorithm (GA), PSO, hybridization of GA and PSO (GAPSO)
etc., but they are not much effective. The proposed algorithm improves and optimizes the QoS
parameters while allocating resources. The main aim is to enhance the throughput of fog computing

204 IASC, 2023, vol.37, no.1

systems and improve QoS parameters by minimizing the processing time and cost for the tasks and
maximizing resource utilization.

4.1 Objective Function
The tasks generated by IoT devices are executed on fog nodes and cloud datacenters. A task is

described as a well-defined process which corresponds to a service request made by an end user. A
set of ‘x’ tasks is submitted so that resources are allocated for the execution of that job. Tasks are
represented by the task set {T1, T2, . . . , Tx}. Tp represents an individual task, where ‘p’ varies from 1
to x. Suppose there are ‘y’ fog nodes, {F1, F2 . . . , Fy} in the fog environment and each fog node serves
a set of tasks. An individual fog node is represented using Fq, where ‘q’ ranges from 1 to y. Every fog
node is a set of limited capacity VMs containing computation, memory and storage capabilities such
as (processing unit, memory unit and storage unit). A fog node ‘q’ can have ‘k’ VMs, {VMq,1, VMq,2,

VMq,3, . . . VMq,k }. Each VM has a set of resources denoted as {R1
q,k, R2

q,k, R3
q,k . . . , Rz

q,k }, Where Rz
q,k

represents zth resource of kth VM in qth fog node. Where z ε {CPU, storage and memory} i.e., ‘z’ is the
resource type of a VM.

4.1.1 Resource Utilization

The resource capacity of the fog node is quantified by the total number of physical resources
available. This study is focused on optimizing CPU and memory utilization. The capacity of fog device

Fq resources can be represented as �Fq =
(
�c

Fq
, �mm

Fq

)
where �c

Fq
represents maximum CPU capacity

and �mm
Fq

represents maximum memory of Fq. The maximum workload (WLFq) of a qth fog device
within a time interval t = (t1 − t2) is defined using Eq. (1).

WLFq (t) = α
∑t2

t=t1
�c

Fq
(t) + (1 − α)

∑t2

t=t1
�mm

Fq
(t) (1)

where α ε [0, 1] and �c
Fq

, �mm
Fq

lies between 0 to 100

Every task Tp requests a set of resources such as (Rc
Tp

, Rmm
Tp

) so that task is processed successfully.

The workload (WLTp) for task Tp can be defined using Eq. (2).

WLTp (t) = α
∑t2

t=t1
Rc

Tp
(t) + (1 − α)

∑t2

t=t1
Rmm

Tp
(t) (2)

Each task must be assigned to an appropriate fog device for processing in such a way that the
maximum workload of a fog device Fq should always be more than the workload consumed by a task
Tp i.e.,

WLTp (t) ≤ WLFq (t) , ∀ (p, q, t) (3)

Resource utilization (RUTp
Fq) of a fog device Fq to process task Tp is given as:

RUTp
Fq = WLTp (t) /WLFq (t) ∗ 100, ∀ (p, q) (4)

4.1.2 Processing Cost

The processing cost of a task Tp depends upon the capacity of allocated computing resources like
CPU and memory. The processing time (PTFq

Tp) of a requested task Tp depends upon its size (STp) and

IASC, 2023, vol.37, no.1 205

capacity of CPU (CPUFq
Tp) of allocated computing device Fq.

PTFq
Tp = STp /CPUFq

Tp , ∀ (p, q) (5)

Thus, the CPU computing cost
(
Pθ

c
TpFq

)
of task Tp for using CPU of Fq is defined as :

Pθ
c
TpFq

=
(
PTFq

Tp ∗ Pθ
c
Fq

)
/ t1, ∀ (p, q) (6)

where, Pθ
c
Fq

is CPU computing cost of allocated device for unit time interval t1.

Task Tp requires some amount of memory of computing device Fq till completion of processing.
Thus, the memory cost (Pθ

mm
TpFq

) for task Tp can be defined as:

Pθ
mm
TpFq

=
(
PTFq

Tp ∗ Pθ
mm
Fq

)
/ t1, ∀ (p, q) (7)

where the memory cost of an assigned computing device for unit time interval t1 is given as Pθ
mm
Fq

.

As a result, the processing cost for task Tp allocated to computing device Fq is defined as follows:

PθTpFq = Pθ
c
TpFq

+ Pθ
mm
TpFq

, ∀ (p, q) (8)

4.1.3 Turnaround Time

Turnaround time (TAT) is the total time taken to complete a task or fulfil the user’s request. It
encompasses the execution time (ET) and waiting time (WT).

Turnaround Time (TATTp
Fq) = ETTp

Fq + WTTp (9)

where, TATTp
Fq is the turnaround time of task Tp allocated to the Fq.

Execution time (ETTp
Fq) of task Tp allocated to the Fq is the most prominent parameter for

measuring the efficiency and performance of the fog device, which is given as:

Execution Time
(

ETTp
Fq

)
= STp/CPUmips (10)

where, STp is the total size of task Tp and CPUmips is the average processing power of a CPU requires
to execute task Tp. Waiting time

(
WTTp

)
of task Tp is the time between the reception of the task by

the fog device and starting time of execution.

Waiting Time
(
WTTp

) = Execution Start Time − Task Reception Time (11)

The main objective of the proposed algorithm is to allocate the resources to tasks in an efficient
manner so that resource utilization can be maximized and total processing cost and turnaround time
of task can be minimized.

Maximize RUTp
Fq (12)

Minimize PθTpFq , TATTp
Fq

Subject to constraints

(i) The workload consumed by a task Tp should always be less than the maximum workload of a
fog device Fq i.e.,

∑x

Tp=1 WLTp (t) ≤ WLFq (t)

206 IASC, 2023, vol.37, no.1

(ii) The requested amount of CPU by a task should always be less than the maximum capacity of
CPU of Fq i.e.,

∑y

Fq=1R
c
Fq

(t) ≤ �c
Fq

(t)
(iii) The requested amount of memory by a task should always be less than the maximum capacity

of the memory of Fq i.e.,
∑y

Fq=1R
mm
Fq

(t) ≤ �mm
Fq

(t)
(iv) Resource utilization should always be less than 100 percent i.e.,

∑y

Fq=1RUFq ≤ 100

5 Proposed Algorithm

The process of resource allocation for a requested task is done in an optimized and efficient way
by using a proposed levy flight-based firefly algorithm [30,31].

5.1 Existing Firefly Algorithm
The firefly algorithm is a metaheuristic bio-inspired algorithm based on fireflies flashing and

attractiveness behaviour, which provides two significant benefits over other algorithms. The automatic
subdivision of population and control over randomness to speed up the convergence makes it highly
suitable to deal with resource optimization problem. In this algorithm, solutions are generated
randomly, and those solutions are considered fireflies. Then the brightness of each firefly will be
calculated depending on the objective function. This algorithm works on the principle of attractiveness,
i.e., each firefly is being attracted towards a brighter firefly, and in case no firefly is brighter, then the
movement of the firefly will be random. This algorithm will notify the best available resources for
tasks [32]. If any task does not find any suitable resource, then resources will be allocated randomly.
The FA involves the following steps:

a. Initialization: Initialize the fireflies, number of iterations, initial population of fireflies and
attractiveness function.

b. Fitness Function: The quality of solutions can be evaluated by calculating the fitness function.
c. Attractiveness Calculation: The attractiveness of each firefly is calculated with respect to other

fireflies. The fitness of each firefly is directly proportional to its attractiveness value.
d. Movement Towards Brighter Firefly: The attractiveness or brightness of each of firefly is

calculated and compared with other fireflies. During every iteration, the fittest firefly is
selected, and the firefly moves towards the optimal solution, i.e., brighter firefly. The fewer
bright firefly will always attract towards the brighter fireflies.

if
(
Attrj > Attri

)
then move firefly ‘i

‘

towards firefly ‘j

‘

(13)

The movement of ith firefly at position ui moving to a more attractive jth firefly at position uj. is
given as:

ui (t + 1) = ui (t) + β0e−γ r2 (
ui − uj

) + αεi (14)

where β0 is the attractiveness value, and it is directly relative to the fitness value. β0e−γ r2 is the
attractiveness value between two fireflies ui and uj. Attractiveness (β0) varies according to the distance
r between two fireflies. The distance r between ith and jth fireflies is given by Eq. (15).

rij =
√∑(

ui − uj

)2
(15)

IASC, 2023, vol.37, no.1 207

αεi is a randomization parameter. If β0 = 0, then firefly moves randomly based on Eq. (16).

ui (t + 1) = ui (t) + αεi (16)

The attractiveness of the firefly at the new position is compared with the attractiveness at the old
position. If a new position generates a higher attractiveness value, then the firefly moves towards that
position. Otherwise, it will remain at its current position. The firefly will move randomly in case no
brighter firefly is found. After the attainment of the termination criterion, it will give the best and
optimal solution.

e. Ranking: Global best solution is being identified by sorting the fireflies population according
to their fitness value.

5.2 Proposed Levy Flight Firefly Algorithm (LFFA)
By combining the characteristics of levy flight with three idealized rules, a new algorithm LFFA

is proposed. Several studies have demonstrated that many animals, birds as well as insects follow the
characteristics of levy flight which is a random flight procedure having variable step length [33]. In
a levy flight, the length between two consecutive direction changes and the span of flight are drawn
from a probability distribution. Numerical studies analyzed that the levy flight algorithm is superior
to classic algorithms in case of efficiency and success rate. The typical characteristics of levy flights
are further applied to several optimization problems to enhance the capability of algorithms.

In LFFA, the firefly ‘i’ is moved towards a brighter firefly ‘j’ using Eq. (17).

ui (t + 1) = ui (t) + β0e−γ r2 (
ui − uj

) + α sign
[

rand − 1
2

]
⊕ Levy (λ) (17)

In Eq. (17), the first term depicts the current position, the second term is for attraction, and the
third term is randomization due to levy flight having α as the randomization parameter. The meaning
of product ⊕ is entry-wise multiplications. The sign [rand-1/2] is a random direction where rand ε [0,
1]. Random step length is taken from levy distribution which has infinite variance having an infinite
mean. In this modified version of the firefly, random walk is via levy flight which is more efficient for
exploring the search space because of its longer step length. LFFA convergence is faster than other
metaheuristic algorithms, so it treats global optimization problems more efficiently and naturally.
LFFA never get stuck in local optima because it has the ability to find local optima as well as global
optima simultaneously in a very effective manner, so the search space is enlarged and more uniform,
as well as strengthens the movement ability of fireflies.

Levy flight follows Levy Distribution (LD) which is difficult to achieve. There are various methods
to achieve the step size samples, but the Mantegna algorithm [34] provides a direct and efficient
approach. The mathematical expression to simulate flight path using the Mantegna algorithm is
presented as:

Levy (λ) = g

|h| 1
ϒ

(18)

Here ϒ is a real parameter, g and h follow the normal distribution (N).

g ≈ N
(
0, σ 2

g

)
and h ≈ N

(
0, σ 2

h

)
(19)

208 IASC, 2023, vol.37, no.1

where σh = 1 and σg can be calculated as:

σg =
{

 (1 + ϒ) sin
(

ϒ

2
π

)
ϒ

(
1 + ϒ

2

)
2ϒ− 1

2

} 1
ϒ

, (20)

where
 is a gamma function, ϒ = 1.5 [34].

LFFA is a metaheuristic technique used to allocate efficient resources to tasks generated by IoT
users. In the proposed algorithm, firstly, VMs are sorted on the basis of their speed then tasks are
assigned to the sorted list of VMs. The fireflies are the set of schedules. A schedule is a mapping of
task over a VM. Each firefly has its own position and fitness value. The proposed algorithm finds
a suitable VM with sufficient resources, providing minimum cost and processing time for every real-
time activity. Hence, three types of QoS parameters to find the best available VM i.e., execution time,
processing cost and resource utilization, were introduced to find the best available VM. The proposed
multi-objective fitness function, F(x), using three QoS parameters, is defined in Eq. (21).

Fitness Function, F (x) = α1∗ETTp
Fq + α2∗ PθTpFq + α3∗ 1

RUTp
Fq

(21)

The pseudocode of LFFA is given in Fig. 2.

Input: List of Schedules. A schedule is a mapping of tasks over VM.
Output: Best available VMs allocated to tasks.

1) Define Objective Function f(x) for all fireflies.
2) Initialize all parameters, define initial position of firefly, fitness and brightness of each firefly.
3) While (t< MaxGeneration) or (Stop Criterion)
4) for all fireflies do
5) Compute Fitness Function, F(x) as given in Eq. (21)
6) end for all fireflies
7) for each fireflyi do
8) for each fireflyj do
9) compute the attractiveness of fireflyj in view of fireflyi

10) end for fireflyj

11) end for fireflyi

12) for each fireflyi do
13) for each fireflyj do
14) Find the maximum attractiveness and its position
15) move fireflyj towards fireflyi according to Eqs. (17-20)
16) end for fireflyj

17) end for fireflyi

18) Rank fireflies and find the best and optimal firefly
19) end while stop criterion reached
20) end of algorithm

Figure 2: Pseudocode for proposed LFFA

The optimization of fireflies is dependent upon their respective fitness values. By using the fitness
function given in Eq. (21), the fittest VM is selected for upcoming tasks. The fittest VM is one that
executes the tasks within minimum time and cost with maximum resource utilization. The fitness
value of each firefly is evaluated, and a firefly with a minimum fitness value will be treated as a
brighter firefly. Unassigned tasks check for brighter firefly and move toward brighter firefly using
Eq. (17). If no brighter firefly is found unassigned tasks will move randomly using Eqs. (18)–(20). The
continuous LFFA cannot be applied directly to solve discrete optimization problems such as resource
allocation. Modified metaheuristic optimization techniques are used for discrete problems. In this

IASC, 2023, vol.37, no.1 209

study, the smallest position value (SPV) rule proposed by Tasgetiren et al. [35] is being used so that
continuous optimization techniques can be applied to solve all discrete computational problems.

6 Simulation and Results

The PureEdgeSim simulator is used to implement and evaluate the proposed algorithm. PureEd-
geSim is a simulation toolkit used to simulate the various resource management techniques in
cloud, edge and fog environments and evaluate the performance of these environments in terms
of resource utilization, delays, energy consumption, network utilization, task success rate etc. This
section discusses the simulator and simulation parameters. The simulation results show that LFFA
shows promising results in terms of resource utilization, execution time, waiting time, turnaround
time, processing cost and energy consumption in comparison to other resource allocation techniques.
Table 1 lists the simulation parameters that are employed to run the simulation and capture the results
of the performance metrics. The simulation parameters for LFFA are shown in Table 2 [30,34,36].

Table 1: Simulation parameters

Parameter Range of values

Number of edge devices 10–500
Total VMs in fog layer 2–50
MIPS 2000
RAM 4 GB
Bandwidth 300 mbps
VM policy Space shared
Storage 20 GB
Number of tasks 10–2000
Task length 100–2000 MIPS

Table 2: LFFA parameters

Parameter Values

Number of fireflies 10
α [0, 1]
β 1.0
γ 1.0
ϒ 1.5

 0.05
Number of iterations 10
α1, α2, α3 0.5, 0.2, 0.3

The number of tasks increases as the edge devices increase, and resources allocated to tasks are not
the same in all iterations. Resources are allocated to the tasks depending upon their availability and
quality of service. The QoS of the resources depends upon various parameters such as availability,

210 IASC, 2023, vol.37, no.1

energy consumption, remaining battery power, execution delay etc. In the proposed algorithm,
efficient resources are chosen to provide better performance in a fog environment. As set up for
evaluation, this study considers different applications, mainly augmented reality, smart home, heavy
computer applications and e-health applications, where each request has different resource and
delay requirements. Each of these applications has different resource and delay requirements. Every
algorithm is executed for 10 simulation runs, and then after 10 runs mean value is considered for every
parameter, which is represented using PV in Eq. (22). The performance improvement rate () of the
proposed algorithm is shown in Tables 3–9. The is used to evaluate the rate of improvement for the
mth algorithm w.r.t. nth algorithm, which is calculated using Eq. (22).

(P l) (%) =
(∑

m PV − ∑
n PV∑

n PV

)
∗ 100 (22)

Table 3: Performance improvement rate of average waiting time

Average waiting time (in sec) w.r.t. LFFA (in percentage)
Edge devices LFFA FA GAPSO PSO GA over FA over GAPSO over PSO over GA
10 0.024 0.028 0.029 0.036 0.047 −13.21 −16.18 −32.31 −48.30
50 0.031 0.038 0.039 0.047 0.059 −17.94 −20.87 −33.83 −47.64
100 0.032 0.039 0.042 0.052 0.066 −19.23 −25.18 −39.77 −52.34
150 0.039 0.044 0.048 0.062 0.079 −12.50 −19.96 −37.60 −51.20
200 0.050 0.053 0.056 0.080 0.087 −5.32 −11.07 −37.71 −42.82
250 0.057 0.061 0.080 0.090 0.100 −6.87 −28.79 −36.71 −43.16
300 0.073 0.083 0.099 0.120 0.142 −12.11 −26.26 −39.12 −48.42

Table 4: Performance improvement rate of average execution time

Average execution time (in sec) w.r.t. LFFA (in percentage)
Edge devices LFFA FA GAPSO PSO GA over FA over GAPSO over PSO over GA
10 0.423 0.450 0.475 0.531 0.580 −5.91 −10.79 −20.31 −27.07
50 0.479 0.498 0.529 0.584 0.642 −3.66 −9.36 −17.84 −25.34
100 0.533 0.541 0.610 0.660 0.719 −1.55 −12.72 −19.31 −25.91
150 0.587 0.617 0.684 0.768 0.846 −4.74 −14.19 −23.54 −30.55
200 0.641 0.685 0.760 0.812 0.872 −6.39 −15.61 −21.05 −26.46
250 0.682 0.747 0.803 0.876 0.949 −8.79 −15.16 −22.16 −28.18
300 0.738 0.801 0.879 1.033 1.150 −7.87 −16.05 −28.56 −35.83

Table 5: Performance improvement rate of average turnaround time

Average turnaround time (in sec) w.r.t. LFFA (in percentage)
Edge devices LFFA FA GAPSO PSO GA over firefly over GAPSO over PSO over GA
10 0.448 0.478 0.503 0.567 0.627 −6.34 −11.10 −21.07 −28.66
50 0.511 0.536 0.568 0.631 0.702 −4.67 −10.15 −19.03 −27.23
100 0.564 0.580 0.652 0.712 0.785 −2.74 −13.52 −20.81 −28.13
150 0.626 0.661 0.733 0.830 0.925 −5.25 −14.57 −24.58 −32.31
200 0.691 0.738 0.816 0.892 0.959 −6.32 −15.30 −22.55 −27.95
250 0.739 0.808 0.883 0.966 1.049 −8.65 −16.39 −23.51 −29.61
300 0.811 0.884 0.979 1.153 1.292 −8.27 −17.09 −29.66 −37.21

IASC, 2023, vol.37, no.1 211

Table 6: Performance improvement rate of resource utilization

Resource utilization (in percentage) w.r.t. LFFA (in percentage)
Edge devices LFFA FA GAPSO PSO GA over firefly over GAPSO over PSO over GA
10 0.094 0.088 0.081 0.068 0.064 7.04 16.42 38.68 47.57
50 0.104 0.098 0.092 0.078 0.074 6.21 13.48 33.85 40.23
100 0.152 0.139 0.127 0.110 0.105 9.44 19.42 38.47 44.67
150 0.184 0.170 0.158 0.149 0.122 8.23 16.51 23.29 50.86
200 0.245 0.210 0.209 0.178 0.167 16.43 17.10 37.67 46.67
250 0.313 0.300 0.278 0.227 0.218 4.33 12.72 38.15 43.47
300 0.357 0.338 0.318 0.265 0.241 5.41 12.11 34.63 47.86

Table 7: Performance improvement rate of processing cost

Processing cost (in term of time units) w.r.t. LFFA (in percentage)
Edge devices LFFA FA GAPSO PSO GA over firefly over GAPSO over PSO over GA
10 2.230 2.491 2.922 3.240 4.120 −10.48 −23.68 −31.17 −45.87
50 3.420 3.822 4.150 5.320 5.900 −10.52 −17.59 −35.71 −42.03
100 4.060 5.201 5.670 6.020 7.130 −21.94 −28.40 −32.56 −43.06
150 5.710 6.003 6.290 8.470 9.560 −4.88 −9.22 −32.59 −40.27
200 6.630 7.441 8.270 9.560 11.210 −10.90 −19.83 −30.65 −40.86
250 7.720 8.650 9.460 10.980 12.090 −10.75 −18.39 −29.69 −36.15
300 8.260 8.995 10.110 12.060 13.870 −8.17 −18.30 −31.51 −40.45

Table 8: Performance improvement rate of task success rate

Task success rate (in percentage) w.r.t. LFFA (in percentage)
Edge devices LFFA FA GAPSO PSO GA over firefly over GAPSO over PSO over GA
10 98.00 97.00 92.00 90.00 90.00 1.03 6.52 8.89 8.89
50 97.77 96.00 90.20 88.50 88.00 1.84 8.39 10.47 11.10
100 94.69 93.01 90.00 87.12 86.00 1.81 5.21 8.69 10.10
150 92.50 91.20 89.67 86.54 82.25 1.43 3.16 6.89 12.46
200 92.10 90.00 89.12 85.23 81.65 2.33 3.34 8.06 12.80
250 91.98 89.31 87.23 85.00 80.23 2.99 5.45 8.21 14.65
300 91.83 89.00 86.12 84.98 80.02 3.18 6.63 8.06 14.76

Table 9: Performance improvement rate of energy consumption

Energy consumption (in Wh) w.r.t. LFFA (in percentage)
Edge devices LFFA FA GAPSO PSO GA over firefly over GAPSO over PSO over GA
10 2.233 2.372 2.413 3.088 3.224 −5.87 −7.47 −27.69 −30.75
50 3.456 3.790 4.000 4.470 4.840 −8.82 −13.61 −22.69 −28.60
100 4.762 4.813 5.165 5.821 6.357 −1.06 −7.79 −18.19 −25.08
150 6.058 6.210 6.454 6.919 8.086 −2.44 −6.14 −12.44 −25.08
200 7.003 7.412 7.802 8.056 9.121 −5.51 −10.23 −13.07 −23.22
250 8.142 8.773 8.892 9.774 10.659 −7.20 −8.44 −16.70 −23.62
300 8.198 8.902 9.023 10.129 11.125 −7.91 −9.14 −19.06 −26.31

212 IASC, 2023, vol.37, no.1

6.1 Average Waiting Time
Time taken by a task in the waiting queue to get the best available resource is known as waiting

time. The average waiting time of ‘x’ tasks is defined in Eq. (23), and evaluated values for different
algorithms are presented in Fig. 3.

Average waiting time =
∑x

i=1
(Turnaround time − burst time)/x (23)

In comparison to other algorithms average waiting time of the proposed algorithm is significantly
less. This is due to the fact that resources which have the capacity to serve the incoming requests are
only included in search space, and resources which are ineligible to process the request are kept out
of search space. Hence waiting time gets minimized. The convergence rate of the firefly algorithm is
better than other metaheuristic algorithms, so the waiting time is less than other algorithms. The lesser
value is desired in case of average waiting time, execution time, turnaround time, processing cost and
energy consumption. The negative values in Tables 3–5, 7 and 9 depict the improvement, as LFFA
minimizes these parameters w.r.t FA [32], GAPSO [37], PSO [24] and GA [38].

0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160

10 50 100 150 200 250 300

T
im

e
in

 S
ec

on
ds

Number of Edge Deices

Average Waiting Time

LFFA FA GAPSO PSO GA

Figure 3: Average waiting time

6.2 Execution Time
Execution time is the amount of time taken by a task for its execution, and it is evaluated

using Eq. (10). The result of execution time for different resource allocation algorithms with different
numbers of edge devices is shown in Fig. 4. The number of edge devices considered in this experiment
range from 10 to 300. The simulation results revealed that the LFFA outperforms other resource
allocation algorithms. GA algorithm has the worst execution time compared to other algorithms. The
LFFA leads to minimized delay resulting in minimized execution time, further improving the response
time.

6.3 Average Turnaround Time
Turnaround time is evaluated by adding the execution time and waiting time and is defined using

Eq. (9). For the proposed algorithms, execution time and waiting time are better than other algorithms,
and so is turnaround time. The average turnaround time is shown in Fig. 5.

IASC, 2023, vol.37, no.1 213

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

10 50 100 150 200 250 300
T

im
e

in
 S

ec
on

ds
Number of Edge Devices

Average Execution Time

LFFA FA GAPSO PSO GA

Figure 4: Average execution time

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

10 50 100 150 200 250 300

T
im

e
in

 S
ec

on
ds

Number of Edge Devices

Average Turnaround Time

LFFA FA GAPSO PSO GA

Figure 5: Average turnaround time

6.4 Average Resource Utilization
The main objective of the proposed algorithm is to maximize resource utilization. In the proposed

algorithm, the fitness value is determined in such a way that resource utilization is maximized, which is
evaluated using Eq. (4). For any resource to become a brighter firefly, it must fulfil the fitness function
condition. After analysis, it has been inferred that the resource utilization ratio has increased for the
proposed algorithm as the number of edge devices has increased. The same is shown in Fig. 6.

0.000
0.050
0.100
0.150
0.200
0.250
0.300
0.350
0.400

10 50 100 150 200 250 300

%
 o

f
 U

til
iz

at
io

n

Number of Edge Devices

Resource Utilization

LFFA FA GAPSO PSO GA

Figure 6: Resource utilization

214 IASC, 2023, vol.37, no.1

6.5 Processing Cost
The processing cost of a task depends upon the capacity of allocated computing resources like

CPU and memory, as defined in Eq. (8). Full data processing at fog nodes results in higher costs and
forwarding all data to the cloud increases delay. The main objective of the proposed algorithm is to
find the balance between processing cost and other QoS parameters. Fig. 7 shows that the proposed
algorithm supersedes all other algorithms and performs computations with minimal cost.

After evaluation of for all parameters, it has been observed that the proposed algorithm shows
better results than FA, GAPSO, GA and PSO algorithm.

0.000

5.000

10.000

15.000

10 50 100 150 200 250 300C
os

t i
n

te
m

s
of

 T
im

e
U

ni
t

Number of Edge Devices

Processing Cost

LFFA FA GAPSO PSO GA

Figure 7: Processing cost

7 Analysis

For the optimization algorithm, QoS parameters, namely task success rate and energy consump-
tion, have been considered and are discussed in this section.

QoS = f (Task Success Rate, Energy Consumption)

7.1 Task Success Rate
Analysis of successfully executed tasks by using different resource allocation algorithms is shown

in Fig. 8. It has been observed that the percentage of successfully executed tasks is better when LFFA
is used than other metaheuristic algorithms.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

10 50 100 150 200 250 300

%
ag

e
of

 T
as

ks
 E

xe
cu

te
d

Number of Edge Devices

Task Success Rate

LFA Firefly GAPSO PSo GA

Figure 8: Task success rate

IASC, 2023, vol.37, no.1 215

In the firefly algorithm, the resource that matches the requirements of upcoming tasks is
considered a brighter one and gets allocated to tasks so that the failure ratio is minimized and the
task success rate is increased as compared to other algorithms. Total tasks successfully executed can
be evaluated using the Eq. (24).

Task Success Rate (TSR) = Total number of successfully completed tasks
Total generated tasks

(24)

7.2 Energy Consumption
The energy consumption problem is solved by a minimization problem of task execution time and

a maximization problem of resource utilization. Fig. 9 displays the variations in energy consumption
of several algorithms. According to the observations, GA consumes more energy as the number of
devices increases, while LFFA is showing better results among all comparative algorithms. The energy
consumption of a resource can be calculated using Eq. (25).

EC = RUt∗ (ECmax − ECmin) + ECmin (25)

where EC is the total energy consumed by a resource, RUt is the resource utilization at a time ‘t’, ECmax

is the maximum energy consumption by a resource at the highest load, and ECmin is the minimum
energy consumption when the resource is in idle mode.

0.000

2.000

4.000

6.000

8.000

10.000

12.000

10 50 100 150 200 250 300

E
ne

rg
y

in
 W

h

Number of Edge Devices

Energy Consumption

LFFA FA GAPSO PSO GA

Figure 9: Energy consumption

7.3 Qualitative Analysis
The algorithms were compared quantitatively in earlier sections. This work also presents some

qualitative differences among these algorithms, contrasting the basic behaviour of algorithms in
Table 10.

With regard to time complexity, ‘n’ represents population size, ‘t’ is the number of iterations,
‘d’ is the dimension size, ‘g’ is the size of generations and ‘m’ is the size of individuals. It is clearly
observed that the time complexity of LFFA is equivalent to FA and better than GAPSO and GA.
The time complexity of PSO also depends on the dimension of search space, which is equal to
the number of components within a particle. For small dimensions, the time complexity is almost
similar to LFFA, but for the higher dimensions, the complexity of PSO will be equal to or greater
than O(n2t), which is more than the complexity of LFFA. So, the resultant time complexity for the
algorithms under comparison is GA > GAPSO ≥ PSO ≥ FA � LFFA. Further, the time complexity is

216 IASC, 2023, vol.37, no.1

directly proportional to computational complexity. It has been demonstrated in Table 10 that LFFA
outperforms other comparative algorithms qualitatively.

Table 10: Qualitative comparison of LFFA w.r.t different metaheuristic algorithms

Sr. No. Qualitative parameters LFFA FA GAPSO PSO GA

1. Ability to find an optimal
solution without local
search

High Low Moderate Low Low

2. Effect of population size
on computational time

Linear Linear Exponential Linear Exponential

3. Premature convergence No Sometime Yes Yes Yes
4. Stuck in local optima No Sometime Sometime Yes Yes
5. Methodology Swarm intelligence

with levy distribution
Swarm
intelligence

Swarm intelligence with
evolution strategy

Swarm
intelligence

Natural selection and
evolution strategy

6. Time complexity O(ntlog(n)) O(ntlog(n)) O(n2t) O(ndt) O(g(nmt))

Table 11: Comparative analysis of LFFA w.r.t different resource allocation algorithms

Parameters FA GAPSO PSO GA Remarks

Average waiting time −12.5 −21.18 −36.72 −47.69 Improvement
Average execution time −5.56 −13.41 −21.82 −28.48 Improvement
Average turnaround time −6.03 −14.02 −23.03 −30.16 Improvement
Resource utilization +8.15 +15.39 +34.96 +45.90 Improvement
Processing cost −11.09 −19.34 −31.98 −41.24 Improvement
Task success rate +2.09 +5.53 +8.47 +12.11 Improvement
Energy consumption −5.54 −8.97 −18.55 −26.09 Improvement

8 Conclusion

The main aim of this study is to implement effective and efficient utilization of available resources
and to reduce the latency and delay so that IoT applications can be enacted nearby the edge of the
network. This study is focused on the resource allocation problem in the area of fog computing.
The proposed algorithm supports attaining efficient resource allocation and better QoS. Then it is
compared with FA, GAPSO, GA and PSO, and a comparative analysis is presented in Table 11, which
shows that LFFA is better for allocating resources to the tasks.

The proposed algorithm reduces average waiting time by 12.5%, 21.18%, 36.72%, 47.69%, average
execution time by 5.56%, 13.41%, 21.82%, 28.48%, average turnaround time by 6.03%, 14.02%,
23.03%, 30.16%, processing cost by 11.09%, 19.34%, 31.98%, 41.24% and energy consumption by
5.54%, 8.97%, 18.55%, 26.09% w.r.t FA, GAPSO, PSO and GA but also increases resource utilization
by 8.15%, 15.39%, 34.96%, 45.90% and Task success rate by 2.09%, 5.53%, 8.47%, 12.11% in
comparison to other algorithms. The negative values depict the improvement for average waiting
time, average execution time, average turnaround time, processing cost and energy consumption, but
in the case of resource utilization and task success rate improvement is depicted by positive values. The
quantitative and qualitative analysis exhibits that the proposed LFFA performs better compared to
other metaheuristic algorithms.

IASC, 2023, vol.37, no.1 217

Acknowledgement: Authors also acknowledge the department of Computer Science and Engineering
of Deenbandhu Chhotu Ram University of Science and Technology for providing various facilities in
the research Lab.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic, “Cloud computing and emerging IT

platforms: Vision, hype, and reality for delivering computing as the 5th utility,”Future Generation Computer
Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] M. Chiang and T. Zhang, “Fog and IoT: An overview of research opportunities,” IEEE Internet of Things
Journal, vol. 3, no. 6, pp. 854–864, 2016.

[3] S. El Kafhali and K. Salah, “Efficient and dynamic scaling of fog nodes for IoT devices,” The Journal of
Supercomputing, vol. 73, no. 12, pp. 5261–5284, 2017.

[4] R. Mahmud, R. Kotagiri and R. Buyya, “Fog computing: A taxonomy, survey and future directions,” In:
B. Di Martino, K. -C. Li, L. T. Yang and A. Esposito (Eds.), Internet of Everything, Singapore: Springer
Singapore, pp. 103–130, 2018.

[5] P. Hu, S. Dhelim, H. Ning and T. Qiu, “Survey on fog computing: Architecture, key technologies,
applications and open issues,” Journal of Network and Computer Applications, vol. 98, pp. 27–42, 2017.

[6] A. A. A. Gad-Elrab and A. Y. Noaman, “A two-tier bipartite graph task allocation approach based on fuzzy
clustering in cloud–fog environment,” Future Generation Computer Systems, vol. 103, pp. 79–90, 2020.

[7] T. H. Luan, L. Gao, Z. Li, Y. Xiang, G. Wei et al., “Fog computing: Focusing on mobile users at
the edge,” ArXiv150201815 Cs, Mar. 2016, Accessed: Apr. 11, 2021. [Online]. Available: http://arxiv.org/
abs/1502.01815

[8] M. Ghobaei-Arani, A. Souri and A. A. Rahmanian, “Resource management approaches in fog computing:
A comprehensive review,” Journal of Grid Computing, vol. 18, pp. 1–42, 2019.

[9] L. Ni, J. Zhang, C. Jiang, C. Yan and K. Yu, “Resource allocation strategy in fog computing based on
priced timed petri nets,” IEEE Internet of Things Journal, vol. 4, no. 5, pp. 1216–1228, 2017.

[10] V. Kochar and A. Sarkar, “Real time resource allocation on a dynamic two-level symbiotic fog architecture,”
in 2016 Sixth Int. Symp. on Embedded Computing and System Design (ISED), Patna, India, pp. 49–55, Dec.
2016.

[11] H. Tran-Dang and D. -S. Kim, “Task priority-based resource allocation algorithm for task offloading
in fog-enabled IoT systems,” in 2021 Int. Conf. on Information Networking (ICOIN), Jeju Island, Korea
(South), pp. 674–679, Jan. 2021.

[12] C. Yin, T. Li, X. Qu and S. Yuan, “An optimization method for resource allocation in fog computing,”
in 2020 Int. Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications
(GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (Smart-
Data) and IEEE Congress on Cybermatics (Cybermatics), Rhodes, Greece, pp. 821–828, Nov. 2020.

[13] D. T. Nguyen, L. B. Le and V. K. Bhargava, “A market-based framework for multi-resource allocation in
fog computing,” IEEE/ACM Transactions on Networking, vol. 27, no. 3, pp. 1151–1164, 2019.

[14] S. S. Gill, P. Garraghan and R. Buyya, “ROUTER: Fog enabled cloud based intelligent resource man-
agement approach for smart home IoT devices,” Journal of Systems and Software, vol. 154, pp. 125–138,
2019.

[15] M. H. Mousa and M. K. Hussein, “Efficient UAV-based MEC using GPU-based PSO and voronoi
diagrams,” Computer Modelling in Engineering & Sciences, vol. 133, no. 2, pp. 413–434, 2022.

http://arxiv.org/abs/1502.01815
http://arxiv.org/abs/1502.01815

218 IASC, 2023, vol.37, no.1

[16] Anupriya and A. Singhrova, “Enhanced whale optimization-based traffic forecasting for SDMN based
traffic,” ICT Express, vol. 7, no. 2, pp. 143–151, 2021.

[17] S. Agarwal, S. Yadav and A. K. Yadav, “An efficient architecture and algorithm for resource provisioning
in fog computing,” International Journal of Information Engineering and Electronic Business, vol. 8, no. 1,
pp. 48–61, 2016.

[18] A. Basu, S. Mistry, S. Maity and S. Dutta, “A novel energy aware resource allocation algorithm into a P2P
based fog computing environment,” In: C. Badica, P. Liatsis, L. Kharb and D. Chahal (Eds.), Information,
Communication and Computing Technology, vol. 1170, Singapore: Springer Singapore, pp. 88–97, 2020.

[19] H. Bashir, S. Lee and K. H. Kim, “Resource allocation through logistic regression and multicriteria decision
making method in IoT fog computing,” Transactions on Emerging Telecommunications Technologies, vol.
33, no. 2, pp. e3824, 2019.

[20] Q. Wang and S. Chen, “Latency-minimum offloading decision and resource allocation for fog-enabled
internet of things networks,” Transactions on Emerging Telecommunications Technologies, vol. 31, no. 12,
pp. e3880, 2020.

[21] A. A. Alsaffar, H. P. Pham, C. -S. Hong, E. -N. Huh and M. Aazam, “An architecture of IoT service
delegation and resource allocation based on collaboration between fog and cloud computing,” Mobile
Information Systems, vol. 2016, pp. 1–15, 2016.

[22] R. Deng, R. Lu, C. Lai, T. H. Luan and H. Liang, “Optimal workload allocation in fog-cloud computing
towards balanced delay and power consumption,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 1171–
1181, 2016.

[23] K. Hassan, N. Javaid, F. Zafar, S. Rehman, M. Zahid et al., “A cloud fog-based framework for efficient
resource allocation using firefly algorithm,” In: L. Barolli, F. -Y. Leu, T. Enokido and H. -C. Chen (Eds.),
Advances on Broadband and Wireless Computing, Communication and Applications, vol. 25, Cham: Springer
International Publishing, pp. 431–443, 2019.

[24] S. K. Mishra, D. Puthal, J. J. P. C. Rodrigues, B. Sahoo and E. Dutkiewicz, “Sustainable service allocation
using a metaheuristic technique in a fog server for industrial applications,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 10, pp. 4497–4506, 2018.

[25] H. Rafique, M. A. Shah, S. U. Islam, T. Maqsood, S. Khan et al., “A novel bio-inspired hybrid algorithm
(NBIHA) for efficient resource management in fog computing,” IEEE Access, vol. 7, pp. 115760–115773,
2019.

[26] Q. Li, J. Zhao, Y. Gong and Q. Zhang, “Energy-efficient computation offloading and resource allocation
in fog computing for internet of everything,” China Communications, vol. 16, no. 3, pp. 32–41, 2019.

[27] M. Verma, N. Bhardwaj and A. K. Yadav, “Real time efficient scheduling algorithm for load balancing in
fog computing environment,” International Journal of Information Technology and Computer Science, vol.
8, no. 4, pp. 1–10, 2016.

[28] J. Arravinth and D. Manjula, “Multi-agent with multi objective-based optimized resource allocation on
inter-cloud,” Intelligent Automation and Soft Computing, vol. 34, no. 1, pp. 133–147, 2022.

[29] S. Kabirzadeh, D. Rahbari and M. Nickray, “A hyper heuristic algorithm for scheduling of fog networks,”
in 21st Conf. of Open Innovations Association (FRUCT), Helsinki, pp. 148–155, Nov. 2017.

[30] X. -S. Yang, “Firefly algorithm, levy flights and global optimization,” arXiv, Mar. 07, 2010. Accessed: May
21, 2022. [Online]. Available: http://arxiv.org/abs/1003.1464

[31] I. Fister, I. Fister, X. -S. Yang and J. Brest, “A comprehensive review of firefly algorithms,” Swarm and
Evolutionary Computation, vol. 13, pp. 34–46, 2013.

[32] Anu and A. Singhrova, “Optimal healthcare resource allocation in covid scenario using firefly algorithm,”
International Journal of Engineering Trends and Technology, vol. 70, no. 5, pp. 240–250, 2022.

[33] P. Barthelemy, J. Bertolotti and D. S. Wiersma, “A lévy flight for light,” Nature, vol. 453, no. 7194, pp.
495–498, 2008.

[34] R. N. Mantegna, “Fast, accurate algorithm for numerical simulation of lévy stable stochastic processes,”
Physical Review E, vol. 49, no. 5, pp. 4677–4683, 1994.

http://arxiv.org/abs/1003.1464

IASC, 2023, vol.37, no.1 219

[35] M. F. Tasgetiren, Y. -C. Liang, M. Sevkli and G. Gencyilmaz, “A particle swarm optimization algorithm for
makespan and total flowtime minimization in the permutation flowshop sequencing problem,” European
Journal of Operational Research, vol. 177, no. 3, pp. 1930–1947, 2007.

[36] S. Abedi, M. Ghobaei-Arani, E. Khorami and M. Mojarad, “Dynamic resource allocation using improved
firefly optimization algorithm in cloud environment,” Applied Artificial Intelligence, vol. 36, no. 1, pp.
e2055394(2601–2627), 2022.

[37] V. Yadav, B. V. Natesha and R. M. R. Guddeti, “GA-PSO: Service allocation in fog computing environment
using hybrid bio-inspired algorithm,” in TENCON 2019–2019 IEEE Region 10 Conf. (TENCON), Kochi,
India, pp. 1280–1285, Oct. 2019.

[38] C. Canali and R. Lancellotti, “GASP: Genetic algorithms for service placement in fog computing systems,”
Algorithms, vol. 12, no. 10, pp. 201, 2019.

	Levy Flight Firefly Based Efficient Resource Allocation for Fog Environment
	1 Introduction
	2 Literature Review
	3 System Architecture
	4 Problem Formulation
	5 Proposed Algorithm
	6 Simulation and Results
	7 Analysis
	8 Conclusion
	References

