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Abstract: When it comes to decreasing margins and increasing energy effi-
ciency in near-threshold and sub-threshold processors, timing error resilience
may be viewed as a potentially lucrative alternative to examine. On the other
hand, the currently employed approaches have certain restrictions, including
high levels of design complexity, severe time constraints on error consolidation
and propagation, and uncontaminated architectural registers (ARs). The
design of near-threshold circuits, often known as NT circuits, is becoming the
approach of choice for the construction of energy-efficient digital circuits. As
a result of the exponentially decreased driving current, there was a reduction in
performance, which was one of the downsides. Numerous studies have advised
the use of NT techniques to chip multiprocessors as a means to preserve
outstanding energy efficiency while minimising performance loss. Over the
past several years, there has been a clear growth in interest in the development
of artificial intelligence hardware with low energy consumption (AI). This
has resulted in both large corporations and start-ups producing items that
compete on the basis of varying degrees of performance and energy use. This
technology’s ultimate goal was to provide levels of efficiency and performance
that could not be achieved with graphics processing units or general-purpose
CPUs. To achieve this objective, the technology was created to integrate several
processing units into a single chip. To accomplish this purpose, the hardware
was designed with a number of unique properties. In this study, an Energy Effi-
cient Hyperparameter Tuned Deep Neural Network (EEHPT-DNN) model
for Variation-Tolerant Near-Threshold Processor was developed. In order
to improve the energy efficiency of artificial intelligence (AI), the EEHPT-
DNN model employs several AI techniques. The notion focuses mostly on
the repercussions of embedded technologies positioned at the network’s edge.
The presented model employs a deep stacked sparse autoencoder (DSSAE)
model with the objective of creating a variation-tolerant NT processor. The
time-consuming method of modifying hyperparameters through trial and
error is substituted with the marine predators optimization algorithm (MPO).
This method is utilised to modify the hyperparameters associated with the
DSSAE model. To validate that the proposed EEHPT-DNN model has a
higher degree of functionality, a full simulation study is conducted, and the
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results are analysed from a variety of perspectives. This was completed so that
the enhanced performance could be evaluated and analysed. According to the
results of the study that compared numerous DL models, the EEHPT-DNN
model performed significantly better than the other models.

Keywords: Deep learning; hyperparameter tuning; artificial intelligence; near-
threshold processor; embedded system

1 Introduction

Their use for real-time inference on sensor-rich platforms such as the Internet of Things (IoT),
wearables, personal biomedical devices, and drones is hampered by the energy and latency costs of
existing machine learning (ML) approaches [1]. These applications [2] include devices that collect
and analyse data to provide interpretations and actions that may be used to automate or monitor
a variety of activities without human intervention. These types of methods must be able to include
computationally intensive machine learning techniques while adhering to severe limitations on form
factor, energy, and latency [3]. Memory access is known to reduce both the latency and the energy cost
associated with machine learning algorithm comprehension. In recent years, several machine learning
systems that utilise energy-efficient digital architectures and integrated circuits (IC) have been created.
These applications employ methods like as efficient data flow, data reuse, and the optimization of
computations to reduce the amount of memory accesses [4].

In order to conserve the needed amount of energy, the authors have reached a consensus on using
this complete technique. This is owing to the stringent energy restrictions put on them. This technique
covers every component of a computer system, from hardware to software [5]. Near-exact computing,
also known as approximation computing, is one of the most cost-effective ways to preserve energy. This
type of computing is sometimes referred to as “approximate computing.” This technology sacrifices
application precision in order to reduce energy consumption. The assumption that certain applications,
but not many, required the level of accuracy afforded by programming methods or current circuits
was the impetus for the invention of this technology [6]. As an illustration, video decryption can
tolerate a substantial amount of mistake since image variations cannot be seen by the human eye. This
enables the utilisation of video decryption. It is anticipated that multicore architectures (embedding
and increased performance) would rely largely on accelerators for many computationally intensive
tasks (heterogeneous multicores). This is because the lack of voltage scaling leads to a phenomenon
known as Dark Silicon. This architectural trend was motivated by the increasing limits put on
accessible energy. Beyond typical accelerator solutions such as Application Specific Integrated Circuits
(ASICs), Graphics Processing Units (GPUs), and Field Programmable Gate Arrays (FPGAs), writers
are studying co-processors or accelerators with an intermediate scope in terms of generality. These
co-processors or accelerators contain more applications than ASICs but less than general-purpose
processors. In compared to FPGAs and GPUs, this is done in order to maximise energy efficiency.
In particular, the authors [7] Coprocessors and accelerators whose capabilities fall somewhere in the
centre. The present practise of integrating many accelerators into a single chip may lead the combined
application scopes of these accelerators to encompass a vast amount of territory. This development
is a result of the present practice of incorporating many accelerators on a chip. The second observed
trend may be attributable to applications that are getting more computationally intensive.
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Deep neural networks (DNNs) have demonstrated exceptional performance in cognitive tasks
such as image and speech recognition [8]. This achievement has transformed the field of artificial
intelligence (AI), and DNNs are also known as DNNs. Edge computing applications have a great
interest in discovering platforms that could deploy the well-trained approach of these networks and
perform inference in an energy-efficient manner. Specifically, battery-powered Internet of Things
devices and autonomous vehicles benefited greatly from the speed, energy economy, and reliability
of DNN’s inference engines [9]. [Bibliography required] With the development of specialised hardware
for inference that runs at reduced digital precision (four to eight bits), such as low-power graphics
processing units and Google’s tensor processing unit1 like NVIDIA T42, significant progress was
achieved in this field. This was a significant advance in the correct direction. These are a few examples
of something known as a low-power graphics processing unit. Even while such platforms have the
potential to be extremely flexible, they nonetheless require a framework in which the processor
and memory units are physically separated [10]. Even if such platforms have the potential to be
very adaptable, they still require such a framework. There was a continuous flow of data between
the memory and the processors since the procedures were typically kept in off-chip memory. This
resulted in frequent memory access and modification. As a result, the maximum level of energy
efficiency that could be achieved with the available resources reduced. In this study, an Energy Efficient
Hyperparameter Tuned Deep Neural Network (EEHPT-DNN) model for Variation-Tolerant Near-
Threshold Processor was developed. In order to improve the energy efficiency of artificial intelligence
(AI), the EEHPT-DNN model employs several AI techniques. This model focuses mostly on the
consequences of incorporating AI into embedded devices at the network’s edge. A deep stacked
sparse auto encoder (DSSAE) model is used to meet the objective of constructing a variation-
tolerant NT processor, according to the model provided. Due to the tedious nature of the trial-and-
error approach of tuning hyperparameters, the marine predators’ optimization (MPO) algorithm is
used to optimise the DSSAE model’s hyperparameters. This is because the conventional approach
for adjusting hyperparameters involves trial and error. To demonstrate that the suggested EEHPT-
DNN model has enhanced performance, an extensive number of simulation evaluations have been
conducted, and the results have been analysed in a variety of methods.

2 Related Works

Lin et al. [11] have developed a variation-tolerant framework for Convolutional Neural Networks
(CNNs) that can operate from near threshold voltage (NTV) systems to maximise energy efficiency.
The researchers introduced this framework to CNNs. This article focused on the statistical error
compensation (SEC) method, sometimes referred to as rank decaying statistical error compensation
(RD-SEC). Utilizing the intrinsic redundancy found in matrix-vector multiplication, a technique that
consumes a great deal of power in CNNs, was the driving force behind the development of a less
costly estimator for error identification and compensation. Utilizing the intrinsic redundancy found
in matrix-vector multiplication, this was done. Gundi and his coworkers[12] are investigating the
PREDITOR, a low-power TPU that functions in a Near-Threshold Computing (NTC) environment.
PREDITOR employs scientific research to mitigate undetectable timing errors by boosting the
voltages of select multiplier-and-accumulator parts at specific intervals to increase the efficiency of
NTCTPU, which helps to ensure a greater inference precision at lower voltages. PREDITOR does this
by increasing the voltages of chosen multiplier-and-accumulator components at specific intervals in
order to improve the performance of NTCTPU. Lin et al. [13] present a variation-tolerant framework
for CNN that is capable of robust functions supplied by an NTC system for the purpose of improving
energy efficiency. In particular, the authors produce effective CNNs by employing two methods that
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are both affordable and inaccurate. Each of these strategies has its own error statistics, such as an
NTC technique with a precision of one hundred percent and a K-means approximation strategy that
clusters weighted vectors from CNN to simplify the procedure.

Wang et al. [14] study a 3D-optimized approach that, when correctly applied, efficiently calculates
the optimal classification configuration for the goal of achieving a balance between energy, reliability,
and efficiency. The introduction of an efficient recognition system in the method makes this feasible.
The authors employ a technique known as dynamic programming to determine the optimal voltage
and approximation level by basing their conclusion on three different predictors: the output quality,
the system’s efficiency, and the amount of energy consumed. The authors provide a resultant quality
predictor that utilises a hardware or software co-design error injection platform to analyse the effect of
errors on resultant quality in NTC. This was done so that the writers could evaluate if flaws influenced
the quality of the final product. Using this platform, one may make predictions regarding the eventual
product’s quality. The authors of the work [15] describe a model that reduces the number of pessimistic
margins by limiting the number of temporal failures. As a result, the margin of error will be diminished.
In particular, the authors investigate a model with the objective of minimising, to the greatest extent
feasible, the number of processor pipeline stages with limitations and the number of stages with greater
latency pathways. Because of this strategy, we are not only able to reduce the number of time failures,
but also the number of sites in the pipeline that are susceptible to effective errors.

Zhu et al. [16] develop an error-resilient integrated clock gate (ERICG) and a technique for
incorporating it into the design flow of an error detection and repair mechanism. ERICCG is an
abbreviation for error-resilient integrated clock gate (EDAC). The ERICG may provide the EDAC
with the capability of in-situ timing with only four additional transistors above and above what
is typically required for integrated clock gates. This would be an improvement above the existing
circumstance. Zhu et al. [17] provide a self-gated error-resilient cluster of sequential cells referred to
as SGERC for gathering potentially hazardous data during wide-voltage manipulation for the EDAC
method. This cluster of cells is error-tolerant and self-gating. In error-resistant circuits, the SGERC
will for the first time introduce a latch-related clock gating approach and produce clock gates with the
capability of timing error self-correction with the addition of just two extra transistors. This will be
an unprecedented occurrence. In addition, it eliminates the timing error recognition circuits that were
previously required for every main register and replaces them with data-driven clock gating circuits
that create timing error data. These circuits were required for every previous significant register, but
this register eliminates them entirely.

3 The Proposed Model

In this article, a new EEHPT-DNN method was formulated for Variation-Tolerant Near-
Threshold Processor. The presented EEHPT-DNN model makes use of AI techniques for energy
efficient AI, concentrated on the implication of embedded system at the network edge.

3.1 Design of DSSAE Model
For the development of a variation-tolerant NT processor, the suggested model utilised the

DSSAE paradigm. AE-NN refers to an unsupervised learning technique that modifies the objective
value to match the input value [18] by employing the BP learning methodology. This method of
learning matches the input value to the objective value. The AE was trained to study the function
yi = i, and by setting limitations on the number of hidden layers (HLs) and the sparsity of hidden units,
it discovered amazing patterns in the input dataset. In reality, this easy AE is identical to Principal
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Component Analysis (PCA); however, although PCA provides linear conversion, AE is nonlinear and
has the capacity to discover intricate correlations between hidden and visible layers; the network gains
a condensed presentation of input. Hidden units are subject to the sparsity restrictions set by the AE.
This enables the identification of noteworthy traits within the dataset. As soon as the deep network
receives the input dataset, it will first “change” the data to a compact representation to “compress”
it (using an encoding technique), and then attempt to reconstruct it (using a decoding technique).
The purpose of training a network is to enhance its reconstruction accuracy and identify an efficient
compressed representation (encode) of the dataset it is tasked with processing. There are several levels
of AE, each containing layers that are apparent, hidden, and reconstructive. These layers are present
on every level. The visible (input) layer of the second level of AE corresponds to the HL of the first
level of AE, whereas the visible layer of the third level of AE corresponds to the HL of the second
level of AE. After the initial level AE has been trained to deliver the required output of the initial level
feature in the HL, the feature is transferred to the second level AE as input. Similarly, each AE receives
training to reach high levels of functioning at the greatest degree feasible. Fig. 1 illustrates the SSAE’s
architecture. AE training may consist of: The encoder extracted the h features from the input, and the
decoder recreates the y output using the h extracted features, as seen below:

h = f (wex + be) (1)

f = f (wdh + bd) (2)

Figure 1: Framework of SSAE

Then, we and wd denotes weight matrix of encoder and decoder be and bd characterizes the bias
vector. f (.) represents the activation function of AE.

The objective is to minimize the error function among the reconstructed dataset of reconstruction
layer and input dataset of the visible layer. The primary term represents the average summation of
square error and the next term represents weight degradation term, whereas the 3rd term represents
sparse penalty term:

c(xty) = 1
2n

n∑
j=1

‖xj − yj‖2
2 + λ

2
(‖we‖2

2 + ‖wd‖2
2) + +β

m∑
j=1

KL(ρ‖ ρ̂j

)
(3)
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whereas:

n = the number of input dataset

λ = the weight degradation variable that controls relative momentousness of primary and 2nd second
terms

β = variable control weight of sparse penalty term

m = number of neurons in hidden unit

KL
(
ρ||ρ̂)

indicates kullback-leibler divergence between mean ρ and mean ρ̂j bernoulli random
parameter. ρ̂j represents the average activation of j hidden neuron or averaged over the trainedset and
ρ indicates a sparsity variable, generally, the smallest value nearest to 0 (ρ = 0.05)

KL
(
ρ||ρ̂j

)
can be evaluated as follows:

KL
(
ρ||ρ̂i

) = ρ log
ρ

ρ̂j

+ (1 − ρ) log
(1 − ρ)(
1 − ρ̂

) (4)

whereas

ρ̂j = 1
n

n∑
t=1

hj

(
x(t)

)
(5)

The number of AE levels and hidden neurons in every level were defined using trial and error.

The higher-level feature or hidden neurons are provided to the softmax regression method, i.e.,
supervised learning model in DNN, and categorizes the input dataset.

Assume
{(

x(1), y(1)
)

,
(
x(2), y(2)

)
,
(
x(n), y

)}
tuples as input dataset, the output y could take on

f distinct classes. Then y(i) ∈ {1, 2, 3 f}. The aim was to forecast the probability p(y = z|x)

for = 1, 2, f:

hθ

(
x(i)

) =

⎡⎢⎢⎣
p (y)

i = 1|x(i);θ

p (y)
i = 2|x(i);θ

...
p (y)
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�
f
z=1e

θ
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Z
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eθ
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1

eθ
Tχ (i)
2

...

eθ
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f

⎤⎥⎥⎥⎥⎦ (6)

whereas θ1, θ2, θf are model parameter, θ =

⎡⎢⎢⎢⎣
θT

1

θT
2
...

θT
f

⎤⎥⎥⎥⎦, the term
1∑f

Z=1e
θT
Z x(i)

cause the distribution to sum

to one and normalize it.

The cost functions of softmax regression classification mechanism are shown below:

J (θ) = −1
n

[
n∑

i=1

f∑
z=1

1
{
y(i) = z

}
log

eθ
Tχ (i)
Z

�
f
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l

]
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2
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u∑
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θ 2
ij (7)

whereas 1 indicates the indicator functions, 1 {true expression}= 1 and 1 {false expression}= 0. The

weight decayed term
λ

2
�f

i=1�
u
j=0θ

2
ij punishes higher value of the parameter, and ιu+1 indicates dimension
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of feature vector χ. The cost function J (θ) is certain to have a single solution as gradient descent,
L-BFGS, and so on. Because it is completely convex with the weight decay term.

3.2 Hyperparameter Tuning Using MPO Algorithm
At this stage, the MPO method is used to fine-tune the various hyperparameters of the DSSAE

model. MPO, a metaheuristic influenced by nature, was created [19]. It was inspired by the vast
foraging strategy adopted by ocean predators. The predator utilises both the Lévy flight and the
Brownian motion techniques when hunting. Both the prey and the predator will update their location
in MPO based on Lévy flight or Brownian motion. The MPO comprises four essential phases, which
are outlined below.

Initialization Phase

In this section, population individual is randomly generated using the uniform distributed
technique, represented X0 = X min + rand (X max − X min ). X min and X max is lower and upper limits
of the parameter, correspondingly. randdenotes a random number within [0, 1]. Next, evaluate the
fitness function value of each individual. At last, create Prey matrix and Elite matrix. The population
individual updates its location according to the Elite and Prey matrixes [20].

MPO Optimization Scenarios

The method of optimization known as MPO can be broken down into three primary stages, each
of which is determined by the distinct velocity ratios of the prey and the predator. At first, the prey
is able to move more quickly than the predator. After that, both the predator and the prey move at
an almost identical speed. When this occurs, the predator is able to outpace the prey. According to
the rules that govern the behaviour of prey and predator movements, a particular amount of iteration
time is specified and allotted to each phase.

Phase 1: In the early phase of optimization iteration, in higher velocity ratio (v ≥ 10), the better
strategy for predator isn’t to move at all. The mathematical modelling of this stage is given below.

Where Iter<
1
3

Max−Iter,

stepsizei = Rr
B ⊗ (

Elitei − Rr
B ⊗ Preyi

)
i = 1, . . . , n (8)

Preyi = Preyi + P.R ⊗ stepsizei

R denotes a vector of uniform random numbers within [0, 1]. Iter denotes the existing iteration
number. Indicates a vector comprising random numbers according to the standard distribution
demonstrating the Brownian movement. The standard Brownian movement was a random process.
The step size has the features of unit variance

(
σ 2 = 1

)
and zero mean (μ = 0). The natation ⊗

illustrates the entry-wise multiplication.

Phase 2: In unit speed ratio, predators try to make transition from exploration to exploitation.
Subsequently, half of the organism is earmarked for exploration and other half for exploitation.

Where
1
3

Max−Iter < Iter <
2
3

Max−Iter, the initial half of individual updates its position according to

the subsequent formula:

stepsizei = Rr
B ⊗ (

Elitei − Rr
B ⊗ Preyi

)
i = 1, . . . ,

n
2

(9)

Preyi = Elitei + P.CF ⊗ stepsizei
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And next half of individual updates the location according to the subsequent formula:

stepsizei = Rr
B ⊗ (

Elitei − Rr
B ⊗ Preyi

)
i = n

2
, . . . , n (10)

Preyi = Elitei + P.CF ⊗ stepsizei

CF =
(

1 − Iter
MaxIter

)(2 Iter
Max_Iter)

RL indicates a vector of arbitrary value according to the Lévy distribution demonstrating Lévy
movement. CF denotes an adaptive variable for controlling step size for predator movement. RB⊗ Elite
denotes the Brownian motion of predator chasing its prey. Also, the prey upgrades its location
according to the predator in Brownian movement.

Phase 3: Lower velocity ratio or if the predator moves faster than prey.

Where Iter � 2
3

Max−Iter, individual updates its location according to the subsequent formula.

stepsizei = Rr
L ⊗ (

Elitei − Rr
L ⊗ Preyi

)
i = 1, . . . , n (11)

Preyi = Elitei + P.CF ⊗ stepsizei

RL ⊗ Eliteisimulated the movement of predators in the Lévy strategy.

The environmental problem could change the behavior of Marine predators, namely FADs’ effect
and eddy formation. Based on the study, predators often move around FAD. The FAD is regarded
as local optimal and its effects as trapping at this point. Consideration of this long jumps during
simulation prevents stagnation in local optimal. Consequently, FAD effects are shown in the following.

Preyi =
{

preyi + CF
[
xr

min + Rr ⊗ (
xr

max − xr
min

)] ⊗ Ur if r ≤ FADs
Preyi + [FADs (1 − r) + r] (Preyr1 − Preyr2) if r ≥ FADs

(12)

where FAD = 0.2 represents probability of FAD effects on the optimization technique. Urdenotes
binary vector. rindicates a uniform random value within [0, 1]. xr

max andxr
m ln indicates upper and lower

boundaries of containing dimension. r1 and r2 subscript denotes random index of prey matrixes.

Usually, marine predators have better memories and remember places where they have been
prosperous in foraging. Afterward, upgrade prey and perform FAD effects, these matrixes are
estimated for fitness to upgrade the Elite. Every solution in the existing iteration is coMPOred to
the preceding iteration to define its fitness. When the present solution is more fitted, it is replaced.
Also, these algorithm enhances the solution quality with the lapse successful foraging. Fig. 2 displays
the steps involved in MPO algorithm [21].
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Figure 2: Steps involves in MPO algorithm

4 Performance Validation

In this section, the experimental validation of the EEHPT-DNN model is tested using eight
datasets. Table 1 and Fig. 3 provides NUTE examination of the EEHPT-DNN model with recent
models on eight datasets. These results inferred that the EEHPT-DNN model has offered the least
values of NUTE under all normalized frequencies. At the same time, it is noticed that the EEHPT-
DNN model has obtained increasing NUTE values with an increase in normalized frequencies. i.e., the
value of NUTE is minimal at 1.0x normalized frequency and reaches the maximum at 4.0x normalized
frequency.

Table 1: NUTE analysis of EEHPT-DNN approach with eight distinct datasets

No. of undetected timing errors (log)

Normalized
frequency

SVEN CIFAR-10 IMDB GTSRB REUTERS MOST FEMINIST AMNIST

1.0x 9694398 9652 6810 6898 9383 8991 7915 8593
1.09x 29550492 14658421 1421025 2524141 7488165 8568 8950 5565
1.2x 35617632 27895817 22931794 18519328 21277119 12452189 18519328 869467
1.33x 47200353 37272306 38375423 38375423 32308283 23483352 19622445 14106863
1.5x 64850215 51061261 46648795 48855028 42236330 30102050 23483352 20174003
1.71x 77536053 72020471 62092424 62643982 54370610 44442563 34514515 27895817
2.0x 97943705 81396960 75881378 81948518 72020471 59886191 68711122 46097237
2.4x 110629543 94634356 83051635 95737473 82500077 73675146 71468913 54370610
3.0x 117248242 102356171 89670333 97943705 84154751 76984495 72020471 65953331
4.0x 117799800 105665520 94634356 96289031 89118775 79742286 71468913 68711122
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Figure 3: NUTE analysis of EEHPT-DNN approach with eight distinct datasets

Table 2 and Fig. 4 deliver NACC inspection of the EEHPT-DNN technique with recent
approaches on eight datasets. These results denoted the EEHPT-DNN algorithm has the least values
of NACC in all normalized frequencies. Meanwhile, it is noted that the EEHPT-DNN method has
gained reduced NACC values with an increase in normalized frequencies. i.e., the value of NACC was
maximum at 1.0x normalized frequency and will reach minimum at 4.0x normalized frequency.

Table 3 provides a comparative NACC examination of the EEHPT-DNN model with existing
models under SVHN dataset. The experimental outcomes implied that the EEHPT-DNN model has
attained maximum NACC values on SVHN dataset at all normalized frequencies. For instance, on
normalized frequency of 1.0x, the EEHPT-DNN model has offered increased NACC of 0.998 whereas
the IA(PRED), IA(MRFF), BE(PRED), IA(TED), and IA(B-TPU) models have obtained reduced
NACC values of 0.974, 0.973, 0, 0.979, and 0.978 respectively. Similarly, on normalized frequency
of 5.0x, the EEHPT-DNN model has attained maximum NACC of 0.990 whereas the IA(PRED),
IA(MRFF), BE(PRED), IA(TED), and IA(B-TPU) models have reached minimal NACC values of
0.970, 0.312, 0, 0.965, 0.965, and 0.018 respectively.

Table 2: NACC analysis of EEHPT-DNN approach with eight distinct datasets

Normalized accuracy
Normalized frequency SVEN CIFAR-10 IMDB GTSRB REUTERS MOST FEMINIST AMNIST
1.0x 0.993 0.981 0.977 0.990 0.962 0.947 0.968 0.974
1.09x 0.996 0.974 0.962 0.968 0.962 0.940 0.968 0.956
1.2x 0.987 0.977 0.953 0.950 0.928 0.916 0.912 0.947
1.33x 0.981 0.959 0.947 0.903 0.866 0.785 0.770 0.820
1.5x 0.971 0.956 0.912 0.804 0.748 0.569 0.370 0.466
1.71x 0.940 0.912 0.804 0.637 0.562 0.370 0.178 0.225
2.0x 0.885 0.711 0.544 0.398 0.305 0.293 0.147 0.138
2.4x 0.736 0.466 0.278 0.209 0.200 0.253 0.132 0.113
3.0x 0.646 0.287 0.160 0.113 0.166 0.188 0.101 0.129
4.0x 0.634 0.293 0.151 0.107 0.126 0.219 0.110 0.126
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Figure 4: NACC analysis of EEHPT-DNN approach with eight distinct datasets

Table 3: NACC analysis of EEHPT-DNN approach with existing algorithms under SVHN dataset

Normalized accuracy-SVHN

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.998 0.974 0.973 0.000 0.979 0.978
1.075x 0.997 0.980 0.973 0.000 0.978 0.970
1.15x 0.997 0.981 0.976 0.000 0.974 0.974
1.255x 0.997 0.973 0.971 0.000 0.978 0.973
1.36x 0.996 0.981 0.976 0.000 0.973 0.975
1.515x 0.995 0.980 0.968 0.000 0.979 0.968
1.67x 0.994 0.978 0.977 0.888 0.972 0.974
1.875x 0.992 0.970 0.971 0.908 0.973 0.971
2.14x 0.992 0.974 0.966 0.974 0.968 0.781
2.57x 0.992 0.970 0.852 0.972 0.969 0.612
3.0x 0.991 0.970 0.584 0.963 0.970 0.390
4.0x 0.991 0.972 0.394 0.961 0.970 0.191
5.0x 0.990 0.970 0.312 0.965 0.965 0.018

Table 4 grants a brief NACC inspection of the EEHPT-DNN approach with existing method-
ologies under CIFAR-10 dataset. The experimental outcomes indicate EEHPT-DNN approach has
achieved maximal NACC values on SVHN dataset at all normalized frequencies. For example, on
normalized frequency of 1.0x, the EEHPT-DNN technique has presented increased NACC of 0.995,
whereas the IA(PRED), IA(MRFF), BE(PRED), IA(TED), and IA(B-TPU) methodologies have
attained reduced NACC values of 0.959, 0.956, 0.000, 0.962, and 0.961 correspondingly. Similarly, on
normalized frequency of 5.0x, the EEHPT-DNN technique has obtained maximum NACC of 0.976
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whereas the IA(PRED), IA(MRFF), BE(PRED), IA(TED), and IA(B-TPU) approaches have reached
minimal NACC values of 0.959, 0.292, 0.910, 0.928, and 0.004 correspondingly.

Table 4: NACC analysis of EEHPT-DNN approach with existing algorithms under CIFAR-10 dataset

Normalized accuracy-CIFAR-10

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.995 0.959 0.956 0.000 0.962 0.961
1.075x 0.992 0.970 0.954 0.000 0.968 0.951
1.15x 0.996 0.969 0.966 0.000 0.957 0.964
1.255x 0.977 0.962 0.958 0.000 0.961 0.961
1.36x 0.997 0.962 0.959 0.000 0.960 0.960
1.515x 0.986 0.964 0.951 0.000 0.965 0.949
1.67x 0.975 0.965 0.961 0.876 0.962 0.964
1.875x 0.984 0.959 0.957 0.892 0.959 0.953
2.14x 0.996 0.958 0.953 0.958 0.949 0.765
2.57x 0.988 0.955 0.856 0.953 0.956 0.592
3.0x 0.983 0.959 0.573 0.943 0.957 0.379
4.0x 0.978 0.955 0.480 0.949 0.952 0.176
5.0x 0.976 0.959 0.292 0.910 0.928 0.004

Table 5 offers a brief NACC check of the EEHPT-DNN approach with existing models under the
IMDB dataset. The experimental outcomes implied that the EEHPT-DNN technique has attained
maximum NACC values on SVHN dataset at all normalized frequencies. For example, on normalized
frequency of 1.0x, the EEHPT-DNN approach has rendered increased NACC of 0.981 whereas the
IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) methodologies have acquired
reduced NACC values of 0.975, 0.965, 0.000, 0.977, and 0.959 correspondingly. Also, on normalized
frequency of 5.0x, the EEHPT-DNN technique has reached maximum NACC of 0.977 whereas the
IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) approaches have reached minimal
NACC values of 0.968, 0.309, 0.905, 0.857, and 0.002 correspondingly.

Table 6 offers the detailed NACC analysis of the EEHPT-DNN approach with existing techniques
under GTSRB dataset. The experimental outcomes implied that the EEHPT-DNN approach has
reached maximum NACC values on SVHN dataset at all normalized frequencies. For example,
on normalized frequency of 1.0x, the EEHPT-DNN model has offered increased NACC of 0.978
whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) methodologies have
acquired reduced NACC values of 0.971, 0.980, 0.000, 0.973, and 0.955 correspondingly. Similarly, on
normalized frequency of 5.0x, the EEHPT-DNN technique has attained maximum NACC of 0.976
whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) approaches have
reached minimal NACC values of 0.956, 0.287, 0.846, 0.890, and 0.008 correspondingly.
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Table 5: NACC analysis of EEHPT-DNN approach with existing algorithms under IMDB dataset

Normalized accuracy-IMDB

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.981 0.975 0.965 0.000 0.977 0.959
1.075x 0.982 0.979 0.955 0.000 0.971 0.967
1.15x 0.986 0.983 0.955 0.000 0.969 0.962
1.255x 0.997 0.979 0.951 0.000 0.970 0.962
1.36x 0.996 0.982 0.975 0.000 0.972 0.968
1.515x 0.995 0.954 0.962 0.000 0.954 0.958
1.67x 0.998 0.953 0.978 0.880 0.958 0.970
1.875x 0.979 0.970 0.971 0.911 0.968 0.968
2.14x 0.991 0.953 0.963 0.951 0.956 0.779
2.57x 0.989 0.957 0.893 0.967 0.967 0.608
3.0x 0.977 0.954 0.675 0.956 0.954 0.378
4.0x 0.979 0.954 0.412 0.950 0.969 0.177
5.0x 0.977 0.968 0.309 0.905 0.857 0.002

Table 6: NACC analysis of EEHPT-DNN approach with existing algorithms under GTSRB dataset

Normalized accuracy-GTSRB

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.978 0.971 0.980 0.000 0.973 0.955
1.075x 0.984 0.971 0.959 0.000 0.970 0.958
1.15x 0.980 0.977 0.958 0.000 0.975 0.969
1.255x 0.995 0.953 0.979 0.000 0.980 0.958
1.36x 0.992 0.973 0.965 0.000 0.965 0.959
1.515x 0.982 0.973 0.966 0.000 0.968 0.958
1.67x 0.975 0.964 0.965 0.871 0.969 0.972
1.875x 0.991 0.973 0.959 0.906 0.961 0.961
2.14x 0.973 0.963 0.961 0.951 0.950 0.759
2.57x 0.979 0.967 0.892 0.962 0.960 0.590
3.0x 0.981 0.968 0.573 0.953 0.965 0.387
4.0x 0.981 0.963 0.328 0.955 0.963 0.178
5.0x 0.976 0.956 0.287 0.846 0.890 0.008

Table 7 offers a comprehensive NACC analysis of the EEHPT-DNN technique with existing
methodologies under REUTERS dataset. The experimental outcomes denoted the EEHPT-DNN
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algorithm has achieved maximum NACC values on SVHN dataset at all normalized frequencies. For
example, on normalized frequency of 1.0x, the EEHPT-DNN approach has rendered increased NACC
of 0.978 whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) algorithms
have reached reduced NACC values of 0.972, 0.975, 0.000, 0.962, and 0.967 correspondingly. Also,
on normalized frequency of 5.0x, the EEHPT-DNN method has obtained maximum NACC of 0.994
whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) approaches have
reached minimal NACC values of 0.945, 0.298, 0.945, 0.944, and 0.179 correspondingly.

Table 7: NACC analysis of EEHPT-DNN approach with existing algorithms under REUTERS
dataset

Normalized accuracy-REUTERS

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.978 0.972 0.975 0.000 0.962 0.967
1.075x 0.987 0.951 0.957 0.000 0.958 0.946
1.15x 0.981 0.964 0.959 0.000 0.970 0.974
1.255x 0.983 0.964 0.961 0.000 0.963 0.947
1.36x 0.991 0.952 0.963 0.000 0.966 0.945
1.515x 0.975 0.951 0.966 0.000 0.966 0.963
1.67x 0.981 0.946 0.950 0.867 0.955 0.957
1.875x 0.981 0.962 0.967 0.904 0.966 0.955
2.14x 0.981 0.945 0.952 0.957 0.970 0.754
2.57x 0.975 0.972 0.830 0.951 0.964 0.598
3.0x 0.979 0.966 0.573 0.945 0.966 0.383
4.0x 0.971 0.956 0.374 0.959 0.944 0.179
5.0x 0.994 0.945 0.298 0.945 0.940 0.100

Table 8 presents a comparative NACC examination of the EEHPT-DNN method with existing
approaches under MINIST dataset. The experimental outcomes implied that the EEHPT-DNN
approaches have reached maximum NACC values on SVHN dataset at all normalized frequencies. For
example, on normalized frequency of 1.0x, the EEHPT-DNN method has rendered increased NACC
of 0.999, whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) approaches
have achieved reduced NACC values of 0.962, 0.969, 0.000, 0.960, and 0.952 correspondingly.
Similarly, on normalized frequency of 5.0x, the EEHPT-DNN method has obtained maximum NACC
of 0.979 whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) methods have
reached minimal NACC values of 0.953, 0.294, 0.942, 0.968, and 0.216 correspondingly.

Table 9 portrays a comparative NACC analysis of the EEHPT-DNN approach with existing
approaches under FMINIST dataset. The experimental outcomes denote the EEHPT-DNN approach
has obtained maximum NACC values on SVHN dataset at all normalized frequencies. For example,
on normalized frequency of 1.0x, the EEHPT-DNN algorithm has presented increased NACC of
0.997 whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) approaches
have obtained reduced NACC values of 0.972, 0.976, 0, 0.969, and 0.973 correspondingly. Also, on
normalized frequency of 5.0x, the EEHPT-DNN approach has attained maximum NACC of 0.992
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whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) algorithms have
reached minimal NACC values of 0.953, 0.292, 0.952, 0.949, and 0.007 correspondingly.

Table 8: NACC analysis of EEHPT-DNN approach with existing algorithms under SVHN dataset

Normalized accuracy-MNIST

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.999 0.962 0.969 0.000 0.960 0.952
1.075x 0.985 0.972 0.969 0.000 0.973 0.966
1.15x 0.996 0.968 0.968 0.000 0.957 0.948
1.255x 0.998 0.955 0.953 0.000 0.958 0.960
1.36x 0.989 0.964 0.963 0.000 0.952 0.959
1.515x 0.976 0.963 0.967 0.000 0.969 0.950
1.67x 0.985 0.950 0.964 0.883 0.956 0.957
1.875x 0.989 0.943 0.952 0.909 0.952 0.968
2.14x 0.984 0.957 0.959 0.956 0.970 0.778
2.57x 0.985 0.968 0.837 0.961 0.961 0.694
3.0x 0.987 0.944 0.581 0.958 0.962 0.365
4.0x 0.974 0.943 0.481 0.957 0.948 0.195
5.0x 0.979 0.953 0.294 0.942 0.968 0.216

Table 9: NACC analysis of EEHPT-DNN approach with existing algorithms under FMNIST dataset

Normalized accuracy-FMNIST

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.997 0.972 0.976 0.000 0.969 0.973
1.075x 0.991 0.976 0.966 0.000 0.971 0.953
1.15x 0.983 0.968 0.952 0.000 0.951 0.962
1.255x 0.992 0.950 0.963 0.000 0.967 0.959
1.36x 0.978 0.964 0.954 0.000 0.969 0.959
1.515x 0.983 0.951 0.976 0.000 0.966 0.968
1.67x 0.982 0.953 0.955 0.861 0.951 0.968
1.875x 0.976 0.952 0.967 0.902 0.962 0.967
2.14x 0.995 0.949 0.950 0.953 0.962 0.778
2.57x 0.996 0.958 0.937 0.956 0.968 0.591
3.0x 0.979 0.959 0.564 0.957 0.959 0.469
4.0x 0.971 0.949 0.382 0.955 0.957 0.185
5.0x 0.992 0.953 0.292 0.952 0.949 0.007
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Table 10 demonstrates a complete NACC analysis of the EEHPT-DNN algorithm with exist-
ing approaches under AMINIST dataset. The experimental outcomes indicated the EEHPT-DNN
approach has acquired maximum NACC values on SVHN dataset at all normalized frequencies. For
example, on normalized frequency of 1.0x, the EEHPT-DNN method has presented increased NACC
of 0.981, whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) algorithms
have attained reduced NACC values of 0.961, 0.951, 0.000, 0.952, and 0.971 correspondingly. Likewise,
on normalized frequency of 5.0x, the EEHPT-DNN technique has obtained maximum NACC of 0.991
whereas the IA (PRED), IA (MRFF), BE (PRED), IA (TED), and IA (B-TPU) approaches have
reached minimal NACC values of 0.960, 0.284, 0.940, 0.944, and 0.118 correspondingly.

Table 10: NACC analysis of EEHPT-DNN approach with existing algorithms under AMNIST dataset

Normalized accuracy-AMNIST

Normalized
frequency

EEHPT-DNN IA (PRED) IA (MRFF) BE (PRED) IA (TED) IA (B-TPU)

1.0x 0.981 0.961 0.951 0.000 0.952 0.971
1.075x 0.998 0.969 0.965 0.000 0.973 0.955
1.15x 0.984 0.966 0.952 0.000 0.969 0.952
1.255x 0.995 0.959 0.957 0.000 0.954 0.969
1.36x 0.989 0.962 0.968 0.000 0.945 0.957
1.515x 0.980 0.956 0.953 0.000 0.970 0.962
1.67x 0.976 0.969 0.961 0.874 0.951 0.954
1.875x 0.976 0.958 0.953 0.890 0.969 0.954
2.14x 0.993 0.952 0.968 0.953 0.961 0.773
2.57x 0.996 0.957 0.821 0.966 0.953 0.502
3.0x 0.977 0.946 0.577 0.946 0.950 0.379
4.0x 0.981 0.949 0.373 0.949 0.960 0.281
5.0x 0.991 0.960 0.284 0.940 0.944 0.118

An overall comparison study of the EEHPT-DNN model with recent models under eight datasets
is given in Fig. 5. The figure implied that the EEHPT-DNN model has shown outperforming
performance over other models on all the test datasets.

Figure 5: (Continued)
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Figure 5: Comparative analysis of EEHPT-DNN approach (a) SVHN, (b) CIFAR-10, (c) IMDB,
(d) GTSRB, (e) REUTERS, (f) MNIST, (g) FMNIST, (h) AMNIST

5 Conclusion

This paper proposes a novel developed EEHPT-DNN technique for Variation-Tolerant Near-
Threshold Processor. The presented EEHPT-DNN model employs AI techniques to improve the
energy efficiency of AI. The model emphasises the effects of embedded systems near the network’s
edge. For the development of a variation-tolerant NT processor, the suggested model utilised the
DSSAE paradigm. Due to the time-consuming and arduous nature of tuning hyperparameters through
trial and error, the MPO approach is used to alter the hyperparameters associated with the DSSAE
model. In order to demonstrate that the presented EEHPT-DNN model has a higher degree of
functionality, a thorough simulation assessment has been conducted, and the results of this evaluation
have been analysed with respect to a number of criteria. Compared to other DL models, the EEHPT-
DNN model delivered superior outcomes, according to the findings of the comparison study.
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