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Abstract: As COVID-19 poses a major threat to people’s health and economy,
there is an urgent need for forecasting methodologies that can anticipate its
trajectory efficiently. In non-stationary time series forecasting jobs, there is
frequently a hysteresis in the anticipated values relative to the real values.
The multilayer deep-time convolutional network and a feature fusion network
are combined in this paper’s proposal of an enhanced Multilayer Deep Time
Convolutional Neural Network (MDTCNet) for COVID-19 prediction to
address this problem. In particular, it is possible to record the deep features
and temporal dependencies in uncertain time series, and the features may then
be combined using a feature fusion network and a multilayer perceptron. Last
but not least, the experimental verification is conducted on the prediction
task of COVID-19 real daily confirmed cases in the world and the United
States with uncertainty, realizing the short-term and long-term prediction of
COVID-19 daily confirmed cases, and verifying the effectiveness and accuracy
of the suggested prediction method, as well as reducing the hysteresis of the
prediction results.

Keywords: Time series forecasting; granulated convolutional networks; data
analysis techniques; non-stationarity

1 Introduction

The World Health Organization has classified the COVID-19 virus as a public health emergency
of global concern since it is now spreading quickly around the world [1]. Global public health is directly
at risk from COVID-19 [2,3]. especially in light of the current influenza pandemic and the spread of
other respiratory viruses. Although countries’ capacities for preventing, identifying, and managing
outbreaks vary widely, the spread of COVID-19 will continue for the foreseeable future [4,5].

Kumari et al. [6] applied correlation coefficients and multiple linear regression for prediction
and predicted the number of confirmed, recovered, and fatal cases caused by COVID-19 in India,
suggesting that confinement and social alienation are two important factors that could help curb
the increasing rate of COVID-19 transmission. In COVID-19 prediction studies, several attempts
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and efforts have been made, including the prediction of COVID-19 trends by taking into account
border control mechanisms [7], stochastic transmission models [8], survival models [9], particle swarm
optimization algorithms [10], improved Fuzzy C-Means (FCM) with the principle of refined justifiable
granularity [11], interval dominance degree (IDD) and interval overlap degree (IOD) [12]. the mode-
dependent average impulsive interval and induction method [13]. The SEIR model incorporated
population mobility data with the most recent COVID-19 epidemiological data, and the model was
trained using artificial intelligence on SARS data to anticipate outbreaks [14], the SEIR model
equations were adjusted to include the impacts of the blockade, vaccination, and reinfection [15]. The
susceptible, infected, and recovered (SIR) model and the SEIR model are two of the epidemic models
that current researchers have created to predict short- and long-term epidemics [16–18]. The main
distinction between SIR [19] and SEIR models [20] is that SEIR takes into account the new coronavirus
transmission, which is more in line with COVID-19’s transmission characteristics. The amended SEIR
model can accurately match the data for the novel coronavirus by modeling the effects of the blockade
and other influencing variables on COVID-19 transmission. The SEIR model can fit any data for
given states and anticipate the development of COVID-19 infection in a particular population thanks
in part to a genetic algorithm that was created to adapt these population-dependent parameters [21].

For machine learning, the COVID-19 prediction used a combination of an artificial neural
network and an autoregressive integrated moving average (ARIMA) model [22]. Additionally, the
epidemiological pattern of COVID-19 prevalence and incidence was predicted using the ARIMA
model with a high degree of accuracy [23], demonstrating the value of epidemiological monitoring. A
novel hybrid prediction model based on gradient optimizer variational pattern decomposition, extreme
learning machine, and ARIMA was developed to increase the prediction accuracy of cumulative
verified COVID-19 instances [24]. To examine the relationship between the number of infections
and mortality over time, ARIMA and Nonlinear Autoregressive Neural Network (NARNN) were
integrated [25].

Convolutional Neural Network (CNN) is one of the most commonly used methods in deep
learning, and the improvement [26] and application [27] for the convolutional neural network is also
one of the current research hotspots, not only for the Classification of COVID-19 CT Scan Images [28],
CNN is also used for COVID-19 prediction. Due to the intricacy of infection transmission, Chandra
noted that almost all of the well-known computational and mathematical models are inaccurate for
COVID-19 prediction. Any such modeling attempts are also rendered inaccurate by the absence of data
collection and reporting, and the issue has to be reviewed using the most up-to-date data sources and
complete prediction models [29]. To get strong prediction results on the COVID-19 prediction task, a
novel model integrating CNN and LSTM models was developed [30]. Verma et al. [31] designed vanilla
LSTM, stacked LSTM, ED_LSTM, BiLSTM, CNN, and hybrid CNN + LSTM models to capture
the complex trends of COVID-19 outbreak and performed 7, 14, 21 days COVID-19 daily for India
and its four most affected states confirmed case prediction, showing that stacked LSTM and hybrid
CNN + LSTM models perform best.

Qu et al. [32] pointed out that fluctuations in COVID-19 data series are significant and effective
COVID-19 epidemic trend prediction remains a complex and challenging problem. Using only
individual forecasting methods for epidemic modeling, ignoring the combination of advantages of
different forecasting methods, has made most of the previous studies limited, and they developed
a novel ensemble paradigm based on multiple neural networks and a novel heuristic optimization
algorithm, and the results of the study showed that different neural network models have different
performance in various complex epidemic forecasting scenarios. The presented models are mostly
predictable and suitable for large populations, although models like SEIR and SIR can anticipate
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the spread of illnesses [33]. Epidemiological models may be used for decision-making to maximize the
best possible control of infectious illnesses and aid to understand the dynamic tendencies of pandemics.
These mathematically based epidemiological models might not be able to forecast the actual pandemic
scenario. Machine learning prediction models can perform predictions better than mathematical
models, however, they may make ARIMA models unstable when observations change [34]. Only linear
interactions, not nonlinear ones, are naturally captured by the ARIMA model. However, because most
studies are based on cumulative cases and the predicted curves show linearity, deep learning cannot
be relied upon to perform well in the COVID-19 time series prediction task. On the other hand, deep
learning has been used successfully in the COVID-19 prediction task due to its powerful nonlinear
fitting ability.

In this paper, an improved multilayer deep-time convolutional neural network is proposed for
COVID-19 prediction. The main contributions of this paper are given as follows:

(1) This study use statistical approaches to discover seasonality and non-stationarity in the daily
confirmed case data for COVID-19 using the COVID-19 statistics from Johns Hopkins
University.

(2) This research proposes MDTCNet, which not only decreases prediction hysteresis but also
increases accuracy on the COVID-19 prediction task and accomplishes short-and long-term
prediction of COVID-19 development trends.

(3) On real-time series data of COVID-19 with non-stationary and uncertainty, a reliable
prediction of non-stationary time series was made, expanding the prediction model for the
COVID-19 prediction task in terms of prediction of daily confirmed cases and demonstrating
the promise of COVID-19 prediction up to sixty days by artificial intelligence methods.

The remainder of this essay is structured as follows: The suggested MDTCNet prediction model
in this study is described in Section 2. The experiments and comments are included in Sections 3 and
4, respectively. The study for this paper is concluded in Section 5, along with recommendations for
further research.

2 MDTCNet Prediction Model

This section examines the characteristics of COVID-19 time-series data and conducts the
corresponding data processing; specifically, the difference operation and reconstruction of the data
set are included. The difference operation can better reflect the variable volatility pattern within the
data, and the reconstruction can reproduce the latent characteristics of COVID-19 that cause the data
features to be hidden for multi-step prediction.

2.1 COVID-19 Features
2.1.1 Non-Stationarity

Time series data are typically divided into smooth and non-smooth time series, and the current
practice for forecasting non-smooth time series is to convert non-smooth time series into smooth
time series. However, most of our real-world time series are non-smooth, such as the closing prices
of some stocks, and the time series of COVID-19 is no exception because of the pathogenic Due to
the pathogenesis, man-made environment, and other factors that affect COVID-19 spread, there is a
significant difference in the number of new diagnoses made each day, which causes significant data
fluctuations and contains a lot of anomalous information, causing the COVID-19 data to exhibit
non-stationarity.
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2.1.2 Uncertainty

Along with the COVID-19 virus’s ability to spread on its own, the human policy-based
intervention also contributes to COVID-19’s unpredictability, which is represented in the virus’ time
series data. Because the deterministic factor decomposition approach cannot completely extract useful
information from the observation series, the precision of the model fitting is typically not adequate.
The first difference in the dataset is accomplished in this research using the following formula, which
Cox and Jenkins demonstrated to be a relatively straightforward and efficient information extraction
approach [35].

∇xt = xt − xt−1 (1)

where t indicates the time, xt shows the value at a certain time. ∇xt indicates the distinction between
the preceding and subsequent times. In this article, xt means that the number of statistically supported
instances for a day more clearly illustrates the data fluctuation pattern and makes it possible for the
model to successfully learn the data change pattern.

2.1.3 Latency

The latent nature of COVID-19 makes it extremely difficult to anticipate the actual number
of COVID-19 cases. In light of this, this work suggests a reconstruction technique for multi-step
prediction by using Takens Theorem [36] for time series of case data for a collection of measured
observations:

{x(t), t = 1, 2, . . . , n} (2)

It is possible to build an m-dimensional vector set:

X (t) = [x(t), x(t − T), . . . , x (t − (m − 1) × T)] (3)

where T indicates the sample time, m refers to the embedding dimension, x (t) represents the phase
space reconstruction and the Takens Theorem is the ability of the reconstruction to recreate the key
characteristics of the time series. As the COVID-19 latency period is now estimated to be two weeks,
we selected the time frame in this paper’s experiment following the COVID-19 latency period so that
the model may more effectively learn the time-hidden aspects of COVID-19 infection cases.

2.2 MDTCNet
For the complicated characteristics of COVID-19, the MDTCNet model is suggested in this

research as a means of forecasting the daily number of confirmed cases. The multilayer deep temporal
convolutional network and the feature fusion network make up the bulk of the model’s structure.
In particular, the COVID-19 time series is fed into the MDTCNet model, which has four hidden
layers, as illustrated in Fig. 1. Taking into account the drawbacks of null causal convolution and
one-dimensional convolution for handling COVID-19 time series with complicated characteristics, A
multilayer deep time convolution network is created between the hidden layers to enhance the feature
learning capabilities. The prediction hysteresis brought on by the issue of information continuity loss is
addressed by the feature fusion network to obtain long-time series dependence and increase accuracy.

2.2.1 Multi_Layer Deep Time Convolution

Recurrent neural networks and their derivatives are frequently employed in time series research,
but while processing sequences they experience gradient explosion, disappearance, or memory scarcity.
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The model is designed using convolutional networks, which overcome the flaws in recurrent neural
networks while allowing parallel processing, significantly increasing the efficiency of sequence pro-
cessing. Bai et al. [37] introduced TCN for processing sequence tasks. TCN models have now been
incorporated into adjacent study fields [38–40].

Figure 1: MDTCNet network structure diagram

Time series forecasting often involves modeling past data and using that model to predict future
data. Mathematical formulas can be used to describe the specific form.

yt+1 = f (x1, x2, . . . , xt−1, xt) (4)

where xt is a one-dimensional vector containing t features, and yt+1 denotes the value of the variable
to be predicted for the next period. The goal of prediction is to fit a relational function f ′ that is as
optimal as possible with the f function to predict the value of the variable the next time by using the
historical data information:

(
X : {x1, . . . , xt} Y : {y1, . . . , yt}

)
then the characteristics of the historical

data information determine the optimal relationship between the relational function f ′ and f , the
amount of historical information and the model’s ability to learn the historical information directly
determine the prediction effect. In this paper, we found experimentally that the TCN model has serious
hysteresis and unsatisfactory prediction accuracy in predicting the daily confirmed disease count of
COVID-19. It is found that the reason for the hysteresis is the insufficient feature learning ability of
the model. For this reason, a multilayer deep temporal convolutional network is proposed in this paper
to improve the prediction hysteresis, and the TCN network can be decomposed as follows:

TCN = 1D CNN + Dilated Causal Convolution (5)

2.2.2 1D CNN

The feed-forward neural network CNN is used. The ability of CNN to identify straightforward
patterns in data is widely recognized, particularly when there is little connection between the
placements of the segments of the data. To analyze signal data with fixed-length cycles (such as audio
signals), 1D CNN (1D Convolution Neural Network) can be used effectively. However, it is challenging
to use 1D CNN’s effect on data pattern recognition when dealing with COVID-19 time series data that
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contain complex patterns and uncertainty. It is difficult to conduct its pattern recognition, however,
to the point that feature extraction is insufficient when dealing with COVID-19 time series data with
complicated and ambiguous patterns.

2.2.3 Dilated Causal Convolution

On the one hand, the TCN structure’s causal convolution limits its capacity to learn long-term
historical data even if it guarantees the order of the series. Although the TCN structure employs dilated
causal convolution to address the learning problem of lengthy historical information, the following
issues will arise when multiple 3 ∗ 3 convolution kernels with a 2× expansion rate are stacked: (1) The
continuity of information is lost because not all information is used in the computation, which results
in the loss of the continuity of information. Strong continuity in a sequence of data is lethal; (2) non-
correlation of data; in some cases, where a sequence of data has fixed-length periods, an appropriate
expansion rate may be determined experimentally. However, for sequence data with uncertainty or
randomness, an expansion rate that is too high will result in the network learning irrelevant data
features, while an expansion rate that is too low will result in insufficient learning of relevant features,
both of which will negatively impact the prediction effect.

However, as the CNN is constrained by the perceptual field, which is difficult to capture long-
range features and sensitive to local but not global signals, the hysteresis may also be brought on by
the properties of CNN in the TCN structure. Although the enlarged causal convolution introduced in
the TCN network appears to address this issue, it only manages to perform global feature learning
within a specific range, and for the presence of noise, The forecast of the real case number of
COVID-19 is an excellent illustration of how poorly time series with significant data changes or
uncertainty may be predicted.

This research solves the aforementioned issue by enhancing the learning capabilities of features
to lessen the hysteresis of TCN in COVID-19 prediction to retain the efficiency of CNN processing
sequences. In this study, a multilayer deep-time convolutional extension of the residual network
structure is developed by upgrading the TCN structure and is motivated by the ResNet network
structure. This structure gains significantly longer distance and deeper temporal characteristics
increasing the information extraction capacity between each concealment and deepening the dilation
causal convolution layers between hidden layers. The idea behind this is that for time series with
complicated patterns, the feature extraction power of each time series convolutional fragment may
be increased to acquire deeper temporal features and dependencies and improve the ability to express
nonlinear features in non-stationary time series. A jump connection is added between each hidden
layer to address the issues of insufficient feature extraction of one-dimensional full convolution, loss
of data information continuity, and non-correlation of the null causal convolution, which reduces the
hysteresis of prediction and prevents the gradient from disappearing as a result of the deep network.

2.2.4 Feature Fusion

Google used MLP-Mixer to demonstrate that even a simple structure like a multilayer perceptron
(MLP) can achieve the best model performance so far [41]. The problem of optimizing the structure
of neural networks has been a hot topic in research, and self-attention has consistently been proposed
by researchers to improve the performance of the algorithm.

It is discovered in this study that the TCN model employs linear regression as the output
component of the prediction results through the breakdown of the TCN network. The argument
made in this paper is that using linear regression as the output component of the prediction results
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after feature extraction cannot effectively use the features extracted by the temporal convolutional
network, especially because it may result in the loss of nonlinear features, resulting in unsatisfactory
fitting accuracy to non-stationarity time series. To further improve the fusion of the features extracted
by the multilayer deep time convolutional network for the output and to enhance the expression of
nonlinear features and the feature capability of handling non-stationarity uncertain sequence data,
this paper, inspired by the Self-Attention structure, replaces linear regression in MDTCNet with a
multilayer perceptron. It is demonstrated through a series of iterations that the input layer size is 256,
that Sigmoid is used as the activation function, that batch normalization is introduced in the first layer
as well as bias in each layer to improve performance and stability, and that the two hidden layers are set
at 128, 64, and that Relu is used in both of them as the activation function to predict the best outcomes.

To sum up, the procedures for training the proposed MDTCNet are shown in algorithm 1.

Algorithm 1: Training the proposed MDTCN
Input: N : number of confirmed cases of COVID-19 historical data size, epo: maximum number of
iterations, T: time step, l: training data size
Preprocessing:
1. Divide the training set t and validation set v from the original data N according to the training

data size s
2. Normalize the training set t and validation set v
3. Generate training sequence tsqe and validation sequence vsqe for training set t and validation set

v based on Eq. (3) by time step T
4. Wrap the training sequence tsqe and the validation sequence vsqe into sequences with prediction

labels, respectively
5. initial MTDCNet, i ← 0, epo ← 200, and T ← 14
6. Repeat:
7. i ← i + 1;
8. Update F with Adam optimization;
9. Until: i > epo, or early-stopping;
10. Output: optimal model F∗ with best on validation sequence

3 Experiment

This part serves as an introduction to the data utilized for analysis, visualization, and
experimentation. The analysis findings in this area will also be used to identify the ideal parameters
to aid modeling. This study makes use of daily confirmed case data from Johns Hopkins University
that has been published both internationally and domestically. Refer to Table 1.

Table 1: Experimental dataset presentation

Datasets Date Sizes Number of entries

Global confirmed cases 1/22/20—10/27/21 1.4 M 645
US confirmed cases 1/22/20—10/27/21 6.4 M 645
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3.1 Data Analysis
Compared to the previous studies, which only smoothed the curves of cumulative cases, this work

predicts the trend of COVID-19 more directly by analyzing the real-world cumulative case dataset with
differential operations to predict new cases daily.

Figs. 2 and 3 show the time series decomposition of the global and U.S. confirmed incremental
case data, which shows that the global and U.S. COVID-19 time series data have seasonal factors,
the long-term trend fluctuates upward, showing irregular waves, and the residual deviations show
random fluctuations, which indicates that the COVID-19 time series data have uncertainty and non-
smoothness, and uncertainty for traditional mathematical prediction model prediction, The moving
mean and standard deviation of the time series data in Table 1 are shown in Figs. 4 and 5. The
Augmented Dickey-Fuller test (ADF) cannot rule out the hypothesis since the data has a unit root,
which denotes that the time series data is not stationary, non-stationarity is also a difficult challenge
for deep learning prediction research.

Figure 2: Time series decomposition of the global daily number of cases

3.2 Parameter Evaluation
In this study, we evaluate the outcomes of the aforementioned trials using a variety of metrics,

with a focus on Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage
Error (SMAPE), Root Mean Square Error (RMSE), and Root Mean Square Error (RMSE) (RMSE).
Square Root Error (RMSE). For the statistical forecasting techniques used in time series forecasting,
MAPE is employed as a measure of prediction accuracy and trend estimation. When comparing
observed values to actual values, RMSE is employed to describe the difference. Here are the RMSE,
MAPE, and SMAPE formulae.

MAPE = 100%
n

∑n

i=1

∣∣∣∣ ŷi − yi

yi

∣∣∣∣ (6)

SMAPE = 100%
n

∑n

i=1

∣∣ŷi − yi

∣∣(∣∣ŷi

∣∣ + |yi|
)
/2

(7)

RMSE =
√

1
m

∑m

i=1

(
yi − ŷi

)2
(8)
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Figure 3: Time series decomposition of the number of daily cases in the United States

Figure 4: Moving average and standard deviation of the global daily number of confirmed cases

Based on the latent properties of COVID-19 and the creation of hysteresis in the time series at
each time step, the experimental single version employs a single quantity for multi-step prediction
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while taking into account the real scenario. To prevent the hysteresis effect of the time step, the tests
established three steps of 10, 14, and 21 to forecast the number of daily instances in the upcoming 7
and 14 days, respectively. To discuss the long-term prediction performance of the MDTCNet model,
up to 60 days of predictions were made while the epoch was set to 200, batch_size was set to 32, and
the learning rate was set to 0.01.

Figure 5: Moving average and standard deviation of the daily number of confirmed cases in the United
States

To find the optimal parameters, the key parameters hi and fi of the hidden layer and feature fusion
network of MDTCNet have experimented on the global daily diagnosed case data, where h denotes
the hidden layer of MDTCNet, f denotes the feature fusion network layer, and i denotes the number
of layers. In the hidden layer part, we use linear output instead of the feature fusion part to verify
the effect of feature fusion. The experimental results in Table 2. It can be concluded from Table 2
that MDTCNet_h4 and MDTCNet_f4 have the least prediction error, so this paper chooses to set
the hidden layer as 4 layers and the number of layers of the feature fusion network as 4 layers for the
evaluation and comparison of the prediction performance.

Table 2: Comparison of forecasting results using MAPE, SMAPE, and RME

Methodologies MAPE SMAPE RMSE

TCN 9.6056 9.7006 47145.7461
MDTCNet_h2 9.6124 9.5762 48601.8906
MDTCNet_h3 7.2136 7.4290 38037.7109
MDTCNet_h4 6.7167 7.0200 34958.5039
MDTCNet_h5 8.2032 8.5210 40661.0625
MDTCNet_f2 5.9354 5.8138 28467.3184

(Continued)
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Table 2: Continued
Methodologies MAPE SMAPE RMSE

MDTCNet_f3 5.1209 4.9355 25375.0547
MDTCNet_f4 4.8665 4.7306 25820.1914
MDTCNet_f5 5.3383 5.3305 27993.7578

3.3 Prediction Performance
To better compare the proposed prediction model in this paper, as well as to display and compare

the prediction results of COVID-19 cases globally and in the United States, as well as to compare
evaluation metrics, the MDTCNet neural network model is compared with the TCN model and the
current prediction models frequently used in COVID-19 prediction studies.

The time steps of 10, 14, and 21 days are shown in Figs. 6 and 7 to forecast the number of
daily confirmed cases in the following 7 days for the world and US populations, respectively. The
figure makes it clear that there is an obvious hysteresis between the TCN model and the real value.
This hysteresis can make it difficult to grasp the development trend of COVID-19 infection cases
and prevent the formulation of scientific and reasonable control strategies to address changes in the
trend of COVID-19 development in a timely and effective manner, leading to an unnecessarily high
number of confirmed cases and financial harm. In comparison to TCN, the MDTCNet proposed
in this paper not only forecasts the overall trend but also has a much smaller hysteresis between
predicted and actual values. This helps medical professionals and government decision-makers to
predict the COVID-19 development trend, analyze the strain of confirmed cases on medical beds,
medical supplies, etc., and develop more prompt response plans. To develop more prompt reaction
plans and more wisely distribute medical resources, medical practitioners and government decision-
makers can use this information to study the COVID-19 trend and assess the strain of confirmed
cases on medical beds, medical supplies, etc. Additionally, the MDTCNet model greatly outperforms
the TCN model in its ability to match the aberrant information points of the curve, demonstrating
that it is better suited for the task of forecasting COVID-19 and more accurate than the TCN model
at doing so.

The number of daily confirmed cases in the following 14 days for the globe and the U.S.,
respectively, may be predicted using time steps of 10, 14, and 21 days, as shown in Figs. 8 and 9.
Combining Figs. 6 and 7, it can be seen that the MDTCNet model outperforms the TCN model in
terms of hysteresis and fit even when making predictions for a longer period. This indicates that the
analysis and enhancement of the network structure of the TCN model in this paper were accurate and
successful.

3.4 Prediction Evaluation
The variations in MAPE situations for the TCN and MDTCNet models at various epochs are

shown in Fig. 10. It is clear that MAPE declines as the epoch rise, and when the epoch is equal to 200,
the MAPE does not noticeably change. The MAPE of MDTCNet is consistently lower than that of
the TCN model.

The MDTCNet, TCN, and current LSTM, Logistic Regression, and ARIMA prediction models
typically employed in COVID-19 prediction research provided in this study illustrate the prediction
findings for the number of daily confirmed cases in the following 21 days globally and the United
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States. To get the greatest prediction performance, all prediction models were refined through data
analysis and literature reviews. For the COVID-19 non-stationarity time-series data with uncertainty,
it is evident from Fig. 11 that Logistics Regression does not learn the time series characteristics at all for
both the global and American data, and the prediction bias is significant. The time series uncertainty
has an impact on the LSTM, and the prediction performance is unsatisfactory. ARIMA outperforms
The TCN model and picks up on the time series’ properties, but because of the substantial hysteresis,
the forecast accuracy is subpar. Even though the causes of hysteresis are numerous and challenging to
eliminate, the MDTCNet model suggested in this paper not only learns the time series’ characteristics
under the influence of noise and large data fluctuations but also picks up longer time dependence,
which significantly reduces hysteresis and provides the best prediction performance. Table 3 displays
the findings for the three most often used time series prediction evaluation metrics, MAPE, SMAPE,
and RMSE.

Figure 6: Time steps 10, 14, and 21 predict confirmed cases in the next 7 days globally

As can be seen, the MDTCNet model performs better than the other models in each of the
evaluation metrics. As a result, the studies demonstrate that the MDTCNet model achieves reliable
prediction performance when given the job of forecasting COVID-19’s non-smooth time series with
uncertainty.
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Figure 7: Time steps 10, 14, and 21 predict confirmed cases in the next 14 days globally

Figure 8: Time steps 10, 14, and 21 predict confirmed cases in the next 7 days in the United States
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Figure 9: Time steps 10, 14, and 21 predict confirmed cases in the next 14 days in the United States

Figure 10: Comparison of MAPE of TCN and MDTCNet in different epochs
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Figure 11: Comparison of prediction values and values of real confirmed cases

Table 3: Comparison of MAPE, SMAPE, and RMSE

Models Daily number of confirmed cases
globally

Daily number of confirmed cases
in the US

MAPE SMAPE RMSE MAPE SMAPE RMSE

ARMA 8.3811 8.8294 45861.7028 44.5679 30.7393 22471.3521
LSTM 13.6825 13.404 60875.5078 93.7689 61.7383 44841.0898
LR 62.0594 42.5387 374399.3478 212.2109 77.507 102137.1322
TCN 9.6056 9.7006 47145.7461 45.5215 29.7451 28521.3223
MDTCNet 3.7641 3.7108 18988.1719 24.7332 24.7974 22417.5918

4 Discuss

To account for the effect of time steps on hysteresis, the number of cases in various future periods
was predicted in this study using various time steps. At the same time, commonly used evaluation
metrics are chosen to compare the current COVID-19 prediction model, which has been experimentally
shown to perform better than other models at predicting the number of daily cases for both the global
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and US markets. The results show that the hysteresis of prediction can be successfully reduced by the
residual network module with multilayer deep-time convolution presented in this article.

The TCN and MDTCNet models anticipate the number of daily cases over the next 60 days
for both the world and the U.S., as shown in Fig. 12. In this study, a time step of 10 days was
shown to be the most suitable for predicting the number of daily cases throughout the next 60 days.
Fig. 9 shows that, compared to the TCN model, the MDTCNet model more precisely predicts the
COVID-19 development pattern with a considerable reduction in hysteresis. The demonstration in
sixty-day prediction experiment demonstrates that the proposed model achieves a long-term low-
hysteresis COVID-19 prediction effect and also shows that the long-term prediction of COVID-19
is promising. The proposed model in this paper outperforms the TCN model in both hysteresis and
prediction accuracy.

Figure 12: TCN and MDTCNet models predict daily confirmed cases for the next 60 days globally
and in the US

The majority of the current COVID-19 prediction research effort is effective for short-term
predictions within 10 days, and only a small number of prediction models can accomplish long-
term predictions within up to 60 days. The MDTCNet prediction model suggested in this study can
accomplish both accurate short-term forecasts and long-term predictions, which addresses the present
issue that COVID-19 prediction models can only predict the short- or long-term. The short-term
prediction can assist the epidemic control staff in understanding the current COVID-19 changes and
in making prompt adjustments to the isolation and control policies, while the long-term prediction can
assist in determining the future COVID-19 development trend over a longer time. The resilience of the
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MDTCNet model was demonstrated by the fact that, for modifications in time steps of 10 to 21 days,
the prediction performance of the model did not vary considerably. The best prediction outcomes were
obtained using both worldwide and American daily case data, demonstrating some generalizability of
the MDTCNet model.

5 Conclusion

We present the MDTCNet model for COVID-19 daily verified case number prediction in this
study, which increases prediction accuracy while lowering the hysteresis of prediction. We also enhance
the TCN model structure on the prediction job of COVID-19. On two different COVID-19 time-series
data sets, this paper also verifies the MDTCNet model’s efficacy in lowering hysteresis and enhancing
prediction accuracy. To prevent the effects of the time step’s hysteresis, the study additionally takes
into account the latent properties of COVID-19. As a result, MDTCNet can predict the COVID-19
trend both in the short term and the long term. In terms of the assessment metrics MAPE, SMAPE,
and RMSE, MDTCNet performs better than TCN, LSTM, ARIMA, and Logistic Regression.

The current analysis of this paper’s relatively straightforward evaluation of COVID-19’s prop-
agation has certain limitations. However, the prediction with reduced hysteresis will give useful
information for promptly catching and inhibiting COVID-19. Future research will incorporate other
variables into the model, such as population migration and recovery situations. This study also calls
for more standardized datasets and publicly accessible data to aid in the development of better disease
prediction models while maintaining individual privacy.
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Appendix A

COVID-19 Corona Virus Disease 2019
MDTCNet Multilayer Deep Time Convolutional Neural network
SIR Susceptible, Infected, and Recovered
SEIR Susceptible, Exposed, Infected, and Recovered
ARIMA AutoRegressive Integrated Moving Average
ARMA Autoregressive Moving Average Model
NARNN Nonlinear Autoregressive Neural Network
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LSTM Long Short-Term Memory
LR Logistic Regression
TCN Temporal Convolutional Network
CNN Convolutional Neural Network
1D CNN 1D Convolution Neural Network
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