
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.035503
Article

Hybrid Graph Partitioning with OLB Approach in Distributed Transactions

Rajesh Bharati* and Vahida Attar

Computer Engineering Department, College of Engineering, Pune, 411005, India
*Corresponding Author: Rajesh Bharati. Email: rdbharati@gmail.com

Received: 24 August 2022; Accepted: 13 January 2023

Abstract: Online Transaction Processing (OLTP) gets support from data
partitioning to achieve better performance and scalability. The primary
objective of database and application developers is to provide scalable and
reliable database systems. This research presents a novel method for data
partitioning and load balancing for scalable transactions. Data is efficiently
partitioned using the hybrid graph partitioning method. Optimized load
balancing (OLB) approach is applied to calculate the weight factor, average
workload, and partition efficiency. The presented approach is appropriate
for various online data transaction applications. The quality of the proposed
approach is examined using OLTP database benchmark. The performance of
the proposed methodology significantly outperformed with respect to metrics
like throughput, response time, and CPU utilization.

Keywords: Data–partitioning; scalability; optimization; throughput

1 Introduction

Data partitioning is always done first when creating a database for an application. To store and
handle the data, a database system must be developed in distribution. For large workloads to perform
well, partitioning method is essential [1]. The primary benefit of data partitioning is storing large
data based on their category [2]. Moreover, the data partitioning process improves the management,
performance, and accessibility of many applications. Furthermore, the partitioning process decreases
owners’ total expense for storing large data [3]. Data partitioning is utilized to access the data at
any time. The effective data partitioning process makes it more accessible from the partitions [4].
The existing data partitioning methodologies are hash partitioning, range partitioning, horizontal
partitioning and so on [5,6]. In a distributed framework, data partitioning represents the RDF data.
This is based on the arrangement of data in distributed networks [7].

Nowadays, the OLTP database is the widely utilized data processing system. In OLTP systems,
scalability is the central issue because of the increased online transactions. The scalability in data
transactions can increase the transaction throughput [8,9]. The general examples of OLTP applications
are the entry of orders, sale retails and economic transactions. The essential characteristics of OLTP
systems are lesser response time, the large many user applications, and simple transactions. In ElasTras
[9] data partitioning is done on the schema level to achieve scalability. The TPC-C benchmark with two

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.035503
https://www.techscience.com/doi/10.32604/iasc.2023.035503
mailto:rdbharati@gmail.com

764 IASC, 2023, vol.37, no.1

distinct metrics, such as response time and throughput, is evaluated at the schema level. Sauer et al. [10]
represented partitioning using a data mining approach on a horizontal database at a cloud data store.
In analysis of database cluster logs are monitored by data mining techniques. The method compares
the average result of a round-robin, k-means and no partition techniques.

The OLTP-based applications are subject to unexpected variations in workloads [11]. Hence, the
optimal data partitioning approach should support the unpredicted workloads of OLTP applications
[12,13]. The partitioning approach is utilized to reduce the performance degradation for multiple loca-
tions of transactions [14,15]. Moreover, every transaction is related, enabling the transactions to run
locally. Generally, the relational data is partitioned into horizontal and vertical manner. In horizontal
partitioning, the data tables are separated into a set of tuples. In vertical partitioning, data tables are
separated into set of disjoint columns. However, the horizontal and vertical partitioning approaches
are inefficient in real-world applications [16]. The existing methodologies in data partitioning are Hash,
Round-robin, List and Range partitioning [17]. These approaches are not capable for the increasing
number of transaction loads. Furthermore, these types of partitioning approaches are not considered
the relation among the data at the time of data partitioning. But, effective partitioning should split the
data with their associated pattern. Only some of the existing approaches partition the data better but
need to proportion the related data items [18]. Therefore, an effective data partitioning approach must
consider both effective data partitioning with most associated data items [19]. This kind of partitioning
decreases the undesirable effects of the transactions. The existing data partitioning approaches depend
on the analysis of statistical and classification examination. The limitation of these approaches is that
they do not evaluate the relevance of data in the partitions [20].

Instead of keeping whole data table in one site, table is converted into number of fragments called
partitions. Generally, hash, range, horizontal or vertical partitioning is utilized, and these types of
partitions are not effective. So, the hybrid graph partitioning approach is presented with simultaneous
graph and vertical partitions. Here, the sub partitioning is based on related data in column form. As a
result of each partition containing its related data, this technique makes data access useful. Moreover,
an innovative data partitioning approach and optimized load balancing for scalable transactions are
presented. TPC Benchmark E (TPC-E) is an OLTP database benchmark. The presented approach
partitions the TPC-E dataset into the hybridized form of vertical and graph partitioning. Here, the
partitions and the sub partitions are associated with the related data contents and thereby the data
can be retrieved from the partitioned database effectively. This process decreases the response time of
data transactions.

A hybrid graph data partitioning algorithm is proposed to efficiently fragment the database.
An improved load balancing approach is proposed to balance the workload transactions in the
data partitioning. The performance of the developed method is enhanced by scalable workload
transactions. For many applications that require online data transactions, the provided technique is
appropriate. Additionally, the TPC-E workload dataset is used to evaluate the effectiveness of the
partitioning with distributed transactions that is being provided.

The organization of this paper is described as: Section 2 reviews the recent related works, Section 3
provides the detailed description about the presented methodology, Section 4 illustrates mathematical
background, Section 5 represents results, and the paper is concluded in Section 6.

2 Related Work

Numerous recent inventions have been made by researchers that offer a consistency guarantee on
a data feature. Performance, scalability, and consistency are the main goals of such a system. The data

IASC, 2023, vol.37, no.1 765

objects accessed by transactions are retained on a single partition in graph partitioning. Schism [3] is an
automatic partitioning model it minimizes distributed transactions. This work provides a cost model
for processing a transaction that believes the number of partitions the transaction needs to access and
the overall skewness of data access. ElasTras [9] does data partitioning at the schema level to achieve
scalability. The TPC-C benchmark was assessed using two distinct measures, such as response time
and throughput. Gao et al. [21] developed a partitioning methodology for scheduling the query in
the distributed dataset. Here, the introduced method considered the TPC-H dataset for partitioning
the data. The queries are partitioned according to the expense of that data. The genetic optimization
approach is utilized to decrease the difficulties in data partitions. The Alco approach is designed on
cost based fragments.

Zhang et al. [22] developed a workload-based data partitioning and replication methodology
named as Apara. Here, two heuristic approaches were presented for effective data partitioning and
replication. Moreover, two variant cost models take place for optimal data partitions. The performance
of the data partitioning is examined with the TPC-H dataset. The presented Apara model provides
better outcomes with the TPC-H workloads. Various distributed data storages are compared in [23]
with regard to data replication, concurrency control mechanisms, key access, and data partitioning.

Zhu et al. [24] developed an approach for optimal ordering of data in numerous warehouses to
reduce data partitioning. Here, k-links heuristic clustering methodology was presented to categorize
the data optimally among various partitions. The approach represents the distribution of data items
to be decrease in number of partitions. The accurate data partition reduces the complexity of the data
transactions. This methodology was utilized for the online data partitioning. The major limitation of
the developed approach was not providing load balancing with the data partitions.

Ahirrao et al. [25] presented an innovative workload based data partitioning methodology for
scalable data transactions. This developed scalable data transaction was utilized for NoSQL cloud
data stores. The TPC-C dataset is used to evaluate the provided methodology, which operates on
scalable data. In [26] the CPU utilization efficiency performance is examined with the different existing
methodologies like RCD+ (Run time correlation discovery), RCD, and TADs (Temporal approximate
dependencies). In the study [27,28] design variables are shown to be in their best possible states,
and multi-objective optimization is used to increase the normalized values of mass, maximum
deflection and collapsing load. In [29] Data is seamlessly rearranged using a real time reconfiguration
approach, with minimal performance impact on transactions. Plans for reconfiguration prioritize
using already-existing data replicas while copying data asynchronously and concurrently from several
replicas to minimize data transfer. A secure query processing approach to ensure access control
policies safe when querying data from distributed partitions [30]. The suggested method uses vertical
partitioning to create a collection of secure sub-schemas that are kept in distinct partitions in the
distributed system.

The load balancing strategies and a review of the current data partitions have been addressed.
All the existing approaches are utilized different forms of data partitioning. But the major drawback
of existing approach is not considered better load balancing with the data partitions. Some of the
approaches provide good partitions but fail in load balancing. This affects the performance of the
system. Hence, random partitioning also affects the performance and increases the system’s complexity
and time. Therefore, the presented approach overcomes the issues in the existing and improves the
performances with the combination of hybrid graph partitioning and improved load balancing.

766 IASC, 2023, vol.37, no.1

3 Proposed Methodology

Data partitioning is used to implement the database’s scalability. Multiple partitions will be
designed from one table. When the data scales very large, we can add more nodes to store and analyze
some partitions. Additionally, it will increase the system’s ability to store and process. The primary goal
of this proposed work is to partition workload with Hybrid Graph Partitioning (HVP) and optimized
load balancing. Initially, the data items in the datasets are partitioned through the hybrid graph
partitioning approach. Afterward, the partitions efficiency and average partition loads are computed.
Furthermore, the weight factor is calculated based on these estimated measures. Finally, optimized
load balancing is performed by updating the computed weight factor. This methodology effectively
balances the load and provides optimized data partitions. This optimized load balancing enhances the
performance of the data partitions. Fig. 1 shows a schematic diagram of the proposed methodology.
Here, the weight factor is calculated based on the partition efficiency and the average partition load.
Efficiency is computed on distributed transactions and the total number of transactions executed
in partitions. It updates effective load balancing and reduces distributed transactions. In terms of
parameters the load is computed by the total amount of transactions processed on the data partition.
Efficiency depends on distributed transactions and total transactions. The weight factor is calculated
based on the average partition load and the partition efficiency.

Parameter Estimation

Workload

Average Partition
Load

Data Partitioning

Hybrid Graph
Partitioning

Scalable Load Balancing

Improved Load
Balancing

Weight Factor

Partitions
Efficiency

Optimal data
Partitioning with

Distributed
Transactions

. . .

Figure 1: Schematic diagram of Hybrid Graph Partitioning and Optimized Load Balancing Partitions

IASC, 2023, vol.37, no.1 767

3.1 Hybrid Graph Partitioning (HVP)
The main importance of using vertical partitioning is to decrease the complexity. Moreover, this

partitioning decreases the performance cost of frequent access of data items. To maintain secure data,
the most significant data is partitioned differently. Data partitioning is the distribution of a logical
database or its subcomponents into separate, independent segments.

In vertical partitioning, the input database table (T) is partitioned into number of tables
(T 1, T 2, T 3TN). Moreover, the attributes present in the tables are A1, A2, A3AN respectively.
The partitioning expressions are described as,

A1 ∪ AN = A (1)

A1 ∩ AN = A Ka (2)

∣∣A1

∣∣ >
∣∣A Ka

∣∣ (3)

∣∣AN

∣∣ ≥ ∣∣A Ka

∣∣ (4)

where, attributes union and intersection is determines frequently access data and A Ka signifies the
sub-set which consists of all the key attributes of table T . After this partitioning process, the data table
T is changed into number of partitioned tables T 1, T 2, T 3TN. By utilizing the vertical partitioning
procedure, regular table is generated and one for every sub tables. Eq. (4) represents total numbers of
derived data items from datasets are greater than total number of records. The workload in table T is
split into sub tables. If any of the queries relate to a non-key attribute, the specific result is modified
with the subsequent alternative forms.

• First alternative: Consider one query corresponding sub table is T 1,
(
T 1, �k, IDk

)
then all the

attributes are in A1. It is represented as
(
�k ⊂ A1

)
.

• Second alternative: Consider the query which corresponding to sub table T 2,
(
T 2, �k, IDk

)
, then

all the attributes are in A2. It is represented as
(
�k ⊂ A2

)
.

If two queries are in both cases, then the tables contain both attributes. The vertical partitioning is
partition the data based on column partitions. In graph based data partitioning, data table is associated
with the related contents. The graph partitioning is directly partition the data table into k set of tables.
In a graph, each row acts as a node, and edges connect tuples that represent transactions. In the
presented data partitions, both vertical and the graph based partitioning approach are hybridized for
effective data partitioning.

In hybrid graph data partitioning, data items in the table are considered as a sub-tuples. Initially,
graph is generated with a number of data items per each column and tuple. Then the edges between the
tuples are admitted using the similar transaction data. Afterwards, the graph partitioning approach
partitions the data graph into number of k balanced partitions. This graph partitioning approach
decreases the amount of cross partition transactions.

The graph partitioning is depending on the quantity of the data items and the size of partitions.
Data partitions are obtained based on the uniform load distribution. The size of partitions is computed
through the subsequent condition (5).

Spmin = Stotal

NC

∗ α (5)

768 IASC, 2023, vol.37, no.1

Spmax = Sfull

NC

∗ β (6)

α + β = 2 (7)

where, Spmin signifies the minimum size of partition, Spmax represents the maximum size of partitions,
Stotal represents the total size of data in the dataset, α and β are the variables that adjusting the
minimum and maximum size of partitions respectively. Depends on size of the data partitions made
with balanced workload.

The structure of hybrid graph partitioning is depicted in Fig. 2. The data partitioning with the
presented hybrid graph partitioning provides the effective partitioning of data with their attributes.
This provides the optimal partitions with their associated sub data. This process of partitioning makes
easier the data transactions. The presented data partitioning reduces the complexity and lesser the
response time. After the completion of data partitioning using the hybrid graph, the improved load
balancing optimization approach is presented to balance the load effectively.

Data Items Hybrid Graph
Partitioning

Figure 2: Data partitioning with hybrid graph partitioning

3.2 Optimized Load Balancing Partitions Using ILB Algorithm (OLBP)
The optimized load balancing is achieved in the data partitions using improved load balancing

methodology. In the presented load balancing methodology, the partitioned data tables and the
workloads are considered as an input. The partitions efficiency and the average load are computed,
and their weight factor is computed. Afterwards, optimal data transactions in the data partitions are
performed by updating the computed weight factor. The considered data items are represented as
d1, d2, d3dm. The parameters applied for load balancing in the subsequent estimation.

4 Mathematical Background

The efficiency of the partitioning approach is computed through the subsequent condition (8).

Peff = 1 − tdistributed

Ttotal

(8)

Here, Peff signifies the efficiency of data partitions, tdistributed signifies the distributed transactions,
and Ttotal signifies the total number of transactions.

IASC, 2023, vol.37, no.1 769

In workload aware data partitioning, data partitions are formed according to the amount of
loads. Load is computed by the total amount of transactions processed on the that partition. This
is computed by the subsequent condition (9),

P (N) =
∑M

j=1
Spmax (9)

Here, N signifies the number of partitions, M signifies the number of loads in one partition. Then
the average load is computed based on the total amount of transactions performed on all the partitions.
The average partition load is computed through the subsequent condition (10),

P (avg) = P (N)

N
(10)

Here, P (avg) signifies the average load of the partitions, N signifies the partition number. Then,
the weight factor is computed based on the partition efficiency and the average partition load. The
computed weight factor is updated to effectively balance the loads in the partitions.

Algorithm 1: Pseudo code of Improved load balancing with data partitions
Improved load balancing optimization (ILB) algorithm
Begin
For each partition do
Compute partition efficiency,
Average partition load
End
Foreach partition do

Compute weight factor
End
Sort the partitions load in ascending order
Repeat
Until partitions end
Choose the top ranked partitions
Until partitions end
Return the top partitions as the best partitions with effective load balancing
End

In scalable workload based partitioning, performance is enhanced with distributed transactions.
Here, the partitioned data is given as input to the load balancing. This optimized load balancing
balances workloads when increasing the number of transactions. The presented load balancing
approach considers the efficiency of partitions and the average partition load. The weight factor is
computed based on the average partition load and the partition efficiency. The optimal weight factor
based on the data partitions is computed through the subsequent condition (11),

W F = Peff + P (avg)

2
(11)

Here, W F signifies the weight factor, Peff signifies the partitions efficiency, and P (avg) signifies the
average partition load. The workload is ordered and updated in the table partitions effectively based
on the computed weights. The main objective of data partitioning is the formation of partitions to

770 IASC, 2023, vol.37, no.1

maximize the efficiency of the data transactions. The effective load balancing is attained by utilizing
the average load of partitions. The presented optimized load balancing approach provides the optimal
load balancing for large workloads. Output data of Hybrid graph partitioning approach is given as
an input to improved load balancing optimization. Initially, partition efficiency and the average value
of the partition load are computed, and the corresponding weight factors are computed for effective
load balancing. Based on the computed weight factor value, optimization algorithm prioritizes the
partitions and optimal load balancing is attained. The pseudo code of improved load balancing
optimization is provided in proposed algorithm.

The increasing number of loads in the environment reduces the performance of the system. Hence,
effective load balancing is performed to balance the workloads optimally. Data partitioning and load
balancing together improve performance throughput and response time.

5 Experimentation

This section examines the experimental results of the presented workload aware data partitioning
methodology. The presented methodology is implemented with MYSQL, HBase [31], and DynamoDB
with the TPC-E benchmark dataset [32]. This dataset provides a large amount of data records for OLTP
applications. The presented data partitioning performance is compared with the existing approaches
to prove its efficiency.

5.1 Dataset Description: TPC-E Dataset
TPC-E is standard benchmark dataset utilized for performing workloads of various applications.

A wide variety of businesses, from banks and grocery stores to online E-Commerce websites and
financial markets, rely mainly on on-line transaction processing (OLTP). OLTP has been a significant
target for optimization for computer manufacturers, database software vendors, system software
vendors, and the corresponding research communities due to its importance. This dataset contains
the data records of Customers, Market, and Brokerage.

5.2 Performance Metrics
This section includes a number of significant performance metrics, including distributed transac-

tions, throughput, response time, and CPU utilization. These performance metrics are described in
the subsequent sub sections.

5.2.1 Throughput

This performance measure is evaluated by the proportion of total data transactions to the taken
time. Throughput performance is computed in transactions per second. This performance provides
the amount data transmission rate per second. The efficiency in throughput provides the effective
transmission data per each second. The throughput performance is computed by the subsequent
condition (12),

Th = Rdata

t′ (12)

Here, Th signifies the throughput measure, Rdata signifies the data rate and t′ signifies the time.

IASC, 2023, vol.37, no.1 771

5.2.2 Response Time

Response time is evaluated based on the data transactions. The time taken to respond the data
transaction is represented as response time. It is computed by the subsequent condition (13),

Rtime = dr

t′ (13)

Here, Rtime signifies the response time, dr signifies the retrieving data or the process of task and t′

signifies the time taken to process the task. The response time of the transaction should be lesser for
effective performance. If the response time of the transaction is higher, then the performance of the
system degrades.

5.2.3 Distributed Transactions

Distributed transaction represents the group of operations on data that is performed between
large set of data. A distributed transaction is one that occurs across two or more distinct partitions.
Transaction is the combination of read and writes operations in the dataset for the evaluation. It is
computed by the subsequent condition (14),

Dt = LT

Pdata

(14)

Here, Dt signifies the distributed transaction, Pdata signifies the data transactions and LT signifies
the workload transactions.

5.2.4 CPU Utilization

This performance evaluation is computed based on the utilization of the CPU memory for
processing of the presented approach. The OLTP workload based data transactions needs high storage
systems for the processing of their data. The efficiency in the CPU utilization is improved by providing
the optimal form of data transactions. It is computed by the subsequent condition (15),

UCPU = 100% − (
%t′

load

)
(15)

Here, UCPU signifies the CPU utilization and t′
load signifies the percentage of time taken to process

the load.

5.3 Performance Examination
In this section, the performance of presented data partitioning with optimized load balancing is

examined. The performance of the presented approach in regards of throughput is depicted in Fig. 3.

In Fig. 4, the presented approach with distributed transactions throughput by varying number
of concurrent users Here, the response time of the presented approach is examined by varying
number of users like 1000, 2000, 3000, 4000 and 5000 correspondingly. This proved that the presented
approach takes lesser response time than the different existing approaches. Moreover, the performance
comparison on data partitions is depicted in Fig. 5.

772 IASC, 2023, vol.37, no.1

0

5

10

15

20

25

30

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

47
50

50
00

T
hr

ou
gh

pu
t

(T
ra

ns
ac

ti
on

s
/ S

ec
)

Number of Concurrent Users

Graph Partitioning

Schema Level Partitioning

Scalable Partitioning

Hybrid graph Partitioning

Figure 3: Hybrid graph partitioning throughput

0

100

200

300

400

500

600

700

800

900

1000

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

47
50

50
00

T
hr

ou
gh

pu
t

(T
ra

ns
ac

ti
on

s
/ S

ec
)

Number of Concutrrent Users

Graph Partitioning

Schema Level Partitioning

Scalable Partitioning

Hybrid Graph Partitioning

Figure 4: Distributed transactions by varying number of concurrent users

In Fig. 4, the performance validation on response time is compared. Here, the presented approach
response time performance is examined with the different existing methodologies like schema level data
partitioning, scalable workload driven data partitioning, and graph partitioning. Here, the response
time of the presented approach is examined by varying number of user workloads like 1000, 2000,
3000, 4000 and 5000 correspondingly. This proved that the presented approach taking lesser response
time than the different existing approaches. Moreover, the performance comparison on data partitions
is depicted in Fig. 5.

IASC, 2023, vol.37, no.1 773

0

100

200

300

400

500

600

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

37
50

40
00

42
50

45
00

47
50

50
00

R
es

po
ns

e
T

im
e

in
 S

ec

Number of Concutrrent Users

Graph Partitioning

Schema Level Partitioning

Scalable Partitioning

Hybrid Graph Partitioning

Figure 5: Response Time through Hybrid Graph partitioning

The performance of the presented approach is compared with the different data partitioning
approaches. This proved that the presented hybrid graph partitioning approach provides the improved
performance than the different existing approaches like horizontal, vertical and no partitioning
approaches. The transactions range is enhanced by the presented hybrid graph approach. Moreover,
the performance comparison on distributed transactions is depicted in Fig. 5. The performance
of the presented approach is evaluated with distributed transactions. The presented methodology
performance is examined with the various existing methodologies like graph partitioning, schema
level based data partitioning, and scalable workload based data partitioning. Here, the distributed
transactions are validated through the varying number of users like 1000, 2000, 3000, 4000 and 5000
correspondingly. The efficiency in CPU utilization will improve the performance of the OLTP data
transactions. Generally, the OLTP transactions require high data storage for keeping large amount of
data records. The efficiency of the CPU utilization will enhance the performance of data transactions.

6 Conclusion

This paper presented an effective hybrid graph data partitioning with optimized load balancing.
Initially, the data items are partitioned into effective partitions by utilizing hybrid graph partitioning.
Then the partitions efficiency and the average load of the partitions are computed with the corre-
sponding weight factor. Furthermore, optimized load balancing is provided to prove the performance
of data transactions. The presented approach is validated with the standard OLTP benchmark dataset.
The performance of the presented approach is examined, and the performance of the proposed
methodology significantly outperformed them in terms of metrics like throughput, response time,
distributed transactions, and CPU utilization.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

774 IASC, 2023, vol.37, no.1

References
[1] Q. Waseem, M. Maarof, M. Idris and A. Nazir, “A taxonomy and survey of data partitioning algorithms

for Big data distributed systems,” in Proc. 3rd Int. Conf. on Micro-Electronics and Telecommunication
Engineering, Ghaziabad, India, pp. 447–457, 2020.

[2] R. D. Bharati and V. Z. Attar, “Performance analysis of scalable transactions in distributed data store,” in
Proc. Int. Conf. on Computing in Engineering & Technology, vol. 303, Lonere, India, pp. 542–548, 2022.

[3] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-driven approach to database
replication and partitioning,” in Proc. VLDB Endowment, Singapore, vol. 3, no. 1, pp. 48–57, 2010.

[4] M. Zhang,Y. Zhuo, C. Wang, M. Gao, Y. Wu et al., “GraphP: Reducing communication for PIM-based
graph processing with efficient data partition,” in Proc. IEEE Int. Symp. on High Performance Computer
Architecture, Vienna, Austria, pp. 544–557, 2018.

[5] A. A. Haneen, A. Noraziah, R. Gupta and M. A.Fakherldin, “Review on data partitioning strategies in
Big data environment,” Advanced Science Letters, vol. 23, pp. 11101–11104, 2017.

[6] M. Boissier and K. Daniel, “Workload-driven horizontal partitioning and pruning for large HTAP
systems,”in Proc. Int. Conf. on Data Engineering Workshops, Paris, France, pp. 116–121, 2018.

[7] I. Abdelaziz, R. Harbi, Z. Khayyat and P. Kalnis, “A survey and experimental comparison of distributed
SPARQL engines for very large RDF data,” in Proc. VLDB Endowment, Munich, Germany, pp. 2049–2060,
2017.

[8] G. Prasad, A. Cheung and D. Suciu, “Handling highly contended OLTP workloads using fast dynamic
partitioning,” in Proc. ACM SIGMOD Int. Conf. on Management of Data, Portland, USA, pp. 527–542,
2020.

[9] S. Das, D. Agrawal and A. El Abbadi, “Elastras: An elastic, scalable, and self managing transactional
database for the cloud,” ACM Transactions Database Systems, vol. 38, no. 1, pp. 1–45, 2013.

[10] B. Sauer and W. Hao, “Horizontal cloud database partitioning with data mining techniques,” in Proc. 12th
Annual IEEE Consumer Communications and Networking Conf., Las Vegas, NV, pp. 796–801, 2015.

[11] R. Taft, N. El-Sayed, M. Serafini,Y. Lu, A. Aboulnaga et al.,“P-Store: An elastic database system with
predictive provisioning,” in Proc. Int. Conf. on Management of Data, Houston, USA, pp. 205–219, 2018.

[12] Y. Sheng, A. Tomasic, T. Zhanga and A. Pavlo, “Scheduling OLTP transactions via learned abort
prediction,” in Proc. Int. Workshop on Exploiting Artificial Intelligence Techniques for Data Management,
Amsterdam, Netherland, pp. 1–8, 2019.

[13] K. Kaur and V. Laxmi, “A novel method of data partitioning using genetic algorithm workload driven
approach utilizing machine learning,” Cognitive Computing in Human Cognition, vol. 17, pp. 49–60, 2020.

[14] A. Turcu, R. Palmieri, B. Ravindran and S. Hirve, “Automated data partitioning for highly scalable and
strongly consistent transactions,”IEEE Transactions on Parallel and Distributed Systems, vol. 27, pp. 106–
118, 2016.

[15] Z. Wei, G. Pierre and C. Chi, “CloudTPS: Scalable transactions for web applications in the cloud,” IEEE
Transactions on Services Computing, vol. 5, pp. 525–539, 2012.

[16] G. A. Schreiner, D. Duarte, G. D. Bianco and R. D. S. Mello, “A hybrid partitioning strategy for NewSQL
databases: The VoltDB case,” in Proc. Int. Conf. on Information Integration and Web-Based Applications &
Services, Munich, Germany, pp. 353–360, 2019.

[17] J. Lee, K. Kim, H. Lee, M. Andrei and S. Ko, “Asymmetric-partition replication for highly scalable
distributed transaction processing in practice,” in Proc. of the VLDB Endowment, Tokyo, Japan, vol. 13,
pp. 3112–3124, 2020.

[18] W. Lim, P. Ahmed and M. Ali, “Data and resource maximization in business-to-business marketing
experiments: Methodological insights from data partitioning,” Industrial Marketing Management, vol. 76,
pp. 136–143, 2019.

[19] S. Goyal, P. Bedi, A. Rajawat, R. Shaw and A. Ghosh, “Multi-objective fuzzy-swarm optimizer for data
partitioning,” in Proc. Advanced Computing and Intelligent Technologies, New Delhi, India, pp. 307–318,
2022.

IASC, 2023, vol.37, no.1 775

[20] M. Mahmud, J. Huang, S. Salloum and T. Emara, “A survey of data partitioning and sampling methods
to support big data analysis,” Big Data Mining and Analytics, vol. 3, no. 1, pp. 85–101, 2020.

[21] J. Gao, W. Liu, Z. Li, J. Zhang and L. Shen, “A general fragments allocation method for join query in
distributed database,” Information Sciences, vol. 512, pp. 1249–1263, 2020.

[22] X. Zhang, C. Zhang, Y. Li, R. Zhang and A. Zhou, “Apara: Workload-aware data partition and replication
for parallel databases,” in Proc. Asia-Pacific Web (APWeb) and Web-Age Information Management
(WAIM) Joint Int. Conf. on Web and Big Data, Chengdu, China, pp. 191–206, 2019.

[23] R. D. Bharati and V. Z. Attar, “A comprehensive survey on distributed transactions based data partition-
ing,” in Proc. Int. Conf. on Computing Communication Control and Automation, Pune, India, pp. 1–5, 2018.

[24] Z. Zhu, X. Hu, K. Huang and Y. Yuan, “Optimization of product category allocation in multiple
warehouses to minimize splitting of online supermarket customer orders,” European Journal of Operational
Research, vol. 290, pp. 556–571, 2021.

[25] S. Ahirrao and R. Ingle, “Scalable transactions in cloud data stores,” Journal of Cloud Computing, vol. 4,
pp. 1–14, 2015.

[26] R. Li, C. Wang, F. Liao and H. Zhu, “RCD+: A partitioning method for data streams based on multiple
queries,” IEEE Access, vol. 8, pp. 52517–52527, 2020.

[27] A. J. Moshayedi, A. S. Roy, A. Kolahdooz and Y. Shuxin, “Deep learning application pros and cons over
algorithm,” EAI Endorsed Transactions on AI and Robotics, vol. 1, no. 1, pp. e7, 2022.

[28] E. Taati and N. Sina, “Multi-objective optimization of functionally graded materials, thickness and aspect
ratio in micro-beams embedded in an elastic medium,” Structural and Multidisciplinary Optimization, vol.
58, pp. 265–285, 2018.

[29] S. Shen, X. Wei, R. Chen, H. Chen and B. Zang, “DrTM+B: Replication-driven live reconfiguration for
fast and general distributed transaction processing,”IEEE Transactions on Parallel and Distributed Systems,
vol. 33, no. 10, pp. 2628–2643, 2022.

[30] A. Jebali, S. Sassi, A. Jemai and R. Chbeir, “Secure data outsourcing in presence of the inference
problem,”Journal of Parallel and Distributed Computing, vol. 160, pp. 1–15, 2022.

[31] http://hadoop.apache.org/hbase
[32] http://www.tpc.org/tpce

http://hadoop.apache.org/hbase
http://www.tpc.org/tpce

	Hybrid Graph Partitioning with OLB Approach in Distributed Transactions
	1 Introduction
	2 Related Work
	3 Proposed Methodology
	4 Mathematical Background
	5 Experimentation
	6 Conclusion
	References

