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Abstract: Power transformer is one of the most crucial devices in power
grid. It is significant to determine incipient faults of power transformers fast
and accurately. Input features play critical roles in fault diagnosis accuracy.
In order to further improve the fault diagnosis performance of power trans-
formers, a random forest feature selection method coupled with optimized
kernel extreme learning machine is presented in this study. Firstly, the random
forest feature selection approach is adopted to rank 42 related input features
derived from gas concentration, gas ratio and energy-weighted dissolved gas
analysis. Afterwards, a kernel extreme learning machine tuned by the Aquila
optimization algorithm is implemented to adjust crucial parameters and select
the optimal feature subsets. The diagnosis accuracy is used to assess the
fault diagnosis capability of concerned feature subsets. Finally, the optimal
feature subsets are applied to establish fault diagnosis model. According to
the experimental results based on two public datasets and comparison with 5
conventional approaches, it can be seen that the average accuracy of the pro-
posed method is up to 94.5%, which is superior to that of other conventional
approaches. Fault diagnosis performances verify that the optimum feature
subset obtained by the presented method can dramatically improve power
transformers fault diagnosis accuracy.

Keywords: Power transformer; fault diagnosis; kernel extreme learning
machine; aquila optimization; random forest

1 Introduction

Oil-immersed power transformer is one of the most important equipment in transmission and
substation networks. When failures or malfunctions occur in the power transformers, it may lead to
not only interruption of electricity supply, but also to the collapse of the entire power grid and other
serious economic losses. Therefore, it is of great significance to diagnose and evaluate the incipient
faults and working condition of power transformers [1].
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In recent years, it can be seen a mature application of dissolved gas analysis (DGA) technology in
fault diagnosis of oil-immersed power transformers [2]. Conventional DGA methods, including key
gas method (KGM) [3,4], international electrotechnical commission (IEC) method [5], and improved
three ratio method [6], are intensively employed worldwide to diagnose potential faults in power
transformers. However, those aforementioned approaches supply mediocre fault diagnosis accuracy
because of shortcomings such as experience and historical knowledge based, codes absence, rigorous
borderline and so on [7]. With the rise of artificial intelligence (AI) and machine learning theory,
various artificial intelligence approaches, including back propagation neural network (BPNN) [8], sup-
port vector machine (SVM) [9], extreme learning machine (ELM) [10], adaptive neuro fuzzy inference
system (ANFIS) [11] and so on, have made significant and impressive progresses in the application of
transformers fault diagnosis. In addition, deep learning approaches, including convolutional neural
network (CNN) [12], recurrent neural network (RNN) [13], wasserstein autoencoder reconstruction
model [14] and so on, also have been adopted to diagnose incipient fault of power transformers.
However, these AI approaches mentioned above have pros and cons, for example, BPNN has good
self-learning and classification ability but suffering from slow convergence speed and local optimal,
SVM is able to provide impressive recognition performance but has difficulty in determining the
suitable kernel functions and optimal parameters, while the hardship for determination of structures
and insufficient samples are bottleneck for intensive application of deep learning methods and other
neural network approaches. Therefore, those disadvantages mentioned above leave significant space
for further improving fault diagnosis performance.

The input features of fault diagnostic models, whether traditional or AI-based, often apply IEC or
IEEE standards-recommended gas concentrations, gas ratios, or comparative percentages. However,
there is non-existence of a widely acknowledged feature set that is used to diagnose faults of power
transformers. When faults occur in oil-immersed transformers, the oil and insulation paper will
decompose and cause gases to be released. The total energy of the particular fault influences the types
and quantities of the various gases generated. But the fault energy criteria for fault identification are
rarely considered in previous feature selection based fault diagnosis models. Therefore, it is expected
in this research to establish a feature set containing energy weighted dissolved gas analysis (EWDGA),
which includes the amount of energy involved during the fault developing process as different gases
require different level energy of formation in the event of faults [15]. Meanwhile, varied input features
lead to different fault detection accuracy, so it is significant to investigate the impact of inputs and
identify the best feature subset. Hence, random forest (RF) feature selection approach is employed
to reduce bias in feature selection and increase the effectiveness of diagnosis. Afterwards, Aquila
optimizer combined with kernel extreme learning machine (AO-KELM) is used to identify the best
feature subset and optimize crucial parameters of classifier simultaneously. Finally, the optimal feature
subset and parameters are utilized to establish fault diagnosis model.

The remainder of the paper is laid out as follows: the concept of the methodology employed
in this paper is simply introduced in Section 2. The recommended method’s fault diagnosis process
is described in Section 3. Section 4 implements numerical experiments to verify the validity and
superiority of the developed fault diagnosis method. Conclusions are drawn in Section 5.

2 Methodologies
2.1 Random Forest

The RF employs bagging method to extract samples from the original sample set in a random
and repeatable manner in order to train the classifier, with approximately one-third of the samples not
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being used [16]. These are known as out of bag (OOB) data, and they can be used to calculate the
significance of feature information. That is, the mean decrease in accuracy (MDA) can be employed
as a guideline for feature optimization [17].

The RF model is illustrated by taking transformers fault diagnosis as an example. There are W
transformer fault diagnosis training samples (Fj, yj), j = 1, 2, 3, . . . , W . Fj denotes the m-dimensional
input features of the transformers, and yj is the output data of the training samples, corresponding
to the transformer fault type. In calculating the importance of transformer feature information Fj, a
decision tree i is used as the initial point to calculate the out of bag error EOOB (OOB error), and then
the values of feature information Fj in the out-of-bag data are rearranged, keeping the other feature
values unchanged, to obtain a new set of out-of-bag data, denoted as OOB′, and then the out-of-bag
error of the new set is calculated OOB′ error (E′

OOB), and subtract the two calculated results to obtain
the MDA value of feature information Fj in the ith decision tree.

MDAi

(
Fj

) = E ′
OOBi − EOOBi (1)

The importance of the feature information Fj is obtained by calculating the corresponding MDA
values for each decision tree in the RF and then averaging all the MDA values.

MDA
(
Fj

) = 1
N

N∑
i=1

MDAi

(
Fj

)
(2)

where N is the number of decision trees. The larger the MDA value of feature information is, the more
importance the feature will be.

2.2 Energy-Weighted Theory
In order to identify fault features closely related to fault types, many scholars have studied

EWDGA. The EWDGA is the method of weighting the individual gas concentrations by a factor
derived from the relative energy required for its formation [18]. The relationship among energy-
weighted concentration Eewc, gas concentration Gc and weighting factor Wf can be depicted by the
following Eq. (3):

Eewc = Gc × Wf (3)

Prediction of the suitable weighting factor from thermodynamic decomposition model of the fault
gases is necessary to incorporate energy content of fault gases. The relative enthalpies of fault gas
formation are used to calculate the weighting factor. Various fault gases form with distinctly different
enthalpies [19]. By regularizing the key fault gas production enthalpies, it is possible to obtain the
weighting factors that demonstrate the fault’s magnitude. The enthalpy of formation and relative
enthalpies are listed in Table 1 [20].
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Table 1: Standard enthalpies of formation for gaseous molecules

Gas type Enthalpy of formation Relative enthalpy (weighting factor)

H2 97.9 2.76
CH4 35.42 1
C2H6 57.8 1.63
C2H4 93.5 2.64
C2H2 267.9 7.56
Note: The relative values refer to the enthalpy of production of other fault gases, using the enthalpy of production of

CH4 as a reference.

2.3 Kernel Extreme Learning Machine
Extreme learning machine (ELM) is a feedforward neural network algorithm with a single hidden

layer. It has a faster learning rate and better generalization efficiency than traditional back propagation
neural networks, which have been widely adopted in classification and regression [21]. The ELM is
described briefly as follows:

Hβ = T (4)

H =
⎡
⎢⎣

g (ω1 · x1 + b1) . . . g (ωL · x1 + bL)
...

g (ω1 · xN + b1) . . . g (ωL · xN + bL)

⎤
⎥⎦ (5)

where H is the output matrix of the hidden layer, ω is the input weight vector, x is the input vector, L
and N are the dimensional space and hidden layer nodes, g is the activation function, and b is bias of
randomly assigned. Where β is the output weight matrix, and T is the output matrix:

β =
⎡
⎢⎣

βT
1

...
βT

N

⎤
⎥⎦

N×m

, T =
⎡
⎢⎣

tT
1

...
tT

N

⎤
⎥⎦

N×m

(6)

Define the kernel matrix of KELM using Mercer’s theorem:

f (x) = h (x) HT

(
I
C

+ HHT

)−1

T =
⎡
⎢⎣

K (x, xi)
...

K (x, xN)

⎤
⎥⎦

(
I
C

+ �

)−1

T (7)

Kernel function that meets the Mercer condition can be employed as the KELM kernel function.
In this study, the RBF kernel function is adopted. The RBF kernel function is expressed as
K(x, xi) = exp (−γ ||x − xi||). Where γ is the kernel parameter, C is the penalty parameter, so the
optimization of KELM can be attributed to the optimization problem of two variables γ and C [22].

2.4 Aquila Optimization Algorithm
Since the Aquila optimization algorithm has pros of rapid acceleration, consistent convergence,

and excellent global optimum exploration capability, it attracts great attentions and has been employed
in various optimization fields [23]. Optimization models for the Aquila algorithm consist of the
following steps:
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Step 1, vertical dive. When the Aquila identifies the prey area, it chooses an effective hunting area
by rising in the worldwide prelim to identify the search area comprising the ideal solution, which is
shown as Eq. (8):⎧⎪⎪⎨
⎪⎪⎩

X1 (t + 1) = Xbest (t) ×
(

1 − t
T

)
+ (XM (t) − Xbest (t) × rand)

XM (t) = 1
N

N∑
i=1

Xi (t) , ∀j = 1, 2, . . . , Dim
(8)

where t and T denote the current iteration and the maximum number of iterations, respectively.
X 1 (t + 1) denotes the solution of (t + 1)th generation, which is generated by the search method X 1. And
Xbest(t) denotes the best solution, indicating the closest position of the target prey. XM(t) represents
the mean value of the current solution’s position at the tth iteration, and rand strands for a random
value.

Step 2, short glide attack. When the prey area is found from high altitude, the aquila hovers above
the prey to narrow the hunting area and the search space for the best solution. The procedure can be
described as Eq. (9):⎧⎪⎨
⎪⎩

X2(t + 1) = Xbest (t) × L(D) + XR(t) + (y − x) × rand

L (D) = s × μ × σ

|v| 1
β

(9)

where XR(t) is the random solution between [1 N]; D is the dimensional space and L(D) is the trapping
flight distribution function.

Step 3, low flight. In this step, when the prey area is precisely identified and the Aquila is ready
to land and attack, then it moves slowly toward the target. The Aquila tries to soar and then gently
descends in the desired area to gauge the reaction of prey. It can be presented in Eq. (10):

X3(t + 1) = (Xbest (t) − XM(t)) × α − rand + ((UB − LB) × rand + LB) × δ (10)

where α and δ are the adjustment parameters. They are set to 0.1 in this paper, UB and LB denote the
upper and lower bounds of the given problem, respectively.

Step 4, walking capture. When the Aquila approaches its target, it will attack from above the earth
and quickly converges depending on the prey’s movement, as shown in Eq. (11):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X4(t + 1) = QF × Xbest (t) − (G1 × X(t) × rand)

−G2 × L(D) + rand × G1

QF (t) = 2 × rand − 1
t(1−T)2

G1 = 2 × rand − 1

G2 = 2 ×
(

1 − t
T

)
(11)

where QF is the mass function used for the equilibrium search strategy, G1 represents the various
movements of the eagle in pursuit of prey, G2 denotes the slope of the Aquila’s flight during the hunting
process, and X(t) is the current solution for the tth iteration.
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3 Fault Diagnosis Using Random Forest and Optimized Kernel Extreme Learning

A novel fault diagnosis model based on RF feature selection and AO-KELM is developed in order
to increase the accuracy of power transformers fault diagnosis. The diagnosis process of this proposed
method is shown in Fig. 1.

Establishment of DGA 
samples dataset

Data preprocessing

RF feature selection

Selected feature subset

Initialization of 
AO parameters 

OPtimization of 
critical parameters

Meet stop criterion?

AO-KELM fault
diagnosis model

Output of diagnosed 
results 

Testing samples

Training samples

Y

N

Figure 1: Flowchart for the proposed fault diagnosis method

The details of the proposed fault diagnosis approach can be described as below:

1. Establishment of fault sample dataset. DGA samples collected from published references and
local power factories are used to create fault sample dataset. Each DGA sample consists of
5 kinds of characteristic gases, including hydrogen (H2), methane (CH4), acetylene (C2H6),
ethylene (C2H4) and ethane (C2H2).

2. Creation of feature set. Features derived from gas concentrations, gas ratios, EWDGA and
other criteria are introduced and created to establish a comprehensive and multiplex feature set.

3. Feature selection based on random forest. The importance of all features is evaluated by the
random forest methods, and crucial features are retained to establish simple structure and
highly efficient fault diagnosis model.

4. Optimization of vital parameters. Penalty factor C and kernel parameter σ play important
roles in proving accurate and reliable result, hence the Aquila algorithm is adopted to tune
those parameters and establish optimum diagnosis model to determine the final fault types.

4 Results and Discussions
4.1 Data Preprocessing

DGA samples gathered from literatures published previously and local power transformer fac-
tories are used to create fault diagnostic model. In this study, 6 types of faulty samples are under
consideration, including partial discharge (PD), low-energy discharge (LED), high-energy discharge
(HED), thermal fault of low temperature (LT), thermal fault of medium temperature (MT), and
thermal fault of high temperature (HT). Besides, the normal condition (NC) is also taken into account.
To be specific, 560 samples are collected and divided uniformly into 7 types. The concrete distribution
of all obtained samples employed in this study is shown as Table 2. 80% of samples (448 samples)
from the DGA sample dataset are used as training set and the rest ones (112 samples) are considered
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as testing set to estimate fault diagnosis performance. It should be noted that the implementation of
whole works are conducted in MATLAB environment on a DELL serve.

Table 2: DGA samples distribution for each fault type

Fault type NC LT MT HT PD LED HED Total

Samples
form
literature

11 - - 15 10 12 15 63 [24]
3 5 8 15 8 14 40 93 [25]
- 4 4 4 4 4 - 20 [26]
- 10 7 10 - - 1 28 [27]
- 4 4 4 4 4 - 20 [28]
9 - - - 2 3 - 14 [29]
6 4 5 2 - 1 2 20 [30]
- 2 - - 12 - - 14 [31]

DGA case 51 51 52 30 40 42 22 288

Total 80 80 80 80 80 80 80 560

At first, all raw data of all DGA samples are normalized before numerical calculation to prevent
data singularity and improve fault diagnosis efficiency with Eq. (12):

xnik = xik − xk min

xik max − xk min

(12)

where xik and xnik are the value of the ith sample for the kth feature before and after normalization, xkmax

and xkmin are the maximum and minimum values of the kth feature.

4.2 Feature Selection Using Random Forest
Different features denote different characteristics and degradations of the incipient faults, so it

is imperative to consider various features from diverse aspects of dissolved gases. Therefore, after
establishment of DGA sample dataset and normalization, a comprehensive and multiplex feature set is
created in this study. By investigating domestic and abroad standards related to dissolved gas analysis
and published literatures, the features derived by gas concentrations, gas ratios, energy weighted
DGA and other criteria are produced and displayed in Table 3. It is noteworthy that f 1∼f 5 denotes
absolute concentration, and f 6∼f 16 denotes relative concentration from various conventional methods.
While f 18∼f 27 represent gas ratios, and f 31∼f42 represent newly created gas ratios taking EWDGA into
account. The rest features are crucial ones described in literatures.

Table 3: Feature sets established for fault diagnosis

Number Feature Number Feature Number Feature Number Feature

f 1 H2 f 12 C2H4/THD f 23 C2H4/CH4 f 34 C2H4/EWTH
f 2 CH4 f 13 C2H2/THD f 24 C2H4/C2H6 f 35 C2H2/EWTH
f3 C2H6 f 14 H2/THH f 25 C2H6/H2 f 36 CH4/EWTHD
f 4 C2H4 f 15 C2H4/THH f 26 C2H6/CH4 f 37 C2H4/EWTHD
f 5 C2H2 f 16 C2H2/THH f 27 CH4/H2 f 38 C2H2/EWTHD

(Continued)
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Table 3: Continued
Number Feature Number Feature Number Feature Number Feature

f 6 H2/TH f 17 TCH f 28 f 21/0.1 f 39 H2/EWTHH
f 7 CH4/TH f 18 C2H2/H2 f 29 f 13/0.21 f 40 C2H4/EWTHH
f 8 C2H6/TH f 19 C2H2/CH4 f 30 f 12/0.23 f 41 C2H2/EWTHH
f 9 C2H4/TH f 20 C2H2/C2H6 f 31 H2/EWTH f 42 EWTCH
f 10 C2H2/TH f 21 C2H2/C2H4 f 32 CH4/EWTH
f 11 CH4/THD f 22 C2H4/H2 f 33 C2H6/EWTH

Note: Where, TH = H2+CH4+C2H6+C2H4+C2H2; THD = CH4+C2H4+C2H2; THH = H2+C2H4+C2H2; TCH = CH4+C2H6+C2H4
+C2H2; EWTHD = CH4 + 2.64C2H4 + 7.56C2H2; EWTHH = 2.76H2 + 2.64C2H4 + 7.56C2H2; EWTCH = CH4 + 1.63C2H6
+ 2.64C2H4 + 7.56C2H2; EWTH = 2.76H2+CH4 + 1.63C2H6 + 2.64C2H4 + 7.56C2H2.

The RF method is employed to sort all features in descending order. The higher the ranked order is,
the less important the feature will be. The RF algorithm calculates the MDA values of the 42 candidate
input features and obtains the significance ranking. Then, the features are adopted in order as inputs
to created fault diagnosis model based on AO-KELM. Inputs of AO-KELM are increased one at
a time following each sorted order until all features are utilized. Importance of input features and
diagnostic accuracy corresponding to input features are presented as Fig. 2. In this study, the number
of candidate variables mtry, which is randomly selected to split in each non-leaf node, is set to 8, and
the decision tree number ntree is set to 400.

Figure 2: MDA value and ranked orders of all features

Afterwards, the obtained MDA values of all mentioned features are displayed in Fig. 2. It can
be seen that features belonging to different categories have different importance. The features derived
from gas concentration have less MDA values and higher order. While features from gas ratios category
demonstrate higher significance than other parts. It is worth noting that features from energy weighted
DGA also own higher MDA value and impressive feature ranks.

In order to determine an informative and compact feature subset, all features are sorted descend-
ingly and ascendingly according to importance, and then those features are employed as input
sequentially accumulated one by one for the fault diagnosis model. Fault diagnosis performances
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(accuracy 1 for descendingly sorted and accuracy 2 for ascendingly sorted) with different feature sizes
are displayed in Fig. 3. It can be seen from the curve accuracy 1 that the diagnosis accuracy will be
greater than 90% (that is 95.54%) with the first 9 features, and diagnosis accuracy can be up to the
maximum value of 98.21% when the feature size equals to 12. Afterward, the diagnosis performance
is fluctuating and stays stable after feature size is above 18. While for the curve accuracy 2, only when
the feature size is up to 16, will the diagnosis performance be greater than 90% (that is 91.07%).
Besides, the last 20 features can supply the maximum diagnosis accuracy of 98.21%. Therefore, it
can be found that not all features are necessary for establishing fault diagnosis models, and a few
important and informative features can provide optimal diagnosis performance. The potential reason
is that the conventional features used to diagnose faults are based on experimental results or experience
of field experts, which is lack of sufficient theoretical basis and proper optimization. Besides, all 42
features aforementioned are not necessarily related to fault diagnosis due to irrelevancy or redundancy.
Therefore, it is prominent and imperative to create new features and select significant features to build
compact and efficient models. All in all, the more important the input features are, the more accurate
and efficient performance the fault diagnosis models provide.

Figure 3: Feature importance score and classification accuracy curve

The top 12 important features which supply the highest accuracy are displayed in Table 4. It
can be seen that half of the 12 features, including C2H4/C2H6, CH4/H2, C2H2/THD, C2H2/C2H4,
C2H4/TH and H2/THH, are derived from the conventional approaches. While the rest 6 features, such
as C2H2/EWTHD, f 21/0.1, f 13/0.21, H2/EWTHH, C2H4/EWTH and C2H4/EWTHH, are new created
and show considerable importance. Among them, there are 4 features from energy weighted DGA
category, which validates that it is imperative and effective to employ EWDGA technique to diagnose
faults of power transformers.
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Table 4: The obtained optimal feature subset

Number Feature Number Feature Number Feature Number Feature
1 C2H4/C2H6 4 C2H2/THD 7 C2H4/TH 10 H2/THH
2 CH4/H2 5 C2H2/C2H4 8 f 13/0.21 11 C2H4/EWTH
3 C2H2/EWTHD 6 f 21/0.1 9 H2/EWTHH 12 C2H4/EWTHH

4.3 Fault Diagnosis Results and Comparison
In order to establish a concise, efficient and accurate fault diagnosis model for power transformers,

random forest and kernel extreme learning machine are employed in this study. 12 significant features
selected by the random forest are applied as inputs of KEML. And 80% of samples shown in Table 2
are used to train fault diagnosis model and the remaining 112 samples are applied to estimate the
fault diagnosis performance. Since parameters including penalty factor C and kernel radius γ play
important roles in classification, the AO algorithm is introduced to tune those parameters to obtain
optimum performance. In addition, the population size and iteration times of AO in this study are set
to 20 and 200, respectively.

When penalty factor C and kernel radius γ equal to 40.38 and 0.22, the AO-KELM model
based on training set provides the best fault diagnosis accuracy. The fitness development curves of
AO are shown in Fig. 4. Afterwards, the optimum parameters are used to build model to diagnose
incipient faults of power transformers. It can be seen from Fig. 5 that 110 samples out of 112
are diagnosed accurately, and only 2 samples belonging to thermal fault of high temperature are
categorized incorrectly. The experimental results indicate that the proposed method is capable of
providing high diagnosis accuracy.

Figure 4: Fitness development curve of AO (accuracy = 98.21%)

In order to further demonstrate the superiority of the proposed approaches, we compare the fault
diagnosis performance based on different optimization algorithms, different approaches and different
datasets. At first, several popular optimization algorithms, including particle swarm optimization
algorithm (PSO), sparrow search algorithm (SSA) and whale optimization algorithm (WOA) are used
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to tune the critical parameters of KELM. Fitness development curves of the proposed models are
shown as Fig. 6. It can be seen that compared with other optimization methods, the AO algorithm has
the fastest convergence speed (converge at the 9th iteration) and highest fitness value than any other
methods, which manifest excellent global and local searching abilities of AO algorithm. While either
fitness values or convergence iterations of other conventional searching algorithms are inferior to that
of AO algorithm.

Figure 5: Fault diagnosis results for testing samples based on AO-KELM

Figure 6: The fitness curves of different optimization models

Afterwards, 8 popular conventional approaches, including IEC method, improved three ratio
method (ITR), back propagation neural network (BPNN), ELM, KELM, PSO-KELM, WOA-KELM
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and SSA-KELM, are used to evaluate diagnosis accuracy based on identical testing set. The default
parameters are set for conventional methods. Moreover, numerical experiments for each model are
repeated 50 times to avert perspective randomness and the average accuracy is applied to estimate
diagnosis performance. The obtained experimental results are displayed in Table 5. It is worth noting
that all numerical simulations are implemented in MATLAB environment on a DELL server.

Table 5: Comparison of diagnosis performance with various methods

Method Accuracy/% Method Accuracy/% Method Accuracy/%

IEC 52.7 ± 0 ELM 85.9 ± 3.6 WOA-KELM 91.7 ± 1.9
ITR 82.1 ± 0 KELM 86.3 ± 3.5 SSA-KELM 92.1 ± 1.9
BPNN 74.8 ± 7.7 PSO-KELM 91.5 ± 2.1 AO-KELM 94.5 ± 3.2

It can be known from Table 5 that the conventional approaches, such as IEC, ITR and BPNN
have relatively mediocre performances, whose average diagnosis accuracy are 52.7%, 82.1% and
74.8%, respectively. While the artificial intelligence-based methods are able to provide better diagnosis
performance. Among them, fault diagnosis model with optimized parameters offer much higher
diagnosis accuracy than original fault diagnosis models. Fault diagnosis accuracy of the proposed
AO-KELM methods is up to 94.5%, which outperforms all other approaches. The experimental results
validate that fault diagnosis capability of the proposed approach is superior to the traditional methods.

In addition, DGA samples from IEEE Dataport [32] and IEC TC10 Dataport [33] are diagnosed
to verify robustness and generalization of the selected optimal feature subset and the presented
fault diagnosis model. It can be seen from Table 6 that the proposed AO-KELM method provides
the highest fault diagnosis accuracy for both datasets, which validates the feasibility, reliability and
generalization ability of the proposed AO-KELM.

Table 6: Comparison of diagnosis performance with various methods

Method Fault diagnosis accuracy/%

IEEE data port IEC TC10 data port

IEC 51.10 67.42
ITR 56.59 69.66
BPNN 59.46 74.16
ELM 24.87 33.71
KELM 61.62 84.27
PSO-KELM 62.16 85.39
WOA-KELM 63.78 87.64
SSA-KELM 63.24 86.52
AO-KELM 67.57 89.89
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5 Conclusion

In this study, AO-KELM combined with feature selection techniques is applied to diagnose faults
of power transformers. The RF feature selection approach creates a more compact, accurate and
informative set of features. Then, the AO algorithm is employed to select appropriate parameters
of KELM, which averts the reduction of diagnosis accuracy due to the random initialization of
penalty factor C and kernel parameter σ . The final selected optimal features include C2H4/C2H6,
CH4/H2, C2H2/EWTHD, C2H2/THD, C2H2/C2H4, f 21/0.1, C2H4/TH, f 13/0.21, H2/EWTHH, H2/THH,
C2H4/EWTH and C2H4/EWTHH. In light of the comparison between feature subsets and diagnostic
outcomes, the selected optimal feature subsets is able to provide the best fault diagnosis performance,
whose accuracy is up to 94.5% ± 3.2%. Testing results indicate the robustness and generalization of the
selected optimal feature subsets, which verify the advantage and validity of the optimal feature subset
and the proposed method. Finally, DGA samples from IEEE Dataport and IEC TC10 Dataport are
used to confirm the viability and generalization of the optimal feature subset.

In future work, more DGA features should be investigated to demonstrate the superiority of the
proposed approaches. Besides, other new optimization algorithms, feature selection techniques, and
classifiers need to be applied to further study the diagnosis performance from various aspects.
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