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Abstract: It is well-known that attribute reduction is a crucial action of
rough set. The significant characteristic of attribute reduction is that it can
reduce the dimensions of data with clear semantic explanations. Normally,
the learning performance of attributes in derived reduct is much more crucial.
Since related measures of rough set dominate the whole process of identifying
qualified attributes and deriving reduct, those measures may have a direct
impact on the performance of selected attributes in reduct. However, most
previous researches about attribute reduction take measures related to either
supervised perspective or unsupervised perspective, which are insufficient to
identify attributes with superior learning performance, such as stability and
accuracy. In order to improve the classification stability and classification
accuracy of reduct, in this paper, a novel measure is proposed based on the
fusion of supervised and unsupervised perspectives: (1) in terms of supervised
perspective, approximation quality is helpful in quantitatively characterizing
the relationship between attributes and labels; (2) in terms of unsupervised
perspective, conditional entropy is helpful in quantitatively describing the
internal structure of data itself. In order to prove the effectiveness of the
proposed measure, 18 University of CaliforniaIrvine (UCI) datasets and
2 Yale face datasets have been employed in the comparative experiments.
Finally, the experimental results show that the proposed measure does well
in selecting attributes which can provide distinguished classification stabilities
and classification accuracies.

Keywords: Approximation quality; attribute reduction; conditional entropy;
neighborhood rough set

1 Introduction

In the era of big data, a large number of irrelevant and redundant attributes are usually generated
in practical applications, which will bring a series of problems in data processing, such as over-fitting,
high computing cost and insufficient classification performance. Attribute reduction [1–4] is one of the
effective methods to deal with this problem in rough set theory [5]. As a process of deleting irrelevant
attributes and preserving key attributes, attribute reduction can reduce computational complexity and
time by eliminating the influence of irrelevant attributes and noise. The result of attribute reduction
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is called reduct. Reduct is a new data which is composed of key attributes. In certain criterion of
evaluation, such reduct can achieve or go beyond the performance of raw data [6]. As a dimension
reduction method, the attribute reduction based on rough set theory consists of three stages, which are
data representation under rough set, construction of attribute evaluation constraints and selection of
search strategy. In the first stage, raw data can be described as a triple set, they are samples, conditional
attributes and decision attributes. In second stage, the constraint can be constructed by using some
related measures of rough set in certain learning perspective. There are many related measures in rough
set theory, such as approximation quality [7], conditional entropy [8], and decision error rate [9]. And
the learning perspective can be usually divided into two parts, supervised learning and unsupervised
learning. Different measures correspond to different constraints [10]. In the third stage, using suitable
search strategy can obtain the reduct effectively. Serving as a criterion of evaluation, constraint controls
the condition of terminating search. Naturally, it may be concluded that different constraints imply
different reducts, and then different learning performances.

With a literature review, it is noticed that most studies about constraint based on either supervised
perspective or unsupervised perspective have been extensively explored [11]. In other words, the
measure based on only one perspective is used to form a constraint of attribute reduction, and then
the qualified reduct can be sought out through such a constraint. For example, Jiang et al. [12]
and Yuan et al. [13] have investigated attribute reductions with respect to supervised information
granulation and the relative supervised measures, respectively; Yang et al. [14] have introduced a
measure, called fuzzy complementary entropy, into the attribute reduction based on the unsupervised
framework. Nevertheless, either supervised measure or unsupervised measure is considered, the
measure based on single perspective may have some limitations as follows.

(1) The measure based on single perspective neglects the diverse evaluations [15,16]. That is, it
may not identify more confident attributes. The potential reason is that if a measure is fixed to
perform attribute reduction, then within the iterations in searching reduct, only such a measure
can assess the importance of candidate attributes, so it follows that immediate results of the
evaluation may be invalidated if some other measures are further required.

(2) The measure based on single perspective ignores the complex constraint [17]. It may not
effectively terminate the process of attribute selection. For example, supposed that conditional
entropy serves as a measure to evaluate attributes [18,19], a derived reduct is only equipped
with the single characteristic required by such an evaluation, no other types of uncertainty
characteristics and learning abilities have been fully considered.

To overcome the limitations mentioned above, a new measure is proposed, which is a fusion of
measures defined in both supervised and unsupervised perspectives. Fig. 1 shows the flowchart of
attribute reduction, the dotted box presents our main work. Approximation quality and conditional
entropy are classical measures and have been widely accepted in the field of rough set. The former
can be used to build a bridge between attributes and labels [20], while the latter can quantitatively
characterize the uncertainty of the data itself [21]. In our study, approximation quality from a
supervised perspective and conditional entropy from an unsupervised perspective are employed to fuse
into a new measure. Through abundant comparative experiments, the superiorities of new measure
can be summarized as: (1) it is equipped with the distinguishing characteristic of multiple perspectives
[22–24]; (2) it has more complex constraints than measure based on single perspective [25] and then
more appropriate attributes are selected [26]; (3) it can not only quantitatively describe the relationship
between attributes and label [27], but also quantitatively describe the internal structure of data itself
[28,29].
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Figure 1: Fusing supervised and unsupervised measures for attribute reduction

The rest of this paper is organized as follows: Section 2 introduces the basic notions about the
rough set, related measures, and attribute reduction. The proposed novel measure and searching
process of solving reduct are elaborated in Section 3. Section 4 describes the comparative experimental
results over 20 datasets and the corresponding analyses. The conclusions and future work are presented
in Section 5.

2 Preliminary Knowledge
2.1 Neighborhood Rough Set

The neighborhood rough set was first proposed by Hu et al. [9,30], as an improvement of
the conventional rough set. The most significant difference is that the neighborhood rough set
is constructed by a neighborhood relation instead of an indiscernibility relation. Therefore, the
superiorities of the neighborhood rough set are: (1) it can process data with complicated types;
(2) it is equipped with the natural structure of multi-granularity if various radii are used.

Generally, a data can be represented by a triple DS =< U , AT , d >, where U is a set of finite
samples, AT is a set of condition attributes, and d is a decision [30–32]. d records the labels of samples,
∀x ∈ U and ∀a ∈ AT , a(x) denotes the value of x over condition attribute a, and d(x) indicates the
label of x. According to d, an equivalence relation over U can be obtained as Eq. (1).

IND (d) = {(x, y) ∈ U × U : d (x) = d (y)} (1)

Following IND (d), a partition U/IND (d) = {X1, X2, . . . , Xq}(q ≥ 2) over U can be induced.
∀Xk ∈ U/IND (d), Xk is regarded as the k-th decision class. Particularly, the decision class which
contains sample x can also be expressed by [x]d.

Furthermore, suppose that A ⊆ AT , given a radius δ ≥ 0, a neighborhood relation over U can be
derived as:

Nδ

A = {(x, y) ∈ U × U : disA (x, y) ≤ δ} (2)

where disA is a distance function between samples x and y with respect to A.
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In this study, Euclidean distance is applied, i.e., disA (x, y) = √∑
a∈A(a (x) − a(y))2. By Nδ

A, the
neighborhood of sample x is then formed such that δA (x) = {y ∈ U : disA(x, y) ≤ δ}.

From the viewpoint of Granular Computing (GrC) [10,33,34], both the deriving of IND (d)

and Nδ

A are information granulations. The most significant difference between such two information
granulations is the inherent mechanism, i.e., the used binary relation. Following these results of
information granulations, the definition of neighborhood lower and upper approximations, which are
basic units of neighborhood rough set, have also been proposed by Cheng et al. [30].

Definition 1. Given a data DS = 〈U , AT , d〉 and δ, ∀A ⊆ AT and ∀Xk ∈ U/IND (d), the
neighborhood lower and upper approximations of Xk with respect to A are respectively defined as:

δA (Xk) = {x ∈ U : δA (x) ⊆ Xk} (3)

δA (Xk) = {x ∈ U : δA (x) ∩ Xk 
= ∅} (4)

By the above definition, a neighborhood of Xk is obtained, i.e., a pair such that [δA (Xk) , δA (Xk)].
In addition, When the lower approximation is not equal to upper approximation, then the pair is called
neighborhood rough set.

2.2 Supervised Attribute Reduction
As is well-known, a neighborhood rough set is frequently employed to execute the supervised

learning tasks. Furthermore, in many supervised learning tasks, feature selection plays an important
role in improving the generalization performance, decreasing the complexity of classifier, and so
on. The superiority of attribute reduction is that it can be easily expanded with respect to different
requirements in real-world applications. Therefore, various forms of attribute reduction have emerged
in recent years. As far as the neighborhood rough set is concerned, the following two measures,
approximation quality [30] and conditional entropy [8,19] can be used to further explore the forms
of attribute reduction.

Definition 2. Given a data DS = 〈U , AT , d〉 and δ, ∀A ⊆ AT , the approximation quality of d based
on A is:

rA (d) =
∣∣⋃q

k=1 δA (xk)
∣∣

|U| (5)

where |�| denotes the cardinality of the set �.

Obviously, γA (d) ∈ [0, 1] holds. Approximation quality reflects the percentage of the samples
which belong to each decision class in lower approximation. Naturally, the higher the value of the
approximation quality, the higher the degree of such belongingness.

Definition 3. Given a data DS = 〈U , AT , d〉 and δ, ∀A ⊆ AT , the conditional entropy of d based on
A is:

CEA (d) = − 1
|U|

∑
x∈U

∣∣δA (x) ∩ [x]d

∣∣ log

∣∣δA (x) ∩ [x]d

∣∣
|δA (x)| (6)

It is proved that CEA (d) ∈
[

0,
|U|
e

]
holds [8]. Conditional entropy reflects the discriminative

ability of A relative to d. As the value of the conditional entropy descends, the discriminating ability
of A relative to d becomes more and more powerful.



IASC, 2023, vol.37, no.1 565

Definition 4. Given a data DS = 〈U , AT , d〉 and a measure ϕ, Cϕ is a constraint related to measure
ϕ, ∀A ⊆ AT , A is regarded as a ϕ-reduct if and only if

(1) ϕA (d) meets the constraint Cϕ;
(2) ∀A′ ⊂ A, ϕA′ (d) does not meet the constraint Cϕ.

Without loss of generality, the constraint shown in Def. 4 is closely related to the used measure
ϕ. Suppose that the measure ϕ is approximation quality shown in Def. 2, then the constraint Cγ is
γA (d) ≥ γAT (d); if the form of measure ϕ is conditional entropy shown in Def. 3, then the constraint
CCE is CEA (d) ≤ CEAT (d).

2.3 Unsupervised Attribute Reduction
It is well known that supervised attribute reduction relies heavily on the labels of samples, so

it is time-consuming and costly to obtain labels of samples from many real-world tasks. However,
unsupervised attribute reduction does not need to obtain such labels, this is why unsupervised attribute
reduction has recently been paid much more attention to [14].

For unsupervised attribute reduction, if approximation quality or conditional entropy is still
required to serve as a measure, the immediate problem is how to make labels for samples. As it has
been pointed out by Qian et al. [35], a pseudo-label strategy can be introduced into the construction of
a rough set model. The pseudo labels of samples are generated by using the information over condition
attributes. Therefore, it is not difficult to present the following definitions of approximation quality
and conditional entropy.

Definition 5. Given an unsupervised data IS = 〈U , AT〉 and δ, ∀A ⊆ AT , the unsupervised
approximation quality based on A is:

γA = 1
|A|

∑
a∈A

(
γA−{a} (da)

)
(7)

where da is a pseudo-label decision which records the pseudo labels of samples by using condition
attribute a.

A partition can also be obtained such that U/IND (da) = {X a
1 , X a

2 , . . . , X a
q }. ∀X a

k ∈ U/IND (da),
X a

k is the k-th decision class based on the pseudo-label decision da.

Similar to the approximation quality shown in Def. 2, γA ∈ [0, 1] also holds. Nevertheless,
different from Def. 2, the unsupervised approximation quality implies the correlation between a
group of attributes and a single attribute. Although the unsupervised approximation quality is not
strictly monotonic, it also possesses the property similar to that of Def. 2, i.e., the higher the value of
unsupervised approximation quality, the higher the degree of such a correlation.

Definition 6. Given an unsupervised data IS = 〈U , AT〉 and δ, ∀A ⊆ AT , the unsupervised
conditional entropy based on A is:

CEA = 1
|A|

∑
a∈A

(
CEA−{a} (da)

)
(8)

where da is a derived decision that records the pseudo labels of samples by using condition attribute a.

According to the definition of conditional entropy shown in Def. 3, CEA ∈
[

0,
|U|
e

]
also

holds. Note that the unsupervised conditional entropy also indicates the correlation between a set
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of attributes and a single attribute. Naturally, it possesses a property similar to that of Def. 3, i.e., the
lower the value of unsupervised conditional entropy, the higher the degree of such a correlation.

Definition 7. Given an unsupervised data IS = 〈U , AT〉 and a measure ϕ,Cϕ is a constraint related
to measure ϕ, ∀A ⊆ AT , A is regarded as a ϕ-reduct if and only if

(1) ϕA meets the constraint Cϕ;
(2) ∀A′ ⊂ AT , ϕA′ does not meet the constraint Cϕ.

Without loss of generality, the constraint shown in Def. 7 is closely related to the used measure
ϕ. Suppose that we serve unsupervised approximation quality as the form of measure ϕ, then the
constraint Cγ is γA ≥ γAT ; if we serve unsupervised conditional entropy as the form of measure ϕ, then
the constraint CCE is CEA ≤ CEAT .

3 Proposed Approach

Following Defs. 4 and 7, it is found that attribute reduction is closely related to the used measure.
In other words, if different measures are employed then different results of reduct can be generated.
From this viewpoint it can be concluded that the used measure is the key to deriving an expected
reduct. Nevertheless, most previous measures based on single perspective may fall into the following
limitations.

(1) The measure based on single perspective ignores the diverse evaluations [15,16]. The less diverse
evaluations, the identified attributes will be less confident. This is mainly because if a measure
is fixed to perform attribute reduction, then in the iterations of seeking out reduct, only such a
measure is applied to assess the importance of candidate attributes. It follows that such a result
of evaluation may be invalidated [36] or ineffective for some other measures.

(2) The measure based on single perspective ignores the complex constraint which is helpful
in terminating the procedure of selecting attributes. For instance, given a form of attribute
reduction that preserves the value of approximation quality in data, i.e., in Def. 4, the measure
ϕ is γAT (d), such a derived reduct is only equipped with a single characteristic. Immediately,
some other measures, such as conditional entropy and unsupervised related measures are not
fully taken into account.

From the discussions above, a new measure is proposed to further solve such problems. Since both
supervised and unsupervised cases have been presented in the above section, they will be introduced
into our new proposed measure.

3.1 Quality-to-Entropy Ratio
Approximation quality and conditional entropy can be used to evaluate the importance of

attributes. In Defs. 2 and 6, the relationships between such measures and the importance of attributes
are revealed. And these two relationships are at opposite poles. To further unify the relationships,
the format of ratio is employed to coordinate two relationships. Moreover, in order to enhance the
relationship between conditional entropy and the importance of attributes, an exponential function is
added to conditional entropy.

Definition 8. Given a data DS = 〈U , AT , d〉 and δ, ∀A ⊆ AT , the quality-to-entropy ratio is:

κA (d) = γA (d)

exp (CEA)
(9)
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where γA (d) is the approximation quality of d based on A shown in Def. 2, CEA is the unsupervised
conditional entropy based on A shown in Def. 6.

From the perspective of attribute reduction, conditional entropy is used to build a bridge between
condition attributes and decisions [37]. It frequently reveals a learning relationship between samples
and labels in data. In this study, unsupervised data can be labeled through a pseudo-label strategy,
and then conditional entropy helps uncover the learning relationships among condition attributes.
That is why we use unsupervised conditional entropy instead of unsupervised approximation quality
in Eq. (9).

Furthermore, by the form of κA (d), it is observed that a higher value of approximation quality
γA (d) and a lower value of unsupervised conditional entropy CEA, then a higher value of the quality-
to-entropy ratio. It is also consistent with the previous objectives of attribute reductions related to
measures γA (d) and CEA. That is, if approximation quality is employed, then a higher value of
approximation quality is expected through adding qualified attributes or removing poor attributes;
if conditional entropy is employed, then a lower value of approximation quality is expected through
adding qualified attributes or removing low-quality attributes.

Theorem 1. Given a data DS = 〈U , AT , d〉 and δ, ∀A ⊆ AT , κA (d) ∈ [0, 1].

Proof. By the property of approximation quality, γA (d) ∈ [0, 1] holds. By the property of

conditional entropy, CEA ∈
[

0,
|U|
e

]
holds. Immediately, exp (CEA) ∈

[
1, e

|U|
e

]
holds by the form

of Eq. (9). In other words, κA (d) will get the minimal value 0 if γA (d) = 0 and exp (CEA) = e
|U|
e ; κA (d)

will get the maximal value 1 if γA (d) = 1 and exp (CEA) = 1. �
Following Sections 2.1 and 2.2, it is known that the higher the value of the approximation quality,

the more influential the discriminating performance of the condition attributes relative to decision d;
the lower the value of the unsupervised conditional entropy, the stronger the discriminative power
of the condition attributes relative to the pseudo labels. Since CEA is not strictly monotonically
decreasing, we can conclude that exp (CEA) is also not strictly monotonically decreasing. To sum up,
the higher the value of the quality-to-entropy ratio, the stronger the discriminative power [38,39] of the
condition attributes relative to decisions. Furthermore, it should be pointed out that our new measure
does not possess the property of strict monotony. An illustrative example is elaborated below.

Example 1. For example, see Table 1. In Table 1, U = {x1, x2, x3, x4} is the universe. Suppose that
AT = {a1, a2, a3, a4} is the set of condition attributes; d is the decision; da1 , da2 , da3 and da4represent the
pseudo labels of samples based on four different condition attributes, respectively. They are obtained
through using a learning approach. Additionally, the radius is given by 0.2.

Table 1: An example of data

U a1 a2 a3 a4 d da1 da2 da3 da4

x1 0.2171 0.1477 0.3107 0.2077 1 • • • •
x2 0.3550 0.4542 0.8767 0.9224 1 © • • ©
x3 0.5172 0.8985 0.7375 0.3809 2 © © • •
x4 0.8232 0.8768 0.6847 0.0531 1 • © © •
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Firstly, the corresponding partitions over U are:

U/IND (d) = {X1, X2} = {{x1, x2, x4} , {x3}} ,

U/IND (da1) = {
X a1

1 , X a1
2

} = {{x1, x4} , {x2, x3}} ,

U/IND (da2) = {
X a2

1 , X a2
2

} = {{x1, x2} , {x3, x4}} ,

U/IND (da3) = {
X a3

1 , X a3
2

} = {{x1, x2, x3} , {x4}} ,

U/IND (da4) = {
X a4

1 , X a4
2

} = {{x1, x3, x4} , {x2}} .

By Eq. (9), κAT (d) is then calculated by the following results:

γAT (d) =
∣∣δAT (X1) ∪ δAT (X2)

∣∣
|U| = 1,

CEAT = 1
|AT |

(
CEAT−{a1} (da1) + CEAT−{a2} (da2) + CEAT−{a3} (da3) + CEAT−{a4} (da4)

)

= 1
4

(1 + 1 + 1 + 1) = 1.

Therefore, κAT (d) = γAT (d)

exp (CEAT)
= 0.3679.

Presume that the condition attributes a1 is removed from data and then A = {a2, a3, a4}. By Eq. (9),
κA (d) is calculated by

γA (d) =
∣∣δA (X1) ∪ δA (X2)

∣∣
|U| = 1,

CEA = 1
|A|

(
CEA−{a2} (da2) + CEA−{a3} (da3) + CEA−{a4} (da4)

)

= 1
3

(1 + 0.5 + 0.5) = 0.6667.

Therefore, κA (d) = γA (d)

exp (CEA)
= 1

e0.6667
= 0.5134.

Though A ⊆ AT holds, κAT (d) < κA (d), such a case demonstrates that the new measure κ is not
strictly monotonic with respect to the number of used condition attributes.

The quality-to-entropy ratio proposed above presents a form of attribute reduction as follows.

Definition 9. Given a data DS = 〈U , AT , d〉 and ∀A ⊆ AT , A is regarded as a κ-reduct if and
only if
κA (d)

κAT (d)
≥ θ (10)

∀A′ ⊂ A,
κA′ (d)

κAT (d)
< θ (11)

where θ ∈ [0, 1] is a threshold.
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Following Def. 9, it is observed that as a minimal subset of attributes, κ-reduct improves the
quality-to-entropy ratio. Immediately, an open problem is how to seek out such a reduct. Without
loss of generality, it is frequently required to evaluate the significance or importance of attributes in
AT [40,41]. The qualified attributes can be selected into the reduct pool, or low-quality attributes can
be removed from the reduct pool. Based on the widely used greedy searching mechanism [42–44], the
following definition presents a significant attribute in considering our proposed quality-to-entropy
ratio.

Definition 10. Given a data DS = 〈U , AT , d〉, ∀A ⊆ AT , ∀a ∈ AT −A, the significance with respect
to quality-to-entropy ratio is defined as:

Sigκa (d) = κA
⋃{a} (d) − κA (d) (12)

The above significance function shows: as the value rises, the condition attribute becomes more
and more significant, and such an attribute is highly possible to be added to the reduct pool. For
instance, if Sigκa1

(d) < Sigκa2
(d) where a1, a2 ∈ AT − A, then κA

⋃{a1} (d) < κA
⋃{a2} (d). Such a result

illustrates that: compared to a1, if a2 is selected into A, then the derived quality-to-entropy ratio will
be higher.

The above interpretation is consistent with the semantic explanation of attribute reduction shown
in Def. 9, i.e., a higher value of the quality-to-entropy ratio is expected.

3.2 Algorithm Description
Based on the significant function shown in Eq. (12), Algorithm 1 is designed to seek out a κ-reduct.

Algorithm 1 Forward Greedy Searching to κ-reduct (FGS-κ)
Input: A data DS = 〈U , AT , d〉, a radius δ, a threshold θ .
Output: A κ-reduct A.

1 Let A = ∅;
2 Calculate γAT (d) by Eq. (5);
3 For each a ∈ AT do
4 Generate pseudo labels of samples in U by using a;
5 End
6 Calculate CEAT by Eq. (8);
7 Calculate quality-to-entropy ratio κAT(d) by Eq. (9);
8 Repeat
9 For each a ∈ AT − A do
10 Calculate γA

⋃{a}(d);
11 Calculate CEA

⋃{a};
12 Calculate κA

⋃{a}(d);
13 End
14 Select attribute b = argmax{Sigκa (d) : ∀a ∈ AT − A};
15 Let A = A ∪ {b};
16 Calculate κA (d);

17 Until
κA(d)

κAT(d)
< θ ;

18 Return A
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To simplify the discussion of the time complexity of Algorithm 1. Firstly, k-means clustering is
employed to obtain the pseudo labels of samples. T is the iteration times of k-means, and k is the
number of clusters, then the time complexity of producing pseudo labels isO(k·T ·|U|·|AT |). Secondly,
κA

⋃{a} (d) is calculated at most (1 + |AT |) · |AT | /2 times. Finally, the time complexity of Algorithm 1
is O

(|U|2 · |AT |3 + k · T · |U| · |AT |).

4 Experimental Analysis
4.1 Data

To demonstrate the performance of our proposed strategy, 18 UCI datasets and 2 Yale face
datasets have been employed in this study. Table 2 summarizes the detailed statistics of these data.

Table 2: Data sets descriptions

ID Data sets # Samples # Attributes # Labels

1 Connectionist bench (Sonar, Mines
vs. Rocks)

208 60 2

2 Describable textures dataset 5500 40 3
3 Drive-face 606 6400 3
4 First-order theorem proving 6118 51 2
5 Libras movement 360 90 15
6 Lee silverman voice treatment

(LSVT) voice rehabilitation
126 256 2

7 Madelon 4400 500 2
8 Molecular biology (Promoter Gene

Sequences)
106 57 2

9 OPPORTUNITY activity
recognition

2551 242 40

10 Optical recognition of handwritten
digits

5620 64 10

11 Ozone level detection 2536 72 15
12 Quality assessment of digital

colposcopies
287 63 2

13 Single proton emission computed
tomography (SPECT) heart

267 44 2

14 Synthetic control chart time series 600 60 6
15 Ultrasonic flowmeter

diagnostics-meter D
180 43 4

16 Urban land cover 675 147 9
17 Waveform database generator

(Version 2)
5000 40 3

18 Wisconsin diagnostic breast cancer 569 30 6
19 Yale face (32 × 32) 165 1024 15
20 Yale face (64 × 64) 165 4096 15
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4.2 Configuration
All the experiments are carried out on a desktop computer with the Windows 10 operating system,

Advanced Micro Devices (AMD) Ryzen 5 5500U with Radeon Graphics (2.10 GHz) and 32.00 GB
memory. The programming environment is Matlab R2020a.

In this section, two groups of comparative experiments are designed and executed. For all the
experiments, 20 different radii δ have been used, they are δ = 0.02, 0.04, . . . , 0.40, increasing with the
step of 0.02. Furthermore, k-means clustering [44] is adopted in the following experiments to generate
the pseudo labels of samples, where the value of k is the same as the number of decision classes in
the data.

Moreover, 10-fold cross-validation is used in the experiments, dividing the samples in U into ten
groups [45–47]. They are U1, U2, . . . , and U10. In the first round of calculation, the set U2 ∪ · · · ∪ U10 is
regarded as the training set for calculating reduct, and U1 is the set of testing samples; · · · ; in the last
round of calculation, the set U1 ∪ · · · ∪ U9 is regarded as the training set for calculating reduct, and
U10 is the set of testing samples. Three classifiers are also employed to test the performances of derived
reducts, they are Support Vector Machine (SVM) [48], Classification and Regression Tree (CART) [49]
and K-Nearest Neighbor (KNN) [50].

4.3 Experiment (Group 1)
In the first group of the experiment, we will compare our proposed approach with previ-

ously supervised attribute reduction and unsupervised attribute reduction strategies. The supervised
attribute reduction is based on the approximation quality [30], which is called Supervised Approx-
imation Quality Reduct (SAQR). The unsupervised attribute reduction is based on the conditional
entropy, which is called Unsupervised Conditional Entropy Reduct (UCER).

Since 20 different radii have been used to obtain reducts in our experiments, the mean values
related to those 20 different reducts are presented in the following subsection.

4.3.1 Comparisons among Classification Stabilities

The classification stabilities [15] derived by different kinds of reducts are compared. Classification
stability is used to test the stability of classification results if data perturbation (simulated by cross-
validation) happens. Such a computation is based on the distribution of the classification results. The
higher the value of classification stability, the better the ability to the data perturbation.

The following Table 3 reports the mean values of classification stabilities obtained over 20 datasets.
A closer look at Table 3 reveals the following facts.

(1) Whichever classifier is adopted, the classification stabilities related to κ-reducts are greater
than those related to reducts derived by SAQR and UCER in most datasets. Take data “Drive-
Face (ID:3)” as an example. Through the use of SVM, the classification stability of FGS-κ,
SAQR and UCER are 89.25%, 81.60% and 78.18%, respectively. Through the use of CART,
the classification stability of FGS-κ, SAQR and UCER are 70.40%, 64.38% and 61.03%,
respectively. Through the use of KNN, the classification stability of FGS-κ, SAQR and UCER
are 84.25%, 63.75% and 41.25%, respectively. From this point of view, it is concluded that by
comparing with the single measure used in SAQR and UCER, the quality-to-entropy-based
multiple measures in FGS-κ helps select attributes with superior data adaptability, i.e., the
slight data perturbation in training data will not lead to more significant variation of the
classification results.
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(2) From the perspective of the average values, the classification stability of FGS-κ is more
remarkable than those related to both SAQR and USER. Through the use of SVM, the
classification stability of FGS-κ is over 8.24% higher than others. Through the use of CART,
the classification stability of FGS-κ is over 8.93% higher than others. Through the use of KNN,
the classification stability of FGS-κ is over 13.50% higher than others.

Table 3: The comparisons of classification stabilities (%)

ID SVM CART KNN

FGS-κ SAQR USER FGS-κ SAQR USER FGS-κ SAQR USER

1 99.22 99.01 98.19 96.66 96.56 96.14 94.01 93.44 92.93
2 87.73 77.22 79.32 79.78 60.88 66.32 91.05 72.22 75.66
3 89.25 81.60 78.18 70.40 64.38 61.03 84.25 63.75 41.25
4 91.96 84.56 70.36 74.64 72.71 69.42 89.91 84.38 72.91
5 98.80 91.93 78.98 87.78 79.30 72.16 99.23 90.85 77.48
6 99.33 84.88 83.33 97.16 83.03 76.46 84.00 75.06 77.47
7 84.84 82.26 75.15 86.58 83.20 75.00 66.79 65.58 60.12
8 99.86 89.47 87.83 82.81 83.43 78.73 77.54 69.78 69.52
9 84.24 78.75 76.27 71.51 67.87 66.69 86.06 78.42 71.15
10 88.00 74.68 70.83 66.25 64.53 62.00 82.50 70.80 62.88
11 100.00 100.00 100.00 94.18 82.84 81.67 92.62 92.51 91.77
12 97.60 91.48 85.40 80.80 69.08 71.92 94.40 75.64 76.44
13 74.34 83.52 79.53 64.96 53.06 59.88 77.96 62.10 57.35
14 81.90 59.14 68.19 73.33 53.14 70.09 80.00 58.85 73.52
15 100.00 100.00 100.00 74.45 70.62 73.66 82.58 78.86 80.66
16 99.75 99.68 99.67 99.62 99.59 99.45 99.86 99.80 99.75
17 72.63 76.08 74.66 85.91 83.97 73.72 87.30 83.44 85.80
18 91.41 84.34 82.91 79.16 68.06 71.39 89.65 75.03 70.76
19 96.68 77.63 78.29 72.50 59.21 63.40 87.20 65.87 64.84
20 94.54 69.54 68.36 59.60 56.36 59.48 91.51 69.63 61.39
Average 91.60 84.12 81.94 79.72 72.60 72.60 86.92 75.17 74.31

From the discussions above, our new approach can select more critical attributes than other
attribute reduction strategies, and these selected attributes are able to replace raw attributes to complete
subsequent tasks.

4.3.2 Comparisons among Classification Accuracies

The classification accuracies corresponding to different results of reduct are compared. Table 4
reports the average values of classification accuracy obtained over 20 datasets.
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Table 4: The comparisons of classification accuracies (%)

ID SVM CART KNN

FGS-κ SAQR UCER FGS-κ SAQR UCER FGS-κ SAQR UCER

1 99.12 97.36 98.74 98.24 96.55 98.24 93.66 92.10 93.10
2 82.92 80.97 70.73 73.17 65.34 56.09 75.61 75.56 73.17
3 89.75 36.25 28.75 42.50 27.50 40.25 80.25 41.25 48.75
4 86.56 83.15 72.63 76.10 69.47 73.68 85.33 81.05 80.00
5 97.65 97.33 93.59 87.73 86.21 84.69 98.49 98.13 91.63
6 97.50 94.16 92.50 94.83 90.83 84.16 88.33 81.33 88.16
7 65.37 62.50 63.88 77.69 75.00 79.16 52.19 47.22 51.38
8 80.70 79.85 80.00 74.73 73.68 73.68 75.43 71.93 70.17
9 64.24 36.36 21.21 58.48 46.66 33.33 41.21 30.30 12.12
10 88.00 66.25 58.75 56.25 45.00 36.25 78.75 58.75 63.75
11 82.91 82.91 82.91 80.46 79.08 79.39 82.31 79.07 81.28
12 96.10 80.00 94.40 79.20 64.00 72.00 88.00 80.00 88.00
13 59.81 54.53 57.69 71.73 54.42 70.61 64.62 54.03 56.57
14 70.47 42.85 61.90 80.95 66.66 72.38 68.57 38.10 66.67
15 73.59 73.58 73.58 79.25 73.58 77.35 69.57 62.26 62.26
16 99.91 99.61 99.82 99.46 99.32 99.46 99.73 99.64 99.73
17 61.11 57.72 58.13 80.56 78.08 77.78 80.56 69.58 72.22
18 82.21 80.00 74.07 79.26 77.24 74.82 78.52 76.72 64.44
19 85.86 47.40 79.30 73.72 47.20 69.70 77.92 42.80 71.70
20 74.55 60.61 36.36 51.52 41.70 36.36 67.88 54.55 51.52
Average 81.91 70.67 69.95 75.79 68.28 69.47 77.35 66.72 69.28

A closer look at Table 4 reveals the following facts.

(1) Whichever classifier is employed, the accuracies corresponding to κ-reducts are greater than
those corresponding to both SQAR and USER. Take the dataset “Optical Recognition of
Handwritten Digits (ID:10)” as an example. Through the use of SVM, the classification accu-
racy of κ-reduct, SAQR and UCER are 88.00%, 66.25% and 58.75%, respectively. Through the
use of CART, the classification accuracy of κ-reduct, SAQR and UCER are 56.25%, 45.00%
and 36.25%, respectively. Through the use of KNN, the classification accuracy of κ-reduct,
SAQR and UCER are 78.75%, 58.75% and 63.75%, respectively. Because of this, it can be
found that the attributes selected by our FGS-κ can also provide better learning performance.

(2) Interestingly, compared to others, the κ-reducts derived from FGS-κ perform significantly
better over high-dimensional datasets. Take the data “Yale face (64 × 64) (ID:20)” as an
example, which possesses 4096 attributes. The classification accuracy of κ-reduct is 29.04%
higher than the reduct derived from SAQR, and 36.58% higher than the reduct derived
from USER. For “Connectionist Bench (Sonar, Mines vs. Rocks) (ID:1)”, which possesses
60 attributes. The classification accuracy of κ-reduct is 1.71% higher than the reduct derived
from SAQR, and 0.38% higher than the reduct derived from USER.
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(3) From the perspective of the average values, the classification accuracies related to FGS-κ
are also more significant than those of both SAQR and USER. Through the use of SVM,
the classification accuracy of FGS-κ is over 13.74% higher than others. Through the use of
CART, the classification accuracy of FGS-κ is over 8.33% higher than others. Through the
use of KNN, the classification accuracy of FGS-κ is over 10.38% higher than others. Such an
observation indicates that our proposed algorithm applies to several different classifiers.

4.4 Experiment (Group 2)
In this experiment, with respect to two measures addressed in this study, our proposed approach

is compared with five other popular approaches, they are:

(1) The novel rough set algorithm for fast adaptive attribute reduction in classification
(FAAR) [51];

(2) The multi-criterion neighborhood attribute reduction (MNAR) [17];
(3) The robust attribute reduction based on rough sets (RARR) [52];
(4) The attribute reduction algorithm based on fuzzy self-information (FSIR) [53];
(5) The attribute reduction based on neighborhood self-information (NSIR) [54].

4.4.1 Comparisons among Classification Stabilities

In this part, the classification stabilities derived from different kinds of reducts are compared.
Table 5 shows the mean values of different classification stabilities obtained over 20 datasets. A closer
look at Table 5 reveals the following facts.

(1) Whichever classifier is chosen, the classification stabilities based on κ-reducts are more
significant than others over most datasets. Take the dataset “Wisconsin Diagnostic Breast
Cancer (ID:18)” as an example. Through the use of SVM, the classification stability of
FGS-κ, FAAR, MNAR, RARR, FSIR and NSIR are 91.42%, 81.81%, 59.41%, 83.18%,
70.80% and 83.46%, respectively. Through the use of CART, the classification stability of
FGS-κ, FAAR, MNAR, RARR, FSIR and NSIR are 79.16%, 75.81%, 76.74%, 72.99%,
61.55% and 71.49%, respectively. Through the use of KNN, the classification stability of FGS-
κ, FAAR, MNAR, RARR, FSIR and NSIR are 89.65%, 87.58%, 63.85%, 73.73%, 63.58%
and 71.95%, respectively.

(2) From the perspective of the average values, the classification stability of FGS-κ is also greater
than those related to FAAR, MNAR, RARR, FSIR and NSIR, respectively. Through the use
of SVM, the classification stability of FGS-κ is over 5.87% higher than others. Through the
use of CART, the classification stability of FGS-κ is over 8.21% higher than others. Through
the use of KNN, the classification stability of FGS-κ is over 8.73% higher than others.

From the discussions above, our new approach is superior to state-of-the-art attribute reduction
strategies in offering stable classification results from the discussions above.

Table 5: The comparisons of classification stabilities (%)

Classifier ID FGS-κ FAAR MNAR RARR FSIR NSIR

SVM 1 99.21 99.12 92.63 99.26 99.12 98.83
2 87.73 79.93 80.95 75.14 74.38 85.78

(Continued)
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Table 5: Continued
Classifier ID FGS-κ FAAR MNAR RARR FSIR NSIR

3 89.25 86.45 62.00 85.00 82.15 70.40
4 91.95 89.32 87.01 91.86 90.22 83.78
5 98.80 94.26 69.02 86.58 59.31 85.13
6 99.33 82.20 67.33 65.20 69.06 79.55
7 84.84 83.43 68.61 73.93 71.80 77.37
8 99.86 98.03 97.58 94.00 94.00 94.00
9 84.24 83.67 70.91 78.30 81.75 77.87
10 88.00 81.60 59.50 86.55 81.80 70.30
11 100.00 100.00 100.00 100.00 100.00 100.00
12 97.60 87.48 90.40 96.04 91.28 94.52
13 74.35 76.54 72.20 83.66 69.46 71.07
14 81.91 59.38 69.52 61.52 75.81 74.57
15 100.00 100.00 100.00 100.00 100.00 100.00
16 99.75 97.92 97.93 100.00 99.27 99.50
17 72.64 68.73 69.77 71.67 68.98 67.41
18 91.42 81.81 59.41 83.18 70.80 83.46
19 96.68 92.38 71.34 87.46 76.35 89.32
20 94.55 83.79 63.03 73.76 83.61 66.94
Average 91.61 86.30 77.46 84.66 81.95 83.49

CART 1 96.66 91.58 88.42 91.79 91.70 91.93
2 79.78 63.69 65.71 59.21 63.00 70.47
3 61.25 56.80 59.25 61.09 57.70 54.40
4 74.46 72.56 74.38 60.68 60.38 71.66
5 87.79 87.33 66.60 83.72 57.51 76.72
6 97.17 76.07 63.33 63.21 70.40 76.50
7 86.58 66.18 65.55 65.83 70.05 65.70
8 82.81 80.43 74.82 76.94 73.91 73.91
9 67.88 65.48 59.69 67.30 62.66 62.84
10 66.25 57.80 55.00 63.70 60.60 65.00
11 94.18 92.29 88.40 93.80 82.54 83.05
12 80.80 72.48 74.00 75.60 76.28 78.52
13 64.96 59.71 58.87 58.12 58.16 59.04
14 73.33 57.38 67.62 67.81 69.33 69.61
15 74.45 71.18 72.59 74.02 71.92 71.74
16 99.62 99.56 99.56 98.65 99.26 99.53
17 85.92 84.44 77.77 81.11 85.12 84.69
18 79.16 75.81 76.74 72.99 61.55 71.49
19 72.50 71.10 60.62 68.44 66.76 71.27
20 59.61 54.12 55.45 58.78 58.06 58.03
Average 79.26 72.80 70.22 72.14 69.85 72.81

KNN 1 94.01 87.31 97.40 87.58 91.70 86.63
2 91.05 63.69 65.71 59.21 63.00 70.47

(Continued)
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Table 5: Continued
Classifier ID FGS-κ FAAR MNAR RARR FSIR NSIR

3 84.25 79.90 62.25 72.40 71.80 64.15
4 89.91 88.54 85.04 88.21 83.85 85.73
5 99.23 89.33 70.87 79.91 58.70 82.16
6 84.00 78.15 66.66 70.30 70.88 76.08
7 66.79 65.39 64.16 61.68 62.04 58.26
8 77.54 76.17 74.48 72.06 70.93 71.05
9 86.06 83.63 76.36 74.90 76.66 74.97
10 82.50 74.60 60.75 72.65 68.85 63.05
11 92.62 90.35 76.97 82.46 91.86 89.04
12 94.40 78.32 81.60 81.08 79.56 84.64
13 77.96 75.19 71.69 81.14 71.42 76.45
14 80.00 59.81 69.52 65.90 75.42 75.14
15 82.58 74.00 73.38 76.11 75.63 74.18
16 99.86 89.89 89.98 94.09 99.57 99.59
17 87.31 84.13 83.33 86.25 84.98 86.75
18 89.65 87.58 63.85 73.73 63.58 71.95
19 87.20 77.22 58.34 69.86 68.64 73.80
20 91.52 84.39 68.48 72.87 69.51 68.03
Average 86.92 79.38 73.04 76.12 74.93 76.61

4.4.2 Comparisons among Classification Accuracies

In this part, the classification accuracies based on different kinds of reducts are also compared.
Different classification accuracies acquired by 20 datasets are shown in Table 6. A closer look at Table 6
reveals the following facts.

(1) Whichever classifier is chosen, the classification accuracies based on κ-reducts are more
significant than others over most datasets. Take the dataset “Ultrasonic Flowmeter Diagnostics-
Meter D (ID:15)” as an example. By employing SVM, the classification accuracy of FGS-κ,
FAAR, MNAR, RARR, FSIR and NSIR are 73.58%, 71.48%, 70.58%, 71.48%, 71.48% and
71.48%, respectively. By employing CART, the classification accuracy of FGS-κ, FAAR,
MNAR, RARR, FSIR and NSIR are 79.24%, 79.20%, 75.18%, 72.22%, 77.78% and
72.22%, respectively. By employing KNN, the classification accuracy of FGS-κ, FAAR,
MNAR, RARR, FSIR and NSIR are 69.56%, 59.56%, 55.18%, 62.22%, 57.78% and 62.22%,
respectively.

(2) From the perspective of the average values, the classification precision related to FGS-κ is also
more significant than those of FAAR, MNAR, RARR, FSIR and NSIR. By employing SVM,
the classification accuracy of FGS-κ is over 5.92% higher than others. By employing CART,
the classification accuracy of FGS-κ is over 8.46% higher than others. By employing KNN, the
classification accuracy of FGS-κ is over 5.61% higher than others.
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From the discussions above, our new approach is superior to popular attribute reduction strategies
in providing more precise classification results.

Table 6: The comparisons of classification accuracies (%)

Classifier ID FGS-κ FAAR MNAR RARR FSIR NSIR

SVM 1 99.12 99.12 95.61 99.12 99.12 99.12
2 82.92 71.42 78.57 78.57 54.76 18.09
3 89.75 85.00 10.00 16.25 1.25 21.25
4 86.57 74.21 78.43 82.56 78.43 78.43
5 97.65 95.02 24.73 13.61 9.07 78.73
6 97.50 95.00 75.00 74.17 16.67 90.00
7 65.36 63.67 50.00 56.94 13.89 63.88
8 80.70 81.03 80.05 81.32 79.20 79.31
9 64.24 61.67 58.21 59.39 12.12 58.48
10 88.00 83.75 62.50 57.50 63.75 61.25
11 82.91 80.27 79.77 81.50 82.75 87.74
12 96.01 72.00 72.00 92.00 94.00 94.00
13 59.80 56.20 54.97 53.59 58.87 55.73
14 70.76 57.13 38.95 47.62 38.09 70.43
15 73.58 71.48 70.58 71.48 71.48 71.48
16 99.90 99.50 99.46 87.64 97.36 98.91
17 61.11 58.22 53.89 57.79 49.42 56.89
18 82.21 80.96 71.48 79.25 62.96 81.22
19 85.86 84.90 52.90 50.60 61.13 85.40
20 74.54 68.78 42.44 59.39 68.18 68.49
Average 81.91 77.09 62.69 64.96 55.71 70.94

CART 1 98.24 92.10 90.35 92.98 91.28 91.22
2 73.17 66.19 70.95 71.81 59.52 66.19
3 42.50 35.00 40.97 25.00 27.50 31.25
4 76.10 72.56 72.56 66.77 73.38 70.08
5 87.74 85.89 76.96 75.62 69.07 78.73
6 94.83 88.33 76.67 69.66 73.33 81.66
7 77.69 62.50 47.22 59.72 71.11 66.67
8 74.74 63.79 75.86 71.03 70.69 70.69
9 48.45 48.37 42.42 44.39 45.15 47.51
10 46.25 42.50 35.00 30.00 21.25 25.00
11 80.46 78.08 75.85 75.47 78.33 79.70
12 79.20 68.00 74.00 72.00 78.00 72.00
13 71.73 64.50 66.19 68.95 68.87 70.73
14 80.95 47.61 76.19 52.38 38.09 71.43
15 79.24 79.20 75.18 72.22 77.78 72.22
16 99.45 99.49 98.36 93.91 99.27 99.18
17 80.56 73.33 76.11 76.11 72.23 77.78

(Continued)
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Table 6: Continued
Classifier ID FGS-κ FAAR MNAR RARR FSIR NSIR

18 79.26 76.29 60.00 74.07 57.78 79.26
19 73.72 72.70 46.80 47.00 33.90 73.60
20 51.57 44.54 44.54 48.85 42.21 45.45
Average 74.79 68.05 66.24 64.15 60.95 68.51

KNN 1 93.67 91.61 90.47 91.14 87.64 92.86
2 75.61 70.95 73.19 73.19 59.52 70.95
3 80.25 73.75 47.50 47.50 26.25 73.75
4 85.37 83.38 83.38 81.73 78.08 78.08
5 98.49 97.76 75.71 76.06 69.07 86.56
6 88.33 85.00 69.16 72.50 67.50 83.00
7 52.19 48.22 45.27 49.89 42.50 50.22
8 75.44 65.52 74.14 72.75 72.41 65.52
9 41.21 40.42 39.39 39.94 37.71 41.21
10 78.75 73.75 55.00 25.00 31.25 73.75
11 82.31 73.67 80.46 80.54 80.46 73.67
12 88.00 84.00 80.00 84.00 88.00 84.00
13 64.61 53.32 56.20 61.55 58.87 57.32
14 68.57 66.19 38.09 42.85 38.09 68.43
15 69.56 59.56 55.18 62.22 57.78 62.22
16 99.73 99.55 99.55 87.18 99.64 99.55
17 80.56 76.11 71.67 78.89 72.22 76.11
18 78.52 77.04 48.89 73.33 68.15 77.04
19 77.92 74.60 44.80 47.60 35.80 73.60
20 67.88 66.67 54.54 45.46 18.18 66.67
Average 77.35 73.06 64.19 64.66 59.83 72.73

5 Conclusions and Future Work

In such a study, with a review of limitations derived from measures based on single perspective, a
novel measure, called quality-to-entropy, is proposed. The superiorities of our research are: in the
process of searching reduct, not only can the relationship between condition attributes and labels
be characterized from the supervised perspective, but also the internal structure of data can be
quantitatively described. More importantly, our new measure can be further introduced into other
search strategies. Through extensive experiments, it has been demonstrated that the proposed measure
helps select attributes with significantly superior classification performance.

Further investigations will be focused on the following aspects:

(1) Our strategy is developed based on the neighborhood rough set. It can also be further
introduced into other rough sets, e.g., fuzzy rough set [36,53,55] and decision-theoretic rough
set [41].

(2) Fused measures may increase time consumption for seeking out a reduct, accelerators [3,42] to
reduce the corresponding elapsed time are then necessary.
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