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Abstract: With the recent increase in network attacks by threats, malware,
and other sources, machine learning techniques have gained special attention
for intrusion detection due to their ability to classify hundreds of features
into normal system behavior or an attack attempt. However, feature selection
is a vital preprocessing stage in machine learning approaches. This paper
presents a novel feature selection-based approach, Remora Optimization
Algorithm-Levy Flight (ROA-LF), to improve intrusion detection by boosting
the ROA performance with LF. The developed ROA-LF is assessed using
several evaluation measures on five publicly available datasets for intrusion
detection: Knowledge discovery and data mining tools competition, network
security laboratory knowledge discovery and data mining, intrusion detection
evaluation dataset, block out traffic network, Canadian institute of cybersecu-
rity and three engineering problems: Cantilever beam design, three-bar truss
design, and pressure vessel design. A comparative analysis between developed
ROA-LF, particle swarm optimization, salp swarm algorithm, snake opti-
mizer, and the original ROA methods is also presented. The results show that
the developed ROA-LF is more efficient and superior to other feature selection
methods and the three tested engineering problems for intrusion detection.

Keywords: Feature selection; metaheuristic algorithms; intrusion detection;
Remora optimization algorithm; Levy flight

1 Introduction

With the increased use of internet services, cybersecurity issues have become one of the most
serious challenges that pose specific risks not only to individuals but also to business operations [1]. A
variety of security mechanisms, such as firewalls, intrusion detection prevention systems, encryptions,
and antivirus, are used by organizations and enterprises to deal with such cybersecurity attacks on their
networks [2–4]. These mechanisms prove themselves as powerful methods for preventing many types of
attacks. However, they cannot perform analysis for every network packet, and thus they cannot reach
the desired detection performance [5]. To overcome these shortcomings and achieve optimal security
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requirements for a network, researchers employed Machine Learning (ML) approaches to look inside
packet payloads and detect such attacks with high accuracy and a low false positive rate [6].

Selecting an Optimal Feature Subset (OFS) assists the learning process by ML techniques to
achieve better performance results. Nature-inspired algorithms are mostly Meta-Heuristics (MH)
optimization methods inspired by nature. These methods gained special attention from many scholars
in different applications due to their great potential to specify OFS [7]. They are also effective, reliable,
and gradient-free stochastic optimization techniques that have successfully solved various numerical
and combinatorial optimization problems with diverse frameworks [8,9].

MH inspiration sources are broken down into three types [10,11]: swarm-based algorithms,
evolutionary-based algorithms, and physics-based algorithms. Some popular MH methods, including
Multi-Verse Optimizer (MVO) [12], Particle Swarm Optimization (PSO) [13], Salp Swarm Algorithm
(SSA) [14], genetic algorithm [15], whale optimization algorithm [16], Snake Optimizer (SO) [17], ROA
[18], are some examples of applied MH methods for Feature Selection (FS).

MH algorithms can be combined to achieve better results in different applications. The authors
in [19] combined the reptile search algorithm with ROA for data clustering. In another work [20], a
modified version of the ROA method using Brownian motion is introduced for image segmentation.
In [21], ROA with an autonomous foraging mechanism is used to explore search space and effectively
enhance global optimization solutions of the ROA. In [22], the authors combined Gorilla Troops
Optimizer (GTO) with Bird Swarms (BS) to boost the capability of the GTO for FS. They evaluated
their proposed GTO-BS using several evaluation measures on four Intrusion Detection (ID) datasets:
Network Security Laboratory Knowledge Discovery and Data Mining (NSL-KDD), Block out traffic
network (Botnet), Canadian Institute of Cybersecurity (CIC-IDS-2017), University of New South
Wales Network Botnet (UNSW-NB15) and Botnet-IoT. In [23], an efficient FS method named
Dynamic Feature Selector (DFS) is introduced for filtering insignificant variables. The DFS used
statistical analysis and feature importance tests to reduce model complexity and improve prediction
accuracy using two ID datasets.

MH methods use two principles that are characteristic of all optimization techniques, which are
exploration and exploitation. In the first principle, the algorithm attempts to discover different regions
in the search area, while the exploitation searches around the obtained solution from the first phase to
find the best candidates. However, experiment results show that ROA is weak in exploring search space
broadly. In this paper, an improved version of ROA, namely ROA-LF, is presented for the purpose of
selecting OFS for the application of ID. The ROA-LF combines the original ROA with LF to enhance
the exploration process and maintain a balance between exploration and exploitation in the original
ROA method’s structure. The main contributions of this work could be summarized as follows:

� An improved version of ROA using LF, named ROA-LF, is proposed for ID,
� LF strategy is applied to enhance the ability of the ROA to explore search space more effectively

and avoid getting stuck in local optima,
� The ROA-LF is examined using five open-access datasets for ID and three well-known

engineering optimization problems,
� The ROA-LF’s efficacy is confirmed when compared to other MH methods and the tested

engineering problems.

The remainder of this paper is organized as follows: Section 2 provides a brief overview of ROA
and LF. Section 3 describes the developed ROA-LF method, followed by the experimental results
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and statistical comparison with other popular FS methods shown in Section 4. Section 5 presents the
conclusion of this work.

2 Method

This section provides an overview of the ROA and LF.

2.1 ROA
ROA [18] is a new MH method that mimics the concept of parasitism of Remora. Exploration

and exploitation of ROA are briefly described in this section.

2.1.1 Exploration (Free Travel)

� Swordfish Optimization Strategy (SFO)

In the case where the Remora sticks to the swordfish, its location is updated using the following:

Rt+1
i = Rt

ibest − (rand (0, 1))

(
Rt

ibest − Rt
rand

2
− Rt

rand

)
(1)

where t is the number of current iterations; Rt
ibest refers to the best-obtained solution and Rt

rand indicates
a random location, and rand (0, 1) is a random number in the range of 0–1.

� Attack experience

Remora takes small steps in the vicinity of the host end to identify whether to change or not change
the host based on fitness. This behavior mathematically can be presented as:

Ratt = Rt
i +

(
Rt

i − Rpre

) ∗ randn (2)

where Ratt and Rpre are the position of the previous generation and the test step, respectively, and randn
is the small global random step of the Remora.

Then Remora randomly checks the change in the fitness values between the current response(
f (Rt

i)
)

and the tested response (f (Ratt)). If (f (Rt
i) > f (Ratt), then the Remora selects one of the feeding

methods for local optimization, while if (f (Rt
i) < f (Ratt), Remora picks the host.

2.1.2 Exploitation (Thoughtful Nutrition)

� WOA Strategy

According to the WOA, the position of the Remora attached to the whale is updated as follows:

Ri+1 = D ∗ expα ∗ cos (2πx) + Ri (3)

α = rand (0, 1) ∗ (α − 1) + 1 (4)

α = −
(

1 + t
T

)
(5)

D = �Rbest − Ri� ∗ R (6)

where D presents the distance between the hunter and prey, α is a random number [−1, 1], α is a linear
number [=1 and −2], and t is the number of iterations.
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� Host nutrition

“Host feeding” is a small step in the exploitation process, which creates a solution space that
converges gradually around the host, refining and enhancing the ability of local optimization. This
stage can be mathematically modeled as follows:

Rt
i = Rt

i + A (7)

= B ∗ (
Rt

i − C ∗ Rbest

)
(8)

B = 2 ∗ V ∗ rand (0, 1) − V (9)

V = 2
(

1 − t
T

)
(10)

where A is a small step between the fish adhesive and the host, C is the coefficient of stickiness to
indicate its position, and it is within the range of [0, 0.3].

2.2 LF
LF is a linear combination of two random independent variables (y1, y2), identically distributed

with the same Probability Density Function (PDF) and is defined as [24–29]:

Ly,ld (y) =
√

y
2π

1

(y − ld)
3
2

exp
(

− y
2y − ld

)
, · · · ld < y < ∞ (11)

where y is a scale parameter and ld is the location parameter of the Levy distribution.

LF, which is used to produce a random walk, has step lengths (Sl) that are drawn from a Levy
distribution length density distribution, and it can be given as:

Lα (Sl) ≈ 1
Sβ+1

· · · �S� "1 (12)

where β is a power law.

In the first stage of LF, stochastic variables σy1
and σy2

with standard deviations are generated

σy1
(α) =

[
G (1 + β) sin [πβ/2]
G (1 + β/2) β2β−1/2

] 1
β

and σy2
= 1 (13)

where G (.) is the gamma function, and then the variable V is generated using,

V = y1

|t2|1/β
1 < β < 2 (14)

3 Proposed Method

This section explains the structure of the developed ROA-LF, which combines ROA and LF. Like
any MH, ROA suffers from a balance between exploration and exploitation, which leads to it being
trapped in a local optimum. To tackle this weakness and to enhance the global and local searching
capability of the ROA, LF is used. The LF is integrated into the ROA’s structure to extend its search
ability and make it capable of visiting new locations in the search space. This helps the ROA to avoid
becoming trapped in locally optimal solutions and balance between exploration and exploitation. The
flowchart of the introduced ROA-LF is provided in Fig. 1, and the pseudocode is in Algorithm 1.
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Figure 1: Structure of the ROA-LF approach

Initially, the dataset is divided into two mutually exclusive and exhaustive subsets: training and
testing. The training data is used for optimization and classifier training, while the testing data is used
for performance evaluation. The entire method can be understood in two phases: the training phase
and the testing phase. The training phase starts by initializing hyper-parameters of the method, such
as the maximum number of iterations T , problem dimensionality M, and some constants of ROA and
LF methods. The training data’s lower LB and upper UB limits are calculated for each dimension.
Further, N Romera positions are initialized randomly in the range LB–UB, as in Eq. (1).

Fitness values for all candidate solutions are calculated using Eq. (9). If Romera’s previous
position is better than the updated positions, then the Whale position update is implemented. Else
Sailfish position update is implemented. To check if the uodate is optimum or not, a small step is
taken in the test direction. The fitness value of Romera’s position and the newly tested position is
calculated. If the new test direction results in a larger fitness value, then Host feeding is implemented.
If the test direction provides a smaller fitness value, then Romera’s position is updated using LF.
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LF is introduced into the exploration phase of the ROA to enhance its exploration ability further.
For tth iteration and ith Romera is updated after LF as follows:

Ri (t) = Ri (t) + V (t) 	 Ri (t) (15)

where Ri (t) is candidate solution of ith Romera at tth iteration, V is the LF parameter, and 	 indicates
the dot product. The above process is repeated for all Romeras. When all Romera positions are
updated, the global best solution is saved, and the next iteration starts. For new iterations, the entire
process is repeated. The optimization stops when the maximum number of iterations T is reached.

The performance of the updated Romera position fitness is calculated by using the Fitness
Function (FF), which is a K-Nearest Neighbor (KNN) classifier with five neighbors and a threshold
value of 0.5, as recommended by the work of [30]. The Romera with the smallest fitness as a result of
the least number of selected features and maximum accuracy is the best one and is defined as:

FF (Ri) = λ × E + (λ − 1) × |OFSi|
M

(16)

where E is the classification error rate of the KNN classifier with five neighbors, |OFSi| is the number
of selected features and M is the total number of features in the dataset, and λ controls the relative
importance of classification error and the number of selected features. The value of α varies in the
range of [0,1] and is set to 0.99, as recommended by [31].

The global best Romera’s position is used to generate OFS by simple thresholding. It can be noted
that a universal threshold of 0.5 is used during optimization, and the absolute value of the threshold
used during the optimization does not change the OFS.

Algorithm 1: Pseudocode of the developed ROA-LF algorithm.
1. Group the complete data into mutually exclusive & exhaustive training & testing sets.
Training Phase
2. Load training examples
3. Calculate UB and LB and decide fitness function FF (f )
4. Initialize ROA and LF parameters ld, β

5. Initialize Romeras Eq. (1)
6. for t = 1 to T do
7. for i = 1 to N do
8. Calculate the fitness value (f ) of the current Romera using Eq. (16)
9. if f (Rt

i) > f (Ratt) then
10. Update the position of attached whales using Eq. (3)
11. else
12. Update the position of the attached Sailfishes using Eq. (1)
13. end if
14. Make a one-step prediction by Eq. (2);
15. if (f (Rt

i) > f (Ratt) then
16. Host feeding mode for Romera using Eq. (9)
17. end if
18. Update the Romera position using Eq. (15)
19. end for
20. end for

(Continued)
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Algorithm 1: Continued
21. Use a threshold of 0.5 to calculate OFS for best Romera
Testing Phase
22. Load testing examples
23. Use OFS to select only significant features
24. Evaluate the classifier performance

The testing phase starts with test data. The number of features is optimized using the position of
the final global-best Romera received at the end of the training phase. The OFS of the test data is given
as input to the trained classifier for performance evaluation.

4 Experimental Results

For assessing the effectiveness of the introduced ROA-LF, its capability is compared with other
methods comprising PSO [13], SSA [14], SO [17], and ROA [18] on five ID datasets, and the results
are provided in this section. Python scikit-learn environment setup on Windows 10 operating system
with 32 GB RAM and 3.13 GHz processor speed is used to implement the experiments.

4.1 Parameter Settings
The ROA-LF is compared with other popular FS methods, with the number of expected candidate

solutions and the maximum iterations set to 20 and 100, respectively. Also, each method is executed for
20 independent runs for statistically significant results. The MH methods used for comparison include
PSO, SSA, SO, and ROA. The parameter setup of these MAs is detailed in Table 2. The parameter
selection was based on the parameters used by the original author in the article or the parameters
widely used by various researchers.

Table 1: Parameter settings

Method Parameters

PSO c1 = c2 = 2, wmin = 0.1 and wmax = 0.9
SSA c2 and c2 are random values in range 0–1
SO c1 = 0.5, c2 = 0.05, c3 = 2, xmax, & xmin as per the dataset
ROA ld = 1 and β = 2

Table 2: Characteristics of three standard open-access datasets used in the experiments

Dataset Instances Features Classes Domain

BreastEW 569 30 2 Biology
Churn 3150 16 2 Telecom
HeartEW 270 13 2 Biology
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4.2 Standard Datasets
For quantitative and qualitative evaluation of the introduced ROA-LF, three standard open-access

datasets from the UCI repository, suggested by several researchers in the literature, are used. Table 2
summarizes the details of the used datasets. For optimization experiments, each dataset is grouped
into 80%–20% of the samples used for training and testing, respectively.

Table 3 summarizes the performance comparison of the ROA-LF and other methods in terms of
statistical inferences of fitness values for three standard datasets. All methods are also ranked based
on average, STD, best, fitness, and worst fitness values, in that order. Remember that a method with
the smallest fitness value will be ranked first and vice versa. The table shows that the ROA-LF gained
the first rank in all three datasets, indicating its superior performance over other methods. On average,
SSA shows the second-best performance for all three datasets, followed by ROA and SO, respectively.
PSO obtained the worst rank for all three datasets, indicating poor performance compared to other
methods. These results prove the ROA-LF’s capability to sustain a stable balance between the two
main principles of MH methods.

Table 3: Best, worst, avg, and STD fitness values obtained by different methods

Dataset Metric PSO SSA SO ROA RSA-SO

BreastEW

Best 0.0492 0.0401 0.0491 0.0436 0.0382
Worst 0.0562 0.0579 0.0578 0.0578 0.0491
Avg. 0.0492 0.0421 0.0491 0.0436 0.0401
STD. 0.0019 0.0044 0.0026 0.0044 0.0018
Rank 5 2 4 3 1

Churn

Best 0.0418 0.0406 0.0415 0.0403 0.0393
Worst 0.1346 0.0491 0.1346 0.0817 0.0484
Avg. 0.0418 0.0406 0.0415 0.0403 0.0393
STD. 0.0354 0.0025 0.0276 0.0119 0.0018
Rank 5 3 4 2 1

HeartEW

Best 0.2865 0.0002 0.0003 0.0001 0.0000
Worst 0.2692 0.0001 0.0002 0.0001 0.0000
Avg. 0.1983 0.0000 0.0001 0.0001 0.0000
STD. 0.0248 0.0000 0.0001 0.0000 0.0000
Rank 5 2 4 3 1

Tables 4 and 5 compare all methods in terms of the testing accuracy and the number of selected
features i.e., OFS. In Table 4, the ROA-LF shows the highest accuracy compared to other methods for
all three datasets. The improved exploration of ROA can interpret as this because of LF integration.
SO performs the second best, followed by SSA, ROA, and PSO.

The comparative analysis using OFS is shown in Table 5 for all three datasets. The ROA-LF
selected the least number of features in OFS for all three datasets. This confirms the efficiency of
the proposed ROA-LF in eliminating features that are not significant for binary classification. SSA
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shows the second smallest OFS, followed by SO and ROA. PSO selects the highest number of features
in OFS and hence, the least perming method.

Table 4: Results of RSA-SO and other methods in terms of classification accuracy

Dataset PSO SSA SO ROA ROA-LF

BreastEW 95.4001 95.6496 95.3722 95.3726 96.1319
Churn 89.6476 96.3150 93.2201 92.9740 96.3486
HeartEW 73.7800 99.2293 99.3587 84.5661 99.6521

Table 5: Comparison between RSA-SO and other methods in terms of average OFS

Dataset PSO SSA SO ROA ROA-LF

BreastEW 3 3 3 9 2
Churn 14 11 12 13 11
HeartEW 13 3 5 5 1

4.3 ID Datasets Descriptions
Five real datasets from ID applications are selected to assess ROA-LF efficiency. These datasets

are widely used for ID [22,23], and they include Knowledge Discovery and Data Mining Tools
Competition (KDD-CUP99), NSL-KDD, Intrusion Detection Evaluation Dataset (ISCXIDS2012),
Botnet, and CIC-IDS2018. The main characteristics of those datasets are given in Table 6.

Table 6: The characteristics of the datasets

Dataset Source No. of features No. of samples

KDD-CUP99 [32] 43 494,020
NSL-KDD [33] 43 125,973
ISCXIDS2012 [34] 8 11,68,079 (train) + 6,29,274 (test)
Botnet [35] 8 77,796 (train) + 1,63,660 (test)
CIC-IDS2018 [36] 80 1,048,575

The KDD-CUP99 dataset includes Denial of Service (DoS), Remote to Local (R2L), User to
Root (U2R), and probing attack properties. It contains seven weeks of network traffic, has about five
million lines, and is one of the most widely used datasets for ID assessment. It contains 43 features
and 494,020 samples.

The NSL-KDD is an upgraded version of KDD-CUP99, with a 43-dimensional feature in each
record. It does not contain unnecessary and repetitive records according to the original KDD-CUP99
dataset and uses the same properties as the KDD-CUP99. It contains 43 features and 125,973 samples.

The ISCXIDS2012 dataset comprises seven days from Friday, 11/6/2010, to Thursday, 17/6/2010,
of routine and malicious network activities collected using 21 interconnected Windows workstations.
The dataset is labeled for normal (2,381,532) and malicious (68,792) activities. A variety of multi-stage
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attacks were simulated to generate traces. It contains eight features and 11,68,079 (train) + 6,29,274
(test) samples.

The botnet dataset comprises non-overlapping subsets of the ISOT dataset created by merging
different available datasets, such as the French chapter of the Honeynet Project, Ericsson Research
in Hungary, and Lawrence Berkeley National Laboratory. It comprises traces of malicious botnets
(Storm and Zeus) and everyday activities. 15% and 25% of the ISOT dataset are used in training and
test datasets. A subset of normal activities from the ISCXIDS2012 dataset is used in the training
dataset. In addition, a subset of normal and botnet activities is included in the test dataset. Four
botnet traces (Neris, RBot, Virut, and NSIS) from Botnet traffic produced by the Malware Capture
Facility Project are included in the training dataset, while seven botnets (Neris, RBot, Virut, NSIS,
Menti, Sogou, and Murlo) are included in the test dataset. It contains eight features and 77,796
(train) + 1,63,660 (test) samples.

The CIC-IDS2018 dataset includes seven attacks: Brute-force, Heartbleed, Botnet, DoS, DDoS,
Web attacks, and network infiltration from inside. An infrastructure of 50 machines is used to attack
420 machines and 30 servers from 5 departments of the victim organization. The dataset captures
each machine’s network traffic and system logs and is represented using 80 features extracted from the
captured activities using CICFlowMeter-V3. It contains 80 features and 1,048,575 samples.

The datasets contain many records for routine activities and network attacks. Using an iterative
FS such as MH methods will be computationally expensive. Hence, only 10% of the dataset is used for
FS evaluation while maintaining the ratio of natural activities and network attacks.

4.4 Experimental Results and Discussion
In order to examine the effectiveness of the ROA-LF as an FS method, the real-world datasets

provided in Table 1 are used, and its efficacy is evaluated using fitness values (best, worst, average
(Avg.), standard deviation (STD.)), classification accuracy, and the number of the OFS.

Table 7 provides a summary of the obtained results by the ROA-LF against the other methods.
The Friedman test is performed for ranking the MH methods, and ranks are presented in the table.
The ROA-LF gives the best fitness values in four datasets and the smallest, worst fitness value in
three out of five datasets, while the original ROA achieved both the best and worse fitness values on
the CIC-IDS2018 dataset. Also, the ROA-LF has both better Avg and STD of fitness values in four
datasets and achieved the first rank in four datasets. The PSO ranked first in one dataset, while SSA
achieved the best STD result for the ISCXIDS2012 dataset. These results prove the ROA-LF’s stability
in balancing the exploration and exploitation principles.

Table 7: Fitness values achieved by different MH methods for five publicly available ID datasets

Dataset Metric PSO SSA SO ROA ROA-LF

KDD-CUP99

Best 0.0338 0.0322 0.0249 0.0214 0.0191
Worst 0.0516 0.0536 0.0404 0.0474 0.0392
Avg. 0.0335 0.0398 0.0277 0.0307 0.0263
STD. 0.0096 0.0069 0.0074 0.0093 0.0066
Rank 4 5 2 3 1

(Continued)
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Table 7: Continued
Dataset Metric PSO SSA SO ROA ROA-LF

NSL-KDD

Best 0.0606 0.0596 0.0624 0.0586 0.0581
Worst 0.0718 0.0678 0.0723 0.0680 0.0662
Avg. 0.0610 0.0613 0.0653 0.0610 0.0598
STD. 0.0081 0.0053 0.0048 0.0033 0.0021
Rank 3 4 5 2 1

ISCXIDS2012

Best 0.0417 0.0421 0.0421 0.0403 0.0392
Worst 0.0639 0.0583 0.0614 0.0662 0.0638
Avg. 0.0537 0.0523 0.0523 0.0558 0.0520
STD. 0.0073 0.0058 0.0061 0.0102 0.0086
Rank 4 2 3 5 1

Botnet

Best 0.0463 0.0481 0.0472 0.0427 0.0423
Worst 0.0545 0.0597 0.0568 0.0509 0.0521
Avg. 0.0486 0.0506 0.0492 0.0469 0.0453
STD. 0.0030 0.0025 0.2019 0.0028 0.0024
Rank 3 5 4 2 1

CIC-IDS2018

Best 0.0341 0.0362 0.0372 0.0303 0.0326
Worst 0.0600 0.0539 0.0581 0.0444 0.0509
Avg. 0.0344 0.0407 0.0422 0.0349 0.0371
STD. 0.0072 0.0053 0.0061 0.0053 0.0045
Rank 1 4 5 2 3

Table 8 compares different MH algorithms in terms of mean and Std of accuracy. The developed
ROA-LF shows the least STD accuracy in all used datasets, which reflects the stability of the ROA-
LF compared to PSO, SSA, SO, and ROA. The mean of accuracy is the highest for the developed
ROA-LF in three out of five datasets. The SSA method gained the best mean accuracy result in the
ISCXIDS2012 dataset and PSO in the CIC-IDS2018 dataset. Overall results indicate that the LF
strategy improves the ROA’s performance.

Table 8: Classification accuracy of the developed ROA-LF and other MH methods

Dataset Measure Method
PSO SSA SO ROA ROA-LF

KDD-CUP99
Mean 0.9756 0.9685 0.9828 0.9749 0.9788
STD 0.0085 0.0058 0.0056 0.0080 0.0051

NSL-KDD
Mean 0.9473 0.9472 0.9418 0.9466 0.9489
STD 0.0072 0.0047 0.0054 0.0047 0.0034

ISCXIDS2012
Mean 0.9521 0.9547 0.9535 0.9487 0.9525
STD 0.0048 0.0071 0.0056 0.0078 0.0042

(Continued)
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Table 8: Continued
Dataset Measure Method

PSO SSA SO ROA ROA-LF

Botnet
Mean 0.9572 0.9565 0.9579 0.9577 0.9606
STD 0.0055 0.0063 0.0052 0.0053 0.0041

CIC-IDS2018
Mean 0.9709 0.9656 0.9644 0.9704 0.9677
STD 0.0060 0.0042 0.0049 0.0042 0.0035

The results of the proposed ROA-LF and the other MH algorithms based on the mean and STD
of the OFS selected by the corresponding MH algorithm are shown in Table 9. The ROA-LF selected
the least mean OFS in four out of five datasets, while for ISCXIDS2012 dataset, PSO, SA, ROA, and
the developed ROA-LF selected the same mean number of OFS. Similarly, the STD of the number of
OFS is the least by ROA-LF in four of five datasets, indicating better stability. For the ISCXIDS2012
dataset, SO, ROA and ROA-LF show similar STD of OFS.

Table 9: Average OFS of the developed ROA-LF and other MH methods

Dataset Measure Method

PSO SSA SO ROA ROA-LF

KDD-CUP99
Mean 40 37 46 25 23
STD 5 8 8 6 4

NSL-KDD
Mean 38 39 33 35 31
STD 4 7 6 7 3

ISCXIDS2012
Mean 5 6 5 4 4
STD 2 3 2 2 2

Botnet
Mean 5 6 6 4 5
STD 2 3 2 2 2

CIC-IDS2018
Mean 45 53 56 45 41
STD 10 9 10 9 8

The convergence behavior of the developed ROA-LF is shown in Fig. 2. The ROA-LF shows a
faster convergence rate than the other methods on four out of five datasets, while the original ROA
needs fewer iterations to reach the optimal solution on the CIC-IDS2018 dataset. This indicates
that the use of LF can effectively improve the convergence ability of ROA and thus obtain better
optimization results. These results prove the suitability of the developed ROA-LF as an FS for ID.

Boxplot is a visual representation of data distribution of the results in terms of accuracy in three
quartiles: lower, middle, and upper. A boxplot of all the methods over five datasets is shown in Fig. 3.
This Figure shows that the median accuracy of ROA-LF is higher than other MH methods in three out
of five datasets, while upper accuracy is higher for four out of five datasets. This confirms the stability
of the developed ROA-LF compared to the other comparison algorithms.
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(a) (b) (c)

Figure 2: Convergence curves of the ROA-LF and the other MH algorithms for (a) KDD-CUP99,
(b) NSL-KDD, (c) ISCXIDS2012, (d) Botnet, and (e) CIC-IDS2018

(e)(d)

(c)(b)(a)

Figure 3: Box plots of the ROA-LF and the other MH algorithms for (a) KDD-CUP99, (b) NSL-
KDD, (c) ISCXIDS2012, (d) Botnet, and (e) CIC-IDS2018
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4.5 Real-World Engineering Problems
In this section, the ROA-LF method is applied to solve two real-world engineering problems with

constraints, and these problems include Cantilever Beam Design [37], Three-Bar Truss Design [38],
and Pressure Vessel Design [39].

4.5.1 Cantilever Beam Design (CBD) Problem

The proposed ROA-LF is applied to solve the CBD problem, which has five main parameters
that need to be specified during the optimization process. Fig. 4 shows the CBD problem design. The
mathematical representation of this problem can be formulated as follows:

Minimize

f (x) = 0.6224 (x1 + x2 + x3 + x4 + x5) (17)

Subject to:

g (x) = 60
x3

1

+ 27
x3

2

+ 19
x3

3

+ 7
x3

4

+ 1
x3

5

− 1 ≤ 0 (18)

where (0.01 ≤ xi ≤ 100, i = 1, 2, 3, 4, 5).

Figure 4: The CBD problem

Table 10 gives the results of the ROA-LF and the other methods for solving the problem of CBD.
The ROA-LF has the smallest weight compared to PSO, SSA, SO, and ROA, while SO ranked second.
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Table 10: Results of ROA-LF and other methods for CBD problem

Method Best weight for variables Optimal weight

x1 x2 x3 x4 x5

PSO 5.5122 5.5653 4.6476 3.5543 2.0423 13.2706
SSA 6.3791 3.9871 8.6664 3.6680 1.7987 15.2484
SO 5.9832 4.7939 4.6247 3.4697 2.0584 13.0268
ROA 6.0231 5.4457 4.2770 3.5853 2.1767 13.3865
ROA-LF 5.5456 4.8966 4.4228 3.5007 2.1396 12.7625

4.5.2 Three-Bar Truss Design (TBTD) Problem

The optimal design of a TBTD seeks to minimize the structure weight subject to supporting a total
load acting vertically downward. Two design variables and the structural geometry of the problem are
given in Fig. 5. The objective function of this problem can be written as follows:

Minimize

f (x) =
(

2
√

2x1 + x2

)
∗ l (19)

Subject to:

g1 (x) =
√

x1x1 + x2√
2x2

1 + 2x1x2

P − σ ≤ 0

g2 (x) = x2√
2x2

1 + 2x1x2

P − σ ≤ 0

g3 (x) = 1√
2x2 + x1

P − σ ≤ 0

(20)

where l = 100 cm, P = 2
kN
cm2

, σ = 2
kN
cm2

, and 0 ≤ xi ≤ 1, i = 1.2.

Figure 5: TBTD problem
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The results of the ROA-LF for solving the problem of TBTD are provided in Table 11. The ROA-
LF provides the best solution since it gained the smallest weight in comparison to PSO, SSA, SO,
and ROA methods. This indicates the suitability of the developed ROA-LF for the TBTD engineering
problem.

Table 11: Results of ROA-LF and other methods for TBTD problem

Method Optimal weight for variables Optimal weight

A1 A2

PSO 1.0000 1.2619 489.3098
SSA 1.3251 1.2166 447.2487
SO 1.1495 1.3596 439.2091
ROA 1.6482 1.1215 475.2698
ROA-LF 1.1566 1.2131 425.2684

4.5.3 Pressure Vessel Design (PVD) Problem

In this problem, the PVD seeks to minimize the total pressure constrained by material, shaping,
and welding costs. This problem consists of four variables, as illustrated in Fig. 6, where Ts denotes
the thickness of the shell, Th is the head thickness, R represents the inner radius, and L is the length of
the cylindrical section of the vessel. The objective function of the PVD can be written as follows:

Minimize

f (x) = 0.6224x1x2x3 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (21)

Subject to:

g1 (x) = −x1 + 0.0193x3 ≤ 0

g2 (x) = −x3 + 0.00954x3 ≤ 0

g3 (x) = −πx2
3x4 − 4

3
πx3

3 + 1, 296, 000 ≤ 0

g4 (x) = x4 − 240 ≤ 0

(22)

where (0 ≤ xi ≤ 100, i = 1.2) and (10 ≤ xi ≤ 200, i = 3.4).

The results of the ROA-LF and the other comparative methods for the problem of PVD are given
in Table 12. The ROA-LF has the smallest weight compared to PSO, SSA, SO, and the original ROA,
while the SSA ranked second. The results reveal that ROA-LF can obtain excellent optimal values in
this engineering problem, reflecting the applicability of ROA-LF to engineering problems.
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Figure 6: The PVD problem

Table 12: Results of ROA-LF and other methods results for PVD problem

Method Optimal weight for variables Optimal weight

Ts Th R L

PSO 1.0000 0.0000 120.0000 10.5012 2414.0478
SSA 1.5139 0.0000 63.1556 11.2165 2953.1495
SO 1.3265 0.0000 63.3515 11.4516 2275.4308
ROA 1.1368 0.0000 70.1692 10.3115 1841.2947
ROA-LF 1.1348 0.0000 63.3546 10.6153 1661.9514

5 Conclusion and Future Work

The existence of irrelevant or redundant data affects the performance of ML methods. This
paper presents a novel FS method to improve the capability of the original ROA in exploration
and exploitation using LF. The developed ROA-LF efficiency is validated using five open-access
datasets in the ID domain: KDD-CUP99, NSL-KDD, ISCXIDS2012, Botnet, CIC-IDS2018, and
three engineering problems. The developed ROA-LF performance is compared with the PSO, SSA,
SO, and original ROA. The experimental results showed that the adaptive LF could improve ROA,
thus improving its performance capability. The developed ROA-LF performs better than the other
comparative methods in terms of fitness values, accuracy, number of the selected OFS, and convergence
speed evaluation metrics. The statistical results show that ROA-LF is significantly more effective than
the comparison algorithm.
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Moreover, the results demonstrate that ROA-LF is applicable to the tested engineering optimiza-
tion problems in real life with satisfactory optimization results compared to PSO, SSA, SO, and
ROA alone. In future work, we will attempt to use developed ROA-LF as an FS method in other
applications such as text mining, image segmentation, industry, and IoT. The introduced FS method
can be improved by applying chaotic maps or combining it with other MH methods to speed up
ROA’s capability when searching for OFS and avoid getting stuck in the local optima. Moreover,
the developed ROA-LF can be used for deep learning and ML model parameter tuning in medical
applications such as Pancreatic Nodule Detection [40], and brain tumors [41].
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