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Abstract: Semantic segmentation of remote sensing images is one of the core
tasks of remote sensing image interpretation. With the continuous develop-
ment of artificial intelligence technology, the use of deep learning methods
for interpreting remote-sensing images has matured. Existing neural networks
disregard the spatial relationship between two targets in remote sensing
images. Semantic segmentation models that combine convolutional neural
networks (CNNs) and graph convolutional neural networks (GCNs) cause
a lack of feature boundaries, which leads to the unsatisfactory segmentation
of various target feature boundaries. In this paper, we propose a new semantic
segmentation model for remote sensing images (called DGCN hereinafter),
which combines deep semantic segmentation networks (DSSN) and GCNs.
In the GCN module, a loss function for boundary information is employed
to optimize the learning of spatial relationship features between the target
features and their relationships. A hierarchical fusion method is utilized for
feature fusion and classification to optimize the spatial relationship informa-
tion in the original feature information. Extensive experiments on ISPRS 2D
and DeepGlobe semantic segmentation datasets show that compared with
the existing semantic segmentation models of remote sensing images, the
DGCN significantly optimizes the segmentation effect of feature boundaries,
effectively reduces the noise in the segmentation results and improves the
segmentation accuracy, which demonstrates the advancements of our model.

Keywords: Remote sensing image; semantic segmentation; GCN; spatial
relationship; feature fusion

1 Introduction

With the continuous development of high-resolution satellite and remote sensing technology,
the spatial resolution of remote sensing data is increasing, and the methods and techniques of
remote sensing image interpretation are in urgent need of progress. With the popularity of artificial
intelligence, machine learning has been widely applied in economics and industry [1-4], and the results
of its application in the internet of things and cloud computing also introduce convenience to people’s
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lives [5—7]. Human activities are inseparable from the location information of land objects [8—10], and
itis an inevitable trend to adopt the method of artificial intelligence to interpret remote sensing images.

As a way to implement deep learning, CNNs have been more successfully applied in various
fields of image classification due to their excellent feature extraction ability, such as image recognition
[11], target detection [12] and natural language processing [13]. As a branch of image segmentation,
semantic segmentation algorithms have matured in the application of remote sensing image inter-
pretation [14], and the homogeneity of the same region in an image to identify different feature
information is the core of semantic segmentation methods [15]. In recent years, there has been much
research on CNNs in the semantic segmentation of remote-sensing images [16-23]. Deep semantic
segmentation networks can learn compelling depth features from images, more accurate predictions
have been proposed in the literature to address the problem of inefficient use of contextual information
[24-27], and locally sensitive hashing has been introduced for cases where feature information is
missing [28—30]. However, for remote sensing images that are different from Euclidean spatial data,
the operation of the convolution and pooling layers during deep semantic segmentation will disregard
the spatial relationships between two target features in the images. It cannot adequately use spatial
information due to the difficulty of deep semantic segmentation networks in handling graph structure
data [31]. However, for the classification of remote sensing images, spatial relationship information is
crucial [32].

GCNs[33] adequately use spatial relationships, extend the convolution operation from traditional
data images or grid data to graph data, and effectively obtain and model the topological relationships
between two targets in image data [34]. Therefore, GCNs have been gradually applied to analyzing
remote sensing images by scholars in the field. To further improve the accuracy of hyperspectral image
classification, Hong et al. [35] constructed the end-to-end fusion network (FuNet) for hyperspectral
remote sensing images and enhanced the diversity of features by fusing the sample relationship features
extracted from miniGCN streams and the null spectral features extracted from CNN streams with
different strategies. In the context of location-based microservices, the literature has fully utilized
neighborhood information to improve prediction accuracy [27,36], and the introduction of attention
mechanisms has increased the solvability of the model [37]. Liang et al. [38] studied the dependency
relationship between objects in remote sensing scene classification tasks for the first time. Based
on the potential of GCN to capture the dependency relationship between objects, they proposed a
deep neural network combined with CNN and GCN to solve the problem of missing object-based
location features. In terms of semantic segmentation, Liang et al. [39] proposed a graph long short-
term memory (LSTM) network for object analysis tasks, which extends LSTM from sequential data or
multidimensional data to general graph-structured data. Liu et al. [40] proposed a heterogeneous deep
learning network CNN-enhanced GCN (CEGCN) for the classification study of hyperspectral images
by taking full advantage of CNNs and GCNs, where GCNs and GNNs separately learn features on
small-scale regular regions and then fuse pixel-level and superpixel-level features into complementary
spectral, spatial features. However, this method ignores the attention mechanism and feature fusion.
Ouyang et al. [31] combined a deep semantic segmentation network with a GCN for remote sensing
imagery segmentation. The deep semantic segmentation method driven by graph convolutional neural
network is designed to solve the problem of deep neural network’s ignorance of the spatial semantic
relationship between objects, which introduces the spatial semantic information into the deep semantic
segmentation, the accuracy of semantic segmentation is improved effectively.
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However, the existing remote sensing image semantic segmentation methods do not supplement
the lack of spatial relationship information between different features, do not fully use different
levels of feature information. The process of convolution and downsampling caused a lack of
information about boundary features and spatial relationships [41]. This lack of boundary features
causes unsatisfactory boundary segmentation of various types of target features and noise inside
various types of features, and frequent maximum pooling operations led to a decrease in the resolution
of feature maps [42], which eventually caused a decrease in the semantic segmentation accuracy of
remote sensing images.

To solve these problems, this paper proposes a new semantic segmentation model for remote
sensing images based on existing deep semantic segmentation networks. The loss function with
optimized boundary information be used in the GCN module to learn the target features optimally
and the boundaries between them, and optimizes the spatial relationship between the features. It
uses a hierarchical fusion method for feature fusion and classification to reduce the loss of feature
information. Experiments show that the DGCN model outperforms previously available semantic
segmentation models for remote-sensing images. The main contributions of this paper are presented
as follows.

(1) The loss function for the boundary is proposed to optimize the learning of the boundary
part of the feature, which complements and optimizes the spatial relationship between two
features, effectively reduces the misclassification phenomenon at the boundary of the feature
and improves the segmentation accuracy at the boundary of the feature.

(2) A layered feature fusion method is introduced to refine and fuse the feature information of
each layer, which effectively reduces the impact on the semantic segmentation accuracy caused
by a decrease in feature map resolution during frequent pooling operations.

2 Methods

To address the problems of missing feature boundary information and increasing noise within
the features in the existing studies, this paper constructs a semantic segmentation model based on
the combination of the GCN and CNN named the DGCN. The DeepLab V34 [43] network, which
effectively optimizes the effect of feature boundary segmentation, and the ResNet101 [44] network,
which obtains more feature information, are selected as the base models for this model. In the feature
extraction stage, we extracte the semantic information and spatial relationship information of each
layer, optimizing the boundary information and the spatial relationship between two features via
a boundary-specific loss function in the GCN training stage, and then refine and fuse the feature
information of each layer obtained from the fully connected layer via the method of layered feature
fusion. The overall structure of the DGCN is shown in Fig. I, which mainly contains three main
parts: an image feature extraction module, a graph convolutional neural network module and a
feature fusion module. The backbone network for feature extraction adopts Resnet101 and DeepLab
V3+; specifically, the image data with labels are input to the backbone network for image feature
extraction. The obtained feature matrix is fed to the GCN module with the original labels for the
convolution operation. Then, the feature map obtained from the feature extraction module and the
spatial relationship information between objects obtained from the GCN module are fused [45,46].
The final prediction results are obtained via the upsampling process. The whole network is a unified
framework that is trained in an end-to-end manner.
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Figure 1: General structure of the DGCN

2.1 Image Feature Extraction Module

In image feature extraction module, input the preprocessed sample data into the network to learn
the implicit features of the samples and maps the learned image features to image labels through a fully
connected layer. Convolutional neural networks have achieved excellent performance in the feature
learning of images. Based on the advantages of ResNet101’s ability to extract different depth features
and mitigate gradient dispersion, the DeepLab V3+ network adds a simple and effective decoder
module to DeepLab V3 to optimize the ability of target boundary segmentation. ResNet101 and
DeepLab V3+ are chosen as the backbone network in this paper. In addition, an adaptive average
pooling layer is added to the convolution part, specifying the output dimension as one dimension but
not changing the number of output features, after which the fully connected layer is input, and the
number of output dimensions of the fully connected layer is changed to be adapted to the number of
semantic label categories. An activation function is utilized to obtain the probability of classification
of the input samples to predict the labels of the generated images.

2.2 Graph Convolutional Neural Network Module

In this paper, we use the graph convolutional neural network f (X, A) to obtain the classification
results of graph nodes Y. In the feature learning process, the GCN also uses a convolution operation
for feature extraction, and this convolution operation on graph structure data is referred to as graph
convolution [47]. As shown in Fig. 2, the input of graph convolution is graph data. In the first step,
each node sends its feature information to its neighbor nodes after transformation to complete the
extraction transformation of node feature information. In the second step, each node aggregates the
feature information of its neighbor nodes to complete the fusion of node local structure information.
In the third step, the previous information is aggregated and then nonlinearly transformed by the
activation function to enhance the model expression.



IASC, 2023, vol.37, no.1 495

AT\ I\ 0\

( Hi ) Y: « > Zi )
\J/\ / \T/ -
: N\

Ve Y / e
& - &
- / Hidden 4
([ Hs )
AN
N\
1/H4 )
o

layers (¥
\

Y4

y VR
&

< > Zs )

Input layers Output layers

Figure 2: General structure of the GCN

The GCN is also a neural network layer, and the features of each layer need to be calculated
with the adjacency matrix A, which represents the relationship between two nodes. The propagation
between two layers is expressed as follows:

Y=g(H4), ()
~_ 1 ~ -1
H" =¢ (D *AD H W“)), 2)

where A = A + 1 , I is the identity matrix, D is the degree matrix of 71, o 1S the nonlinear activation

11
function, W is the parameter matrix, D >AD * is the Laplacian matrix for the input layer H” = X;
H" is the feature of / of the GCN.

The training of the GCN module proposes boundary-specific loss functions to optimize learning
by combining the cross-entropy loss function, self-guided cross-entropy loss function [48] and Bound-
ary Loss [49] function. Csurka et al. [50] proposed a novel boundary metric, BF), that accounts for the
accuracy of contour extraction and overcomes the weaknesses of mainstream performance measures.
The Boundary Loss used in our study is a differentiable surrogate of BF,, resolving the problem
that widely-used segmentation loss functions such as binary cross entropy (BCE) loss, IoU loss or
Dice loss do not penalize misalignment of boundaries sufficiently. We combine the cross-entropy loss
function, self-guided cross-entropy loss function and Boundary Loss function and assign different
weight parameters to each loss function for different boundary characteristics to improve the problem
of inaccurate boundary classification. The Boundary Loss function is expressed as follows:

. 2PQ

L) =155 3)
1

P= ﬁ ZXE] {d(x,f) <6}, 4)

0= 13 fo(si) <o) 0

where {-} denotes the logical function, d (-) denotes the Euclidean distance between two pixels, and
0 denotes the threshold value of Euclidean distance, here distance is calculated from a point to one
of two sets (ground truth or predicted boundary) as the shortest distance from the point to the point
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of the boundary. f denotes the semantic segmentation result of the boundary part, and f denotes the
label of the boundary part.

2.3 Feature Fusion Classification Module

For the semantic segmentation of remote sensing images, the goal is to determine the accurate
localization of all contents in the image and the classification of the target object. Due to different
model structures and feature extraction methods, shallow low-level features and in-deep semantic
features become the main factors affecting the accuracy of image segmentation [51]. The semi-
supervised classification model greatly improves the classification accuracy by integrating the rela-
tional information and feature information of image data [52]. Inspired by this idea, the relationship
features between objects extracted by the GCN module are used to fuse the features obtained by the
image semantic feature extraction module to obtain the final prediction results through the upsampling
process. The specific approach is first to expand the feature map extracted from image features into a
one-dimensional vector of m x n x F;, where F| denotes the number of features extracted by convolution
at the / layer. Then, this one-dimensional vector is fed into the GCN model, and the relationship
between the features is learned through the graph convolution operation. The features learned by the
GCN model in the first layer of convolution can be expressed as follows:

~_1 ~ -1
H"=¢ (D "AD H W<°>) : (6)

where W* and D are the same as those represented by Eq. (2). Second, to ensure the consistency in
dimensionality between the feature extraction model and the GCN model in learning the obtained
image features, the fully connected layer is added to the GCN module in this paper, and the process is
represented as follows:

[

~_1 ~ <_1
H" = ReLU (Wﬂ. (ReLU (D AD?*H"" W“‘”))), (7)
Last, the feature values and relational information obtained from the image feature extraction
module and graph convolutional neural network module are combined, which can be expressed as
follows:

»y = softmax (H(“ + V(L,)) , (8)

where H™ is the relational feature extracted by the GCN module, ¥ (") is the sample feature, and L’
is the number of layers of ResNet101 and DeepLab V3+ networks in the feature extraction module.

The DGCN model proposed in this paper consists of three steps: image feature extraction
module, graph convolutional neural network module and feature fusion, which is briefly described
in Algorithm 1.

Algorithm 1: The Proposed Method for Remote Sensing Images Semantic Segmentation
Input: remote sensing image dataset D,, learning rate L, weight decay W, number of layers of
eigenvalues M, the threshold value of Euclidean distance 6
Output: maps of semantic segmentation y
fori=1,2,...,N,do
Train feature extraction network with samples from D, ;

(Continued)
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Algorithm 1: Continued

y() extracting feature values from the feature extraction module;
end for:
for/ e M do
Train the GCN with D, and the features V(1) obtained from the feature
Extraction;
network to the GCN, and train the GCN;
H" < node characteristics;

Calculate L (j} , f ) according to (3);
end for

Iteratively update the trainable parameters by loss function;
Calculate maps of semantic segmentation y according to (8)

3 Experiment
3.1 Experimental Data

In this section, experiments are conducted on two publicly available remote sensing image datasets:
DeepGlobe [53] and ISPRS 2D [54].

The DeepGlobe land cover classification dataset provides 1146 satellite images of 2448 x 2448
pixels in size; they are RGB images with a pixel resolution of 0.5 m. The dataset features diverse land
cover types and high annotation density and is labeled with seven classifications, urban, agriculture,
rangeland, forest, water, barren, and unknown, as shown in Table 1. The dataset was divided into
a training set, validation set, and test set, containing 803 images, 171 images, and 172 images,
respectively, which were cropped to a size of 256 pixels x 256 pixels and reused as the training set,
validation set, and test set, with proportions of 75%, 15%, and 15%.

Table 1: Distribution of various types of features in the DeepGlobe dataset (%)

DeepGlobe Urban Agriculture  Rangeland Forest Water Barren Unknown

Train 9.42 56.76 10.11 13.74  3.79 7.94 0.04
Validation  9.13 57.43 10.09 13.34 345 6.03 0.01
Test 9.45 55.56 10.22 13.67 348 6.34 0.01

The ISPRS2D semantic segmentation dataset includes the aerial image data of the Vaihingen
and Potsdam areas. The Vaihingen area contains 33 remote sensing images with semantic labels. The
spatial resolution is 0.09 m, the image size is (1000~4000) pixels x (1000~4000) pixels, and the remote
sensing images contain near-infrared (NIR), red (R) and green (G) bands. The Potsdam area contains
38 remote sensing images with semantic labels, the spatial resolution is 0.05 m, the image size is 6000
pixels x 6000 pixels, the remote sensing images contain red (R), green (G), and blue (B) bands. The six
classifications, including ground, buildings, trees, cars, low vegetation, and unknown. The data settings
are shown in Table 2. Since the single image size of the high-resolution image data in the ISPRS2D
semantic segmentation dataset is too large, the images in the dataset are cropped to images with a
size of 256 pixels x 256 pixels. Mirror flip and rotate to increase the number of training samples, and
20,000 images were trained.
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Table 2: ISPRS2D dataset settings

Vaihingen Training set 1,3,7,11,13,15, 17, 21, 22, 24, 26, 28, 32, 34, 35, 37, 38
Validation set 5,23, 30, 33
Test set 2,4,6,8,10, 12, 14, 16, 20, 27, 29, 31

Potsdam Training set 2.12,3.10,3_11,3_12,4_11,4 12,4 14,5_12,5_13,6_7,6_8,

69,6 10,6_12,6 14,7 7,7.9,7_10,7_11,7_12
Validation set 2.11,4.10,5_11,7_8
Test set 2.10,2 13,2 14,3_13,3_14,4 13,4 _15,5_14,6_15,7_13

3.2 Evaluation Indicators
In this study, the overall accuracy (OA), mean intersection ratio (mloU), and F1-score were
selected as evaluation metrics and calculated as follows:

B TP + TN )
~ TP+ TN+ FP+FN’
2x TP
F1 — score = x , (10)
2x TP+ FP x FN
 — TP
IoU = — S 11
mloU =" FN TP TP (an

where m denotes the number of categories, 7P denotes the number of pixels correctly categorized,
FP denotes the number of pixels where the background is determined as the target, FN denotes the
number of pixels for which the target is determined as the background, TN denotes the number of
pixels for which the target is determined as the background.

3.3 Experimental Setup

In this paper, two corresponding DGCNs, DGCNI1 and DGCN2, are designed based on the
ResNet101 and DeepLab V34 networks. In the part of depth feature extraction, stochastic gradient
descent (SGD) and cross-entropy serve as the optimizer and loss function, respectively. We set the
learning rate to e, the weight decay to 0.0005, the number of training iterations to 50, and the batch
size to 8. The extracted depth features are used to initialize the graph nodes. In the training of the
GCN module, Adam is selected as the optimizer for gradient descent, and the loss functions are the
cross-entropy loss function, self-guided cross-entropy loss function and boundary loss function. We
set parameter 6 to 10, the learning rate to e~ in the convolutional layer, the weight decay to 0.0005,
the number of training iterations to 40, and the batch size to 8.

Our experiments implement our proposed model on a Windows 64-bit system based on an
NVIDIA 1080Ti GPU under the TensorFlow framework.

3.4 Comparison Experiments

To verify the effectiveness of the proposed method, the DGCN1 and DGCN2 models proposed
in this paper are qualitatively and quantitatively compared with ResNet101, SegNet, U-Net, fully
convolutional networks (FCN), DeepLab V3+, DDSSN [41], AttResUNet [33], and FCN using the
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FCN-8 s model proposed by Long et al. [55]. The semantic segmentation results of different models
on ISPRS 2D and DeepGlobe datasets are visually presented and qualitatively analyzed.

The visualization results of the orthophotos of the ISPRS2D test set and their corresponding labels
with different models are shown in Fig. 3. The visualization results show the overall segmentation
effect of the DGCNI1 and DGCN2 models proposed in this paper is better than that of the previous
semantic segmentation models. SegNet, U-Net and ResNet101 misclassify some low vegetation as
trees; ResNetl01 easily misclassifies the unknown type as the ground; DGCNI better segments low
vegetation and trees; FCN is prone to misclassify the unknown type as cars; DeepLab V34 and
DGCN2 better classify cars; the segmentation accuracy of DDSSN is improved at the boundary of
the building, but the recognition effect of the spot inside the ground object is poor; and DGCNI
and DGCN2 classify the junction of building land and low vegetation significantly better than other
models. All eight semantic segmentation models have the phenomenon of misclassification with low
vegetation and the ground. Still, the DGCN1 and DGCN2 models achieve better results overall, with
a smaller proportion of misclassified pixels.

®B) © D) (E) (F) (G) H (I)

[l Buildings [ Low vegetation [jj] Trees | Cars | | Ground [ Unknown

Figure 3: Semantic segmentation results of different models on the ISPRS2D test set. (A) and (B) are
raw images and tags, respectively. (C) are the results of SegNet. (D) are the results of U-Net. (E) are the
results of FCN. (F) are the results of ResNet101, respectively. (G) are the results of DeepLab V3+. (H)
are the results of DDSSN. (I) and (J) are the results of DGCN1 and the results of DGCN2, respectively
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The semantic segmentation accuracies of the models proposed in this paper and other comparison
on the test sets in the Vaihingen and Potsdam regions are shown in Tables 3a and 3b. On the dataset
in the Vaihingen region, the OA and mloU of the DGCN1 and DGCN2 models proposed in this
paper are the highest; the OA and mloU for DGCNI1 are 2.56% and 5.66% higher, respectively,
than ResNet101; and the OA and mlIoU for DGCN2 is 0.95% and 4.11% higher, respectively, than
DeepLab V3+. Regarding F1-score accuracy metrics, the DGCN2 model achieves 54.39% accuracy
for unknown types, which is at least 10% higher than other models, and the DGCN1 and DGCN2
models achieve an accuracy above 94% for building types, which is 1%-3% higher than other
models. On the Potsdam area dataset, the OA and mloU of DGCNI1 improved by 5.31% and 5.66%,
respectively, compared with ResNet101, and the OA and mloU of DGCN?2 improved by 5.31% and
5.66%, respectively, compared with DeepLab V3+. In terms of the Fl-score accuracy metrics, the
accuracy of the DGCN1 model for the trees and car types improved by 7.83% and 4.52%, respectively,
over ResNet101, and the accuracy of the DGCN2 model for ground and low vegetation types improved
by 0.53% and 1.18%, respectively, over DeepLab V3+. Overall, the accuracy of the DGCNI1 and
DGCN2 models outperformed the other models, which proved the effectiveness of the models in this

paper.

Table 3(a): Comparison of accuracy of different models on the ISPRS2D test set (Vaihingen)

Method F1-score/% OA/% mloU/%
Ground Buildings Trees Cars Low vegetation Unknown
SegNet 91.03 92.48 87.59 72.12 81.65 38.02 87.92  67.03
U-Net 87.92  90.01 88.96 71.31 81.02 34.25 88.64  68.04
FCN 88.96 91.10 87.13 71.12 79.94 36.64 86.57  64.29
ResNet101 8791 91.36 87.12 5398 79.36 29.41 86.43  66.72
DeepLab V3+ 90.76  93.42 89.61 83.96 82.29 44.68 88.98  70.02
DDSSN 91.06 94.25 88.65 83.18 82.15 44.78 88.96  72.29
DGCNI1 91.17 94.47 89.34 84.27 8243 44.98 88.99  72.38
DGCN2 9296  94.53 89.75 8598 83.47 54.39 89.93  74.13

Table 3(b): Comparison of accuracy of different models on the ISPRS2D test set (Potsdam)

Method F1-score/% OA/% mloU/%
Ground Buildings Trees Cars Low vegetation Unknown
SegNet 88.32  91.53 81.45 91.52 81.93 38.06 85.03 68.25
U-Net 87.31 89.79 79.03 92.08 81.02 35.56 83.54  67.39
FCN 87.59  89.92 80.05 91.93 81.43 35.73 84.09 67.52
ResNet101 85.61 87.92 80.96 90.15 80.05 35.09 84.57 63.15
DeepLab V3+ 92.25  96.42 88.32 93.63 87.05 55.62 89.34  77.11
DDSSN 92.29  96.20 88.63 93.76 87.35 55.55 89.53  77.54
DGCNI1 92.32  96.23 88.79 94.67 87.89 55.66 89.88  77.85

DGCN2 9278  96.67 89.03 9497 89.43 57.12 90.55 77.92
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The orthoimages of the DeepGlobe test set and their corresponding labels and the visualization
result graphs of different models are shown in Fig. 4. SegNet does not classify the agriculture
and rangeland boundary parts well, and might completely ignore urban when urban is included
in agriculture, ignore rangeland when rangeland is next to the large area of water. U-Net easily
misclassify rangeland as forest, U-Net models misclassify forest as agriculture, and U-Net and FCN
models misclassify rangeland as water. ResNet101 and AttResUNet easily misclassify agriculture
as rangeland. DeepLab V3+ improved the classification of the boundary areas between urban and
rangeland, but rangeland was misclassified as barren in some areas. Compared with other semantic
segmentation models, the DGCN1 and DGCN2 models proposed in this paper have apparent
advantages in classifying the junction of agricultural, urban and rangeland with more explicit feature
boundaries and effective noise reduction.

(A) (B) ©)
o -P s

(D) (E) (F) (&) (H) @) &)

[[] Uban | Water [ Forest [ | Agriculture |  Barren [ Rangeland [ Unknown

Figure 4: Semantic segmentation results of different models on the DeepGlobe test set. (A) and (B) are
raw images and tags, respectively. (C) are the results of SegNet. (D) are the results of U-Net. (E) are
the results of FCN. (F) are the results of ResNet101, respectively. (G) are the results of DeepLab V3+.
(H) are the results of AttResUNet. (I) and (J) are the results of DGCNI and the results of DGCN2,
respectively

The semantic segmentation accuracies of the model proposed in this paper and other comparison
on the DeepGlobe test set are shown in Table 4. The OA and mIoU of DGCNI improved by 3.55% and
5.77%, respectively, compared with ResNet101, and the OA and mloU of DGCN2 improved by 2.14%
and 0.97%, respectively, compared with DeepLab V3+. In terms of the F1-score accuracy metrics, the
accuracy of the DGCNI1 model for the rangeland and unknown types improved by more than 10%
over ResNet101, and the accuracy of the DGCN2 model for the water and barren types improved by
1.51% and 5.4%, respectively, over DeepLab V3+. Overall, the OA and mIoU of the DGCNI1 model
and DGCN2 model, respectively, are significantly improved compared with those of the other models,
which proves the effectiveness of the models in this paper.

The results of visualization semantic segmentation on DeepGlobe and ISPRS2D data sets show
that the segmentation results of DGCN1 and DGCN2 are more comprehensive, with less noise
and higher accuracy, indicating that the DGCN can effectively enhance the semantic segmentation
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effect. Since the GCN module with optimized spatial relations can effectively retain the surface object
boundary information while reducing the noise, the segmentation results of DGCN are closer to the
actual surface object boundary. The model proposed in this paper makes the internal information of
ground feature elements more complete through the hierarchical fusion process of the extracted feature
information of each layer, thus confirming the effectiveness of the DGCN model.

Table 4: Comparison of semantic segmentation accuracy of different models on the DeepGlobe test
set

Method F1-score/% OA/% mloU/%
Urban Agriculture Rangeland Forest Water Barren Unknown
SegNet 71.68 88.51 65.72 90.56 72.43 41.03 41.67 80.98 70.56
U-Net 71.05 87.96 65.31 89.94 73.05 38.72 38.89 80.77 71.67
FCN 82.61 89.43 68.92 9091 75.64 45.75 44.67 80.67 70.68
ResNet101 83.42 81.65 61.34 87.28 71.43 43.58 4521 85.98 69.01
DeepLab V34 88.69 89.69 75.28 91.05 77.45 46.96 59.89 87.98 74.98
AttResUNet 88.34 88.75 75.24 91.02 77.02 46.43 62.36 88.97 74.28
DGCNI1 88.58 89,03 71.45 89.56 76.42 4691 63.76 89.53 74.78
DGCN2 88.95 90.12 76.47 91.47 7896 5236 67.45 90.12 75.95

3.5 Ablation Study

To further illustrate the effectiveness of the proposed method, we performed relevant ablation
experiments on the DeepGlobe dataset. The experimental results are shown in Table 5. The baseline
models of DGCN1 and DGCN2 obtain mIoU of 69.01% and 74.98%, respectively. By stacking differ-
ent strategies, consistent improvement over the baseline is achieved. Concretely speaking, Boundary
Loss brings mloU improvement of 5.36% and 0.56%, respectively; the feature fusion module brings
mloU improvement of 0.93% and 0.38%, respectively; our full models have improvement of 5.77% and
0.95%, respectively. These results demonstrate the effectiveness of our model.

Table 5: Ablation analysis on the DeepGlobe data set

Methods Boundary loss  Feature fusion module ~ mloU/%

DGCNI1

- 69.01
- 74.37
Vi 69.94
Vi 74.78
- 74.98
- 75.54
75.36
75.95

1 K 1

DGCN2

T

<
LA
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4 Conclusion

To address the problems of missing feature boundary information due to convolution and
downsampling operations and increasing noise within features due to feature fusion when the existing
combined CNN and GCN models are utilized for semantic segmentation, we proposed the DGCN
model for semantic segmentation of remote sensing images. The DeepLab V3+ network, which
is optimized for boundary information, and the ResNet101 network, which contains more spatial
information in the feature map, are selected as the base network to extract deep features of remote
sensing images. The GCN module is used to extract spatial relationship information between two
features, and the boundary information of features is optimized by using a boundary-specific loss
function in the training phase of the GCN module. In the feature fusion stage, a hierarchical
feature fusion method is introduced to refine the extracted deep features and spatial relationship
information before hierarchical fusion, which effectively solves the problems of internal noise of
features and inaccurate boundaries between two target features in the segmentation results. Since inter-
object boundary information is crucial to the semantic segmentation of remote sensing images with
high accuracy and decipherability, the classification accuracy of remote sensing images is effectively
enhanced by fully extracting and utilizing the spatial relationship information of features in the
GCN. Experiments were conducted on the ISPRS2D and DeepGlobe datasets. Compared with
the ResNet101, SegNet, U-Net, FCN, DeepLab V3+, DDSSN and AttResUNet models, the three
accuracy evaluation indices F1-score, OA, and mloU of the DGCN1 and DGCN2 models proposed
in this paper are higher than those of the other models, which confirms the effectiveness of the models
in semantic segmentation of remote sensing image. This paper fully optimizes and utilizes the spatial
relationship between two target features and dramatically improves the classification effect at the
feature boundaries but disregards the degree of influence between two different features. In future
research, we will optimize the network structure and introduce the attention mechanism to improve
further the optimization ability of spatial relationship information on segmentation accuracy.
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