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Abstract: It is significant for agricultural intelligent knowledge services using
knowledge graph technology to integrate multi-source heterogeneous crop
and pest data and fully mine the knowledge hidden in the text. However,
only some labeled data for agricultural knowledge graph domain training
are available. Furthermore, labeling is costly due to the need for more data
openness and standardization. This paper proposes a novel model using
knowledge distillation for a weakly supervised entity recognition in ontology
construction. Knowledge distillation between the target and source data
domain is performed, where Bi-LSTM and CRF models are constructed for
entity recognition. The experimental result is shown that we only need to
label less than one-tenth of the data for model training. Furthermore, the
agricultural domain ontology is constructed by BILSTM-CRF named entity
recognition model and relationship extraction model. Moreover, there are
a total of 13,983 entities and 26,498 relationships built in the neo4j graph
database.

Keywords: Agricultural knowledge graph; entity recognition; knowledge
distillation; transfer learning

1 Introduction

According to statistics, there are more than 1,400 kinds of common crop diseases and pests in
agriculture. The loss of crop yield and farmers’ income is severe due to diseases and pests yearly. At the
same time, it is difficult for users to efficiently query and use various crop diseases and pest information
resources because of the wide range of data sources, different ways of data representation, storage, and
organization, and the state of disordered and relatively chaotic resources. With the development of the
knowledge graph, it is of great significance to use knowledge extraction technology to integrate multi-
source heterogeneous crop and pest data and fully mine the knowledge hidden in the text. Two main
tasks are entity recognition and relationship extraction in constructing agricultural knowledge graphs.

Recently, researchers have begun to use deep learning for entity recognition. LSTM/Bi-LSTM [1]
is frequently combined with the conditional random fields CRF model [2] for entity recognition [3,4]
to avoid the problem of relying on much prior knowledge. However, the above method is data-hungry,
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requiring lots of training data. However, knowledge data, especially labeled data, are difficult to obtain
in the agricultural field. The cost is very high to label entity recognition data.

Moreover, adopting the entity recognition scheme from the general field can hardly perform. In
crop diseases and insect pests, entity recognition’s difficulties lie in uneven data quality and the high
requirement of manual labeling. As a result, the existing models have significant problems, such as
worse entity recognition effects and manual relationship extraction.

Hence, a significant problem has to be solved to reduce the dependence on data annotation. Entity
recognition task in the agricultural knowledge graph is performed by using massive unlabeled data,
learning from small samples, and gradually learning new knowledge by self-exploration to form an
interactive learning process. There are three contributions to the paper.

• Our study proposes a novel model based on transfer learning to solve the problem of scarcity
of annotation data for agricultural entity recognition.

• A novel transfer learning method is proposed by knowledge distillation between the target and
source data domain, where Bi-LSTM and CRF models are constructed for entity recognition.

• The agricultural knowledge graph is constructed with 13983 entities and 26498 relationships.
Experiment results show that only one-tenth of annotation data is used in making an entity
recognition model without affecting the model’s performance.

2 Related Works

Back in the 1960s, a semantic network was proposed and applied in the computer field [5]. It
has used a network of interconnected nodes and arcs to represent the semantic relationships between
concepts and entities. In May 2012, Google officially proposed the knowledge graph concept [6] that
the knowledge graph is essentially a semantic network. Nodes can be entities or abstract concepts, and
edges can be entity attributes or relationships [7]. A knowledge graph allows knowledge representation
and management to solve knowledge association problems, such as knowledge retrieval and semantic
question answering [8].

Knowledge graph technology can be divided into general and vertical domain knowledge graphs.
A general knowledge graph is typically large-scale in a broad field with much common sense [9].
The vertical domain knowledge graph has the desirable advantages of accuracy and fine granularity
for supporting knowledge reasoning and retrieval applications. Some knowledge graphs are built by
academia and industry for crop diseases and pests [10]. Knowledge graph for crop pests and diseases
has been widely applied for crop variety selection [11], greenhouse environment control, pest control
[12], economic benefit analysis [13], and other aspects of agricultural production and application
[14–17].

Knowledge graph provides a more effective way to express, organize, manage and utilize massive
and heterogeneous crop pest information. Research has been conducted on knowledge graph man-
agement in the construction of crop pest ontology since the concept of ontology was introduced into
the computer field to describe knowledge in the 1980s. Beck et al. [18] have established an ontology,
including the concepts and relationships of crops and related pests and pest management issues.
Wang et al. [19] have constructed an ontology to organize and manage citrus production knowledge
in the hilly areas of Chongqing, China, extracted citrus fertilizer and water ontology from documents
and charts of citrus production knowledge. Chougule et al. [20] have proposed a method to construct
a crop pest ontology in India. Natural processing technology has been used to describe the species and
cases of pests and diseases, and ontology has been applied to the expert system of pests and diseases.
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Cañadas et al. [21] have proposed an ontology management scheme for grape pests and developed
a professional web page tool based on this ontology for quality evaluation. Lagos-ortiz et al. [22]
have proposed an ontology based on the decision support system for pest control of sugarcane, rice,
soybean, and cocoa crops. It guides pest diagnosis and management.

There are two issues about entity recognition and relation extraction in ontology construction.
Malarkodi et al. [23] have applied the conditional random field model to input some syntactic and
lexical features, which rely on manual construction features. Biswas et al. [24] have used WordNet
[25] for agricultural entity recognition. This method is not different from dictionary matching in
essence, but it uses the correlation of WordNet words to expand the dictionary. With the application
development for deep learning, many researchers recently used machine learning for entity recognition
in agriculture [26,27]. Li et al. [26] have proposed an attention-based Bert model that combines
BiLSTM and CRF models for entity recognition. Remote supervision is used to solve the problem
of obtaining the annotation data of relationship extraction. Zhao et al. [27] have constructed BiLSTM
and CRF models for entity recognition in knowledge graphs and used the continuous bag of words
(CBOW) model to pre-train the input word vector. There is also research about effectively combining
multiple syntactic tree information of sentences for relation extraction in crop diseases and insect pests
[22,28]. Till now, the current relationship extraction of neural networks is mainly used for pre-defined
relationship types [29–32].

However, most domain ontologies still rely on manual construction, which requires many humans
to collect information and organize concepts between semantic connections. The defects in construc-
tion efficiency, applicability, and scalability have become difficulties in building large-scale ontologies
[10]. The word formation of agricultural entities is complex and varied due to the need for labeled
training data. Segmenting words on the domain data set using the existing general vocabulary could be
better, making entity recognition in the agricultural field more challenging. Furthermore, the research
needs to improve the coarse granularity of entity annotation.

Furthermore, the construction methods used mostly rely on feature templates defined based
on a corpus, resulting in the model’s weak scalability and generalization ability. Suppose more
automation cannot be further improved. In that case, it is challenging to meet the requirements of the
actual question and answer in application scenarios, precise recommendations, and other advanced
knowledge service needs.

3 Ontology Construction of Agricultural Knowledge Graph

Ontology representation has become the mainstream in which knowledge is expressed in the form
of networks. The ontology is a model of representing and organizing knowledge of the agricultural
domain, such as pests and diseases. Ontology focuses on the intrinsic characteristics of entities. The
designed ontology in this paper has seven entities and 39 sub-entities to describe the basic information
of disease, pest, and other class instances. This section will introduce the design of ontology and the
relationship between entities.

3.1 Ontology Design
Ontology architecture intuitively displays entities and their attributes and the relationship among

entities. The outline of the agricultural domain ontology designed in this paper is shown in Fig. 1.
The figure describes seven defined entities and the relationships between these entities. There may
be no relationship between entities. For example, there is no defined relationship between pesticides
and fertilizers. There are also a variety of relationships. For example, the natural environment may
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accelerate or inhibit the growth of crops. There is also a relationship between the entity itself. For
example, there is a control relationship between pests.

Figure 1: Ontology architecture

The ontology defines seven entities: crop, plant, disease, pests, pesticides, fertilizers, symptoms,
and natural environment. Crops are divided into field crops, fruits, and vegetables. Their attributes
include a nickname, Latin name, boundary, phylum, class, order, family, genus, species, distribution
range, reproduction mode, processed products, cultivation technology, and value.

Diseases are subdivided into five types of entities according to the causes of diseases: fungal
diseases, bacterial diseases, viral diseases, nematode diseases, and other diseases. Other diseases are
caused by the lack of trace elements, the natural environment, and drug and fertilizer damage. The
attributes of these diseases include nicknames, overwintering, and control methods.

Pests can be divided into three entities: Insect pests, Arachnida pests, and other pests. The
attributes of pests include nicknames, overwintering, pest characteristics, and control methods.
According to the role of pesticides, pesticides are subdivided into seven entities: insecticides, acaricides,
rodenticides, fungicides, herbicides, synergists, and plant growth regulators. Their attributes include
pesticide composition, concentration, dosage, and application methods.

Due to the different elements contained in fertilizers can be divided into five entities: nitrogen
fertilizer, phosphorus fertilizer, potassium fertilizer, compound fertilizer, and trace element fertilizer.
Their attributes include the use method and fertilizer dosage. The natural environment is subdivided
into soil temperature, humidity, salinity, pH, soil nutrient elements, soil type, air temperature, air
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humidity, air carbon dioxide concentration, air ammonia concentration, wind speed, sunlight, and
water.

3.2 Definition of Semantic Relationship Between Entities
Twelve semantic relationships are defined: resistance, harm, manifest, accelerate, inhibition, cause,

feature, induction, control, remission, deterioration, and upper/lower. The extracted knowledge is
stored in the neo4j graph database with 26,498 relationships.

4 Proposed a Weakly Supervised Model for Entity Recognition

The task of agricultural named entity recognition is to extract entities defined in the pattern layer
of the agricultural knowledge graph from unstructured data, such as field crops, pesticides, fertilizers,
etc. The entity is used to form nodes in the knowledge graph. It is an integral part of the construction
of the agricultural knowledge graph.

The agricultural entity recognition mainly includes a corpus construction module, model training,
and inference module. Among them, the proposed corpus construction module is divided into two
stages: constructing agricultural knowledge graph, which crawls the agricultural knowledge from
books and websites to construct the agricultural knowledge graph. The second is to label data for
training in the text. Training data is partitioned into target and source domain data in this stage
according to their labels. Data in the target domain does not have a label. Data in the source domain
has a label. There are two parts to this stage. One is teacher model training, which uses labeled data
from a source domain to train the teacher model proposed in this paper. Second, the model using data
from the target domain without labels is used as the student model to distill the teacher model.

Based on BILSTM-CRF and knowledge distillation, a weakly supervised entity recognition model
is proposed, as shown in Fig. 2. The model training process is divided into the following four parts.

Figure 2: Transfer learning model based on knowledge distillation

4.1 Source Domain Training Model
For Chinese sentence of the source domain xs = {cs

1, cs
2, . . . , cs

N}.
Each character cs

i is mapped into vectors through a pre-trained embedding matrix xs
i ∈ R

de . Then
the output of the embedded module in the source domain is xs = {xs

1, xs
2, . . . , xs

N}. xs is inputted to the
feature extractor of BiLSTM in the source domain. The output result of BiLSTM is
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hs = {hs
1, hs

2, . . . , hs
N} (1)

hs
i = BiLSTM(xs

i , hs
i−1; θ

s
h) ∈ R

2de (2)

Here, θs
h is the parameter representing the source domain private feature extractor in the source

domain, and de represents the dimension of features.

Then, the probability distribution o of the corresponding tag of each character in the sentence is
obtained through the linear layer.

o = {o1, o2, . . . , oN} (3)

Then the score of the sentence s(x, y) is given by combining the state transition matrix T in the
CRF layer of the source domain.

s(x, y) =
N∑

i=1

(oi,yi
+ Tyi−1,yi

) (4)

where oi,yi
indicates the score of tag yi taken for the ith character, and Tyi−1,yi

is the transfer score from
tag yi−1 to tag yi. Therefore, the loss of this part is defined by negative log likelihood.

Then,

Llabel_s = −
∑

logp(ytrue|x) (5)

p (ytrue|x) = es(x,ytrue)∑
y∈Y es(x,y)

(6)

Moreover, Y represents the probability distribution of all possible tags in the sentence.

4.2 Discriminator in the Training Domain
This part takes the result of the data of the source domain and the target domain passing through

the feature extractor BILSTM in the source domain as the input and multiplies it with the three
parameters in self-attention to obtain the three matrices of Q, K and V. Hence,

head = Attention(Q, K, V) = Softmax
(

QKT

√
d

)
(7)

Here, Q, K, V ∈ R
N×2de/h. The multi-Head Attention mechanism is used in the discriminator.

That is, it is composed of multiple self-attention results, and then the output of the self-attention
mechanism is

H = (head1 ⊕ head2 ⊕ . . . ⊕ headh)W0 (8)

Here,

headi = Attention(Qi, Ki, Vi) (9)

Therefore, the judgment result of the domain discriminator is:

d = D(H; θd) = Linear(Wd Maxpooling(Hs) + bd) (10)

Here, θd is the parameter representing the discriminator, Wd and bd are the training parameters.
The loss function of the domain discriminator adopts cross entropy function

Ldis = −(I(d) log d + (1 − I(d)) log(1 − d)) (11)
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I (d) is a conversion function that outputs 1 and 0 when D belongs to the source and the target
domain, respectively.

4.3 Data Filtering
After the source domain model and the domain discriminator are trained, the text data without

labels in the target domain is taken as input. Moreover, the target domain data is divided into S and T
parts through the domain discriminator. The domain discriminator identifies the data in the S part as
the source domain. Moreover, the domain discriminator identifies the data in the T part as the target
domain.

4.4 Knowledge Distillation Operation
Chinese sentence xt = {ct

1, ct
2, . . . , ct

N} of the target field is inputted into the embedded model of
the source field. And the feature extractor of the source field output the feature of the source field

hs = {hs
1, hs

2, . . . , hs
N} (12)

xt = {
ct

1, ct
2, . . . , ct

N

}
(13)

It is inputted into the embedded model of the target field and the feature extractor of the target
field. Feature extractor outputs the feature of the target field ht = {ht

1, ht
2, . . . , ht

N}. Moreover, the
features hs and ht of the two fields are inputted into the Knowledge distillation network layer.

The network layer obtains the average value μ of the features of the target domain after passing
the features of the target domain through the multi-layer perceptron μ = Dense (ht) and variance σ .

Finally, the loss function of knowledge distillation is defined as

Ldistil = (hs − μ)2/σ + log σ (14)

The loss function of labeled data in the target domain is similar to that of the training source
domain model.

Llabel_t = −
∑

logp(ytrue|xt) (15)

The total loss function of the final model is defined as

L = Llabel_t + αLdistil (16)

5 Experimental Results and Analysis
5.1 Data Sets

Three data sets are used for experimental verification.

The data source first data set is from books, and the second is from Baidu Encyclopedia. These
two datasets are used for constructing agricultural knowledge graphs. Text in the agricultural field
is segmented according to the sentence. The training set is built, and the verification set is manually
labeled. These include 13,983 entities and 26,498 relations constructed in the database. The third one
is from Crichton et al. [33] in the field of Bioinformatics.

The structured data in the first set is highly organized and formatted data derived from the
Agricultural Science Thesaurus [34]. It contains a total of 64,638 words. It is a scientific and normative
agricultural information book. The unstructured data from China’s crop diseases and pests (Third
Edition) [35] includes more than 775 kinds of agricultural diseases and 739 kinds of pests. It focuses
on the distribution and harm, symptoms, pathogens, and control technology of diseases, as well as the
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distribution and harm, morphological characteristics, living habits, and control technology of pests.
Six thousand thirty-six entities and 16923 relations have been constructed.

The second data set is from Baidu Encyclopedia data. Baidu Encyclopedia is an open-source
Chinese encyclopedia website that contains a large number of agricultural entities and knowledge.
It can be accessed at https://www.baidu.com. Considering that Baidu Encyclopedia is more accessible
to crawl than other encyclopedia websites and open-source agricultural information websites, Baidu
Encyclopedia data is selected to build the agricultural knowledge graph and annotate the entity
recognition training corpus. The documents corresponding to agricultural entities in the Baidu
Encyclopedia database are segmented to obtain an agricultural Entity Recognition Corpus. Baidu
Encyclopedia entries mainly introduce some primary attributes of plants, diseases, pests, pesticides,
chemical fertilizers, etc. Among them, the attributes of plants include aliases, species, subjects,
phyla, morphological characteristics, distribution range, value, etc. The attributes of diseases include
symptoms, pathogens, control methods, etc. At the same time, the attributes of pests include pest char-
acteristics, control methods, etc, and the attributes of pesticides and fertilizers include components.
4965 entities and 9575 relations have been constructed.

The third data set, the BioNER dataset, is used to verify our algorithm. BioNLP11ID is selected
as the source domain for transfer learning among these datasets. There are 5178 sentences. The
entities include chemical (973), protein (6,551), and species (3,471). We use datasets in IOB format.
These datasets are available to the open and can be accessed at https://github.com/cambridgeltl/MTL-
Bioinformatics-2016 to get these datasets.

5.2 Experiment Results
Our experiment environment is given in Table 1. And the parameter settings are given in Tables 2

and 3. The calculation methods of precision, recall, and harmonic mean (F1 value) in the experiments
are as follows.

precision = Ncorrect

Nidentify

∗ 100% (17)

recall = Ncorrect

Nentity

∗ 100% (18)

F1 = 2 ∗ precision ∗ recall
precision + recall

∗ 100% (19)

Table 1: Experiment environment

Device Setting

GPU NVIDIA RTX 208
Software Pytorch
Optimization Adam

The source and target domains are Baidu Encyclopedia and book data. The parameters in the
experiment are set as a batch of training data. The size is 10, and the round training epoch is 500. The
optimization method of the optimizer is set to Adam. The learning rate LR is 0.01, and the weight
decay WD is 0.0001. Both the source domain model and target domain model use BILSTM-CRF
model.

https://www.baidu.com
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
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Table 2: The parament settings

Parameter Settings

Batch size 30
Epoch 500
Learning rate 0.005
Weight decay 0.01
Learning rate decay 0.95

Table 3: The parament setting

Parameter Setting

Precision The precision rate
Recall The recall rate
F1 The harmonic mean
Ncorrect The number of entities that have been correctly identified
Nidentify The number of entities that have been identified
Nentity The number of entities in the dataset
LR The learning rate
WD The weight decay

The target domain model is trained with all training sets in the target domain and tested on the
test set in the target domain. The F1 value of the model changes with the training rounds, as shown
in Fig. 3. It can be seen that the target domain model has reached the maximum value of 75.59% in
about 300 rounds of training.

Figure 3: F1 value of the target domain model on the target domain test set

For comparison, the source domain model is trained with all training sets in the source domain
and tested on the source domain test set. The F1 value of the model is given with the increase of the
training rounds, as shown in Fig. 4a. It can be seen that the best value of F1 on the test set of the source
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domain test is 62.33%. The source domain model is trained with all training sets in the source domain
and tested on the target domain. The F1 value of the model is presented with the increasing training
rounds, as shown in Fig. 4b. It can be seen that the best value of F1 on the target domain test set is
47.74%. When the model achieves the best results on the source domain test set, the F1 value on the
target domain test set is 34.17%.

Figure 4: F1 value of the source domain model on the different domain test set

The domain discriminator model is trained and tested with mixed data from the source and target
domains. The F1 value of the model is given in Fig. 5. The best value of F1 of the domain discriminator
is 81.27%. It means there are still some data that the domain discriminator needs to distinguish from
its domain correctly. The training set data of the target domain (7303 in total) is filtered by the domain
discriminator. The results show that 425 data from the source domain and 6878 data from the target
domain are judged by the domain discriminator. There are more data in the target domain.

Figure 5: F1 value of the domain discriminator model after 500 epochs

After the target domain training set is divided, the part of training data from the target domain
identified as the source domain by the domain discriminator is recorded as S. The part of training data
in the target domain identified as the target domain is recorded as T. The experimental results for the
best value of F1 in all training round for different training data is given in Table 4. The target domain
models are BILSTM-CRF.
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Table 4: The value of F1 with different training data

Training data (with label) Knowledge distillation data (without label) The value of F1

S+T None 75.83%
S+T S 76.02%
S+T S+T 73.88%
S+T T 72.93%
S None 52.65%
S S+T 64.57%

It can be seen from Table 4 that the F1 value of the target domain model after training with all the
target domain data is 75.83%. When the data of part S is added for knowledge distillation, the F1 value
is 76.02%. It improves by 0.19%. However, when the data of part T is added for knowledge distillation,
the F1 value is 73.88%. It is shown that the data of part S can improve the model of the target domain.
However, the data of part T will produce wrong characteristics in the source domain model, which
will affect the performance of the target domain model. At the same time, when the target domain
is trained only with the data of part S, the F1 value is 52.58%. After data from part S is added for
distilling the knowledge, and F1 value of the target domain increases to 64.16%. Although compared
with the result for training set S+T, the F1 value is smaller. As the data of part S only accounts for
5.8% of the total data in the target domain, the cost of labeling is significantly reduced.

The target domain model is trained only with the data of part S and tested with the target domain
test set. The model’s accuracy, recall, and F1 value are given in Table 5. It can be seen that the
performance of the target domain model varies with the increase of alpha. The best result is achieved
within the range of 1 to 5 alpha. It means that the value of the alpha affects the knowledge distillation.
When the alpha value exceeds a threshold, data in the source domain has more effect on the target
domain. And then, the performance of the target domain model gets worse. When the alpha is smaller,
knowledge distillation has less effect on the F1 value of the target domain model initials at 52.65%.

Table 5: Experiment results with different alpha

Alpha Precision Recall F1

0 0.698050 0.422689 0.526542
0.01 0.689452 0.438526 0.536079
0.02 0.669565 0.443421 0.533518
0.05 0.689333 0.446588 0.542023
0.1 0.665042 0.432191 0.523909
0.2 0.654726 0.436798 0.524007
0.5 0.682136 0.478261 0.562288
1 0.665140 0.627411 0.645725
2 0.743805 0.561762 0.640092
5 0.709355 0.591707 0.645212

(Continued)
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Table 5: Continued
Alpha Precision Recall F1

10 0.722364 0.570112 0.637271
20 0.667824 0.498416 0.570816

The precision, recall, and F1 values of our proposed model for different entities are given in
Table 6. The best value of the model is 71% for crops. The reason is that the most extensive labeled
data set has been constructed for crops.

Table 6: Experiment results for different entities

Entity Precision Recall F1

Crop 0.763882 0.664491 0.710728
Pesticides 0.778846 0.547297 0.642857
Disease 0.623626 0.556373 0.588083
Pest 0.629630 0.328185 0.431472
Fertilizer 0.347458 0.732143 0.471264

For comparison, adversarial transfer learning with a self-attention mechanism is performed. The
adversary transfer learning model’s data set takes the Baidu Encyclopedia’s data as the source domain.
The data set of the target domain takes the S part for training and then tests with all the target domain
test sets. The parameters in the experiment are set as the batch of training data is 32. The round training
epoch is 2000. The optimization method of the optimizer is set to Adam. The learning rate LR is 0.01,
and the alpha is 0.06 in the loss function. Finally, the F1 value of the model changes with the increasing
training round epoch, as shown in Fig. 6. It can be seen that the F1 oscillation of the model is relatively
intense, and the best result is 53.47%. Compared with the model effect of training only with the S part,
this method’s final effect has somewhat improved.

Figure 6: F1 value of the domain discriminator model after 2,000 epochs with Baidu Encyclopedia as
the source domain
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The data set of the adversarial learning model takes the MSR data set in the public data set
SIGHAN 2005 as the source domain. The target domain data set takes the S part for training and
tests with all the target domain test sets. The F1 value of the model is given in Fig. 7. The best value of
the F1 of the model is 52.79%. In this model, public data sets in the non-agricultural field have little
effect on improving performance for the adversarial learning model.

Figure 7: F1 value of the domain discriminator model after 2,000 epochs with sighan 2,005 as the
source domain

The experiment results on different models are shown in Table 7. Compared with adversarial
transfer learning and multi-task methods, LSTM-CRF and our proposed model have better values on
precision values. The reason is that these two methods have used transfer learning for data labeling,
which affects the performance of these two models. Our proposed model has achieved the best recall
value among these models, as knowledge distillation between target and source domains can effectively
increase recall value. Compared with the LSTM-CRF method, our method can achieve a 27%
improvement in recall value. Furthermore, our method also has the best value on F1. Furthermore, it
can significantly reduce the labeling cost due to transfer learning in the model, as only a tiny part of
the data is required to be labeled in the source domain.

Table 7: Experiment results for different deep learning models

Models Precision Recall F1

LSTM-CRF [36] 0.698050 0.422689 0.526542
Adversarial [37] 0.612733 0.474250 0.534670
Multi-task [38] 0.686737 0.486035 0.569212
Ours 0.709355 0.591707 0.645212

Bioinformatics data set is also used to perform experiments. The results are shown in Table 8.
BioNLP11ID is selected as the source domain in the experiment. The highest value of precision is
achieved at 0.48. The largest recall and F1 values are 0.51 and 0.47, respectively. These values are
much lower than that of agricultural datasets. It proves that our method still is limited to domain
knowledge.
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Table 8: Experiment results for different alpha by using BioNLP11ID as the source target domain

Alpha Precision Recall F1

0 0.415721 0.513257 0.459369
0.1 0.483836 0.441721 0.461820
0.2 0.469862 0.475738 0.472782
1 0.441076 0.516758 0.475927
2 0.459596 0.455228 0.457401
5 0.410004 0.541271 0.466580

6 Conclusion

This paper proposes a new model combining transfer learning and knowledge distillation for
entity recognition in constructing agricultural knowledge graphs. In our method, a domain discrim-
inator is first trained to classify the source and target domain data more accurately. Then a small
amount of target domain data is selected through the domain discriminator. Last, only this part of the
data is used by knowledge distillation to improve the effectiveness of the target domain model. The
experimental results show that we only need to label less than one-tenth of the data. The agricultural
domain ontology is constructed. Then, BILSTM-CRF named entity recognition model and PCNN
relationship extraction model are constructed to extract knowledge from structured and unstructured
data. Furthermore, the extracted knowledge is stored in the neo4j graph database with 13,983 entities
and 26,498 relationships. In future work, the transfer learning method for cross-domain will improve
our method.
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