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Abstract: The communication system of high-speed trains in railway tunnels
needs to be built with leaky cables fixed on the tunnel wall with special fixtures.
To ensure safety, checking the regular leaky cable fixture is necessary to elimi-
nate the potential danger. At present, the existing fixture detection algorithms
are difficult to take into account detection accuracy and speed at the same
time. The faulty fixture is also insufficient and difficult to obtain, seriously
affecting the model detection effect. To solve these problems, an innovative
detection method is proposed in this paper. Firstly, we presented the Res-Net
and Wasserstein-Deep Convolution GAN (RW-DCGAN) to implement data
augmentation, which can enable the faulty fixture to export more high-quality
and irregular images. Secondly, we proposed the Ghost SENet-YOLOv5 (GS-
YOLOv5) to enhance the expression of fixture feature, and further improve
the detection accuracy and speed. Finally, we adopted the model compression
strategy to prune redundant channels, and visualized training details with
Grad-CAM to verify the reliability of our model. Experimental results show
that the algorithm model is 69.06% smaller than the original YOLOv5 model,
with 70.07% fewer parameters, 2.1% higher accuracy and 14.82 fps faster
speed, meeting the needs of tunnel fixture detection.

Keywords: Leaky cable fixture detection; RW-DCGAN; compressed strategy;
GS-YOLOv5

1 Introduction

With the popularization of high-speed trains in daily life, the importance of related mobile
communication systems has become increasingly prominent. In order to ensure that the train can
communicate with outside normally in the railway tunnel, the full coverage of the Global System for
Mobile Communications-Railway (GSM-R) signal is significant. At present, the leaky cable is mainly
used to construct the communication network, and is fixed on the tunnel wall with special fixtures [1].
However, leaky cable fixtures are vulnerable to air pressure and power waves generated when high-
speed trains pass through the tunnels. At the same time, the humid tunnel geological environment will
also accelerate the loosening or even detachment of cable fixtures. Currently, the primary method of
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cable fixture detection is still manual periodic inspection. Obviously, it requires onsite manual working,
which is not only inefficient but also has serious safety hazards. With the increasing mileage of railway
tunnels, it is challenging to meet the actual needs only by manual detection.

Due to the development of computer vision algorithm, intelligent detection has been widely used
in the security protection field of railway tunnels. Such as tunnel surface detection [2,3], rail surface
detection [4–6], and crack detection of tunnel walls [7]. For leaky cable fixture detection, the general
process has the following three steps: 1) The Special COMS dual-line camera is used to extract original
image data sets, and these images also need to be processed to meet the detection requirements. 2)
Use the corresponding feature extraction algorithm to obtain the fixture features, and put them into
the machine learning classifier for training. 3) The trained classifier will detect testing data sets, and
then the faulty samples will be identified. The vision-based method further improves the detection
efficiency, greatly optimizes the working environment, and becomes the developing trend of leaky
cable fixture detection.

Based on large-scale datasets, deep learning has achieved remarkable fault detection success.
Monocular vision’s anchor-based detection algorithm is mainly divided into two-stage and one-stage
modes. For example, Zhang et al. [8] proposed an enhancement Single Shot Multi-Box Detector (SSD)
algorithm for leaky cable fixtures detection. They first used a pyramid structure to obtain the multi-
scale features and then combined the inception structure and residual structure to improve network
performance. Although the average accuracy of the model used in literature 6 is 90.4%, it is only 22 fps,
which is challenging to meet the requirements of fixture detection. In order to improve detection speed,
Ma [9] improved YOLOv4 and adopted Mobile-Net as backbone to extract cable fixture features. The
accuracy of model in literature 7 is as high as 95.33%, but its data and quantity are small, and the
model’s generalization is poor. Due to practical engineering constraints, obtaining annotated samples
that fully satisfy the volume of training data set in leaky cable fixture detection is laborious or even
impractical. Zhang et al. [10] proposed a multi-scale continuous gradient local binary pattern based
on a manual handicraft algorithm to detect faulty fixtures. The accuracy of literature 8 reached 83.5%,
but the traditional method is more dependent on the dataset and has a smaller number of datasets,
making it less applicable. Peng [11] followed a two-stage method. They first used Snake to locate leaky
cable fixtures and then operated Haar to extract characteristics. Although these manual algorithms
can reduce the dependence on data sets, their portability and detection speed are poor. The main
contributions of our work are highlighted as follows:

� To address the overfitting phenomenon caused by traditional data enhancement methods with
a single transformation and the problem of unstable GAN training, we propose the RW-
DCGAN model. The model is used to implement data enhancement, enabling defective fixtures
to output more high-quality and irregular images.

� In order to improve the inspection speed of the clamps while maintaining accuracy, the GS-
YOLOv5 model was proposed to meet the practical needs of tunnel leak detection.

� To further improve the detection speed and to verify the validity of the model, we used a model
compression strategy to trim redundant channels and used Grad-CAM to visualise the training
details to verify the reliability of our method.

2 Related Work

For fault detection in the engineering field, the end-to-end detection algorithm based on one-
stage has a faster speed, but its accuracy is lower. Although the two-stage algorithm can obtain higher
accuracy, its lower speed is difficult to meet the needs of real-time detection. Therefore, the indicators
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to measure the leaky cable fixture detection algorithm need to be determined according to the actual
situation. Similar problems also exist in boundary detection [12], bearing inspection [13], bridge crack
detection [14], and machine fault diagnosis [15]. Many factors affect the model detection speed and
detection accuracy. On the one hand, the ability of the model to acquire target features needs to be
improved. The most common method is to enhance the comprehensive properties of the network
model. However, it will inevitably increase the number of parameters and reduce computational
efficiency, making it challenging to deploy in practical applications. On the other hand, a sufficient
sample size is essential for a good model. But in most cases, the sample size is usually insufficient, so
overfitting can also seriously affect the judgment of model detection performance.

2.1 Methods to Improve Detection Accuracy
The detection accuracy of the network is the most critical evaluation criterion, so many of the

current researches are based on further improving detection accuracy. The most common way is to
upgrade the network structure, to enhance the model’s ability to obtain target features. For example,
Xu et al. [16] used the feature fusion method to construct multi-scale detection layers to improve
detection performance. Kim [17] proposed an efficient channel attention pyramid YOLO to optimize
the detection for small objects and improve detection accuracy by optimizing the detection layer to
isolate other objects. Cai et al. [18] designed a new feature fusion PAN++ module and used five
scale detection layers to capture small target objects. Li et al. [19] presented the electronic component
detection network through effective receptive field size and anchor size matching in YOLOv3, which
can realize the calculation and visualization of the effective receptive field size of different depth
layers based on CNN gradient backpropagation. The above algorithm effectively improves detection
accuracy, but their network structures are relatively complex. Besides, the large model size caused by
the feature fusion method will seriously affect the detection speed.

2.2 Methods to Improve Detection Speed
The detection speed is also an important reference indicator for judging whether the model can be

successfully deployed on mobile devices. Especially for some fields that need real-time detection, the
results of time-out detection will lose their value. Howard et al. [20] use deep separable convolution to
build a lightweight network instead of traditional convolution, which can improve the computational
speed by reducing the amounts of parameters of the model. Zeng et al. [21] proposed a jump-join
repetitious learning structure to detect dangerous objects and dangerous actions, which can accelerate
the speed of feature extraction while integrating features of different scales. Zhang et al. [22] used
packet convolutions and channel shuffling to build a lightweight network ShuffleNet that can be
embedded in mobile terminals to reduce the computational load of the detection network further.
In order to remove a large number of redundant features in the convolutional layers, Han et al. [23]
proposed the Ghost module, which can remove redundancy through linear transformation, identity
mapping, and other methods. Furthermore, it effectively reduces the computational complexity and
increases the speed of the model. Although the lightweight network model has the advantages of fewer
parameters and faster calculation speed, the accuracy is not high, and it is still difficult to meet the
requirements of leaky cable fixture detection.
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2.3 Methods to Data Augmentation
Deep learning is essentially a sample-based statistical learning algorithm, so the number of

samples in the dataset is significant for the network model. To solve the problem of insufficient
data samples, the most common method is to perform edge enhancement, image rotating, contrast
enhancement, and other operations on the existing data. Although such a linear method increases the
sample size and meets the requirements of model training, the regular transformation of the original
image can easily lead to overfitting of the network model. In order to enrich the image and improve the
detection quality of the model, the generic adversarial network (GAN) enhances the representation of
images by competing and learning with each other in the generator and discriminator during training
[24]. The generator and discriminator of DCGAN adopt CNN to replace the full connection network,
eliminate the pooling layers, and use Leaky Relu and Sigmoid as the activation function, which can
speed up model training and improve training stability [25]. Chen et al. [26] proposed a bidirectional
generative adversarial framework, which adds global features to the network and uses the adaptive
weighting scheme for training to improve model stability. Ni et al. [27] adopted embedded modulation
and attention mechanisms to capture richer global and local features, and then combined fidelity
loss and quality loss to preserve the desired characteristics. Liu et al. [28] introduced fractional order
differentiation into generator and discriminator, which can better distinguish noise and high-frequency
details. Although many networks have made progress in data augmentation, it still does not handle
fixture images well. The main reason is that the size of the fixture image is relatively large, and it is hard
to capture the fixture features accurately. Therefore, enhancing the expressive effect of fixture images
can also further improve the detection performance.

3 The Proposed Method

The method proposed in this paper mainly improves the detection accuracy and detection speed
of leaky cable fixtures. In order to meet the training requirements of our model, we first need to
augment the fixture data to obtain more high-quality fixture images. Then use an improved feature
extraction network to obtain fixture features and adopt a compression strategy to simplify our model
and complete the entire detection work.

3.1 RW-DCGAN Model
3.1.1 Structure of RW-DCGAN

Due to the limitation of the number of layers in the network, most models are difficult to adapt
to large-size images. Even if there is an image output, the fitting effect of the image is not good,
and it is difficult to meet the training requirements. Therefore, this paper proposes the RW-DCGAN
model, which enhances the ability to capture fixture features and can fit the 512 × 512 fixture images
to meet the detection requirements. As shown in Fig. 1, the generator reshapes the input noise vector
with dimension 100 into a feature map of size 4 × 4 × 1024. Then perform 7 times generator residual
module processing and one convolution processing to obtain the fixture image with 512 × 512 × 3. The
discriminator performs one convolution and 6 times discriminator residual module processing on the
real or generated fixture image, and finally expands the feature into a one-dimensional output through
the full connection layer. In order to avoid overfitting, the Dropout layer is also added at the end of
the discriminator.
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Figure 1: Structure of RW-DCGAN

Since the convolutional neural network needs backpropagation during the training process, if only
the convolutional layer of the network is deepened, the number of model parameters will increase,
which will cause gradient explosion or gradient disappearance in the model. To prevent such problems,
we replace the deconvolution in the generator and discriminator with residual modules while deepening
the network. Even if the network depth is deepened, the parameter quantity is greatly reduced
compared to directly stacking convolutional layers, significantly improving the training speed. In
addition, we also add the Dropout module, which can further filter out redundant parameters, prevent
the model from overfitting, and enhance model generalization ability.

3.1.2 Generator and Discriminator

The improvements of the generator can be shown in Fig. 2. The improved residual module
replaces the deconvolution in the original network with two convolution operations, which adopt
the convolution kernel 3 × 3 and stride 1. Each residual unit implements the residual operation by
increasing up-sampling. Moreover, the non-residual side uses the deconvolutional layer with kernel
1 × 1 and stride 2 for simple feature map upscaling to keep the same output size as the residual side.
The improvements of the discriminator can be shown in Fig. 3. The improved residual module uses the
convolutional layer with kernel 3 × 3 and stride 2, and the convolutional layer with kernel 3 × 3 and
stride 1, respectively. To reduce the feature map, the non-residual side uses the deconvolution layer
with kernel 1 × 1 and stride 2. Finally, the feature of the residual side and the non-residual side are
superimposed as the output result.
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Figure 2: Residual module of generator

Figure 3: Residual module of discriminator
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3.1.3 Loss Function

In order to improve the stability of the model, we use Wassertein distance instead of JS divergence
[29,30], and the formula is expressed as follows:

W
(
Pdata, Pg

) = infχ∼∏
(Pdata ,Pg)(E(x,y)∼χ [||x − y||]) (1)

where Pg is the generated image distribution, Pdata is the real image distribution, and �
(
Pdata, Pg

)
is the

set of all possible joint distributions of combination Pg and Pdata. For each joint distribution χ , a real
sample x and a generated sample y are obtained from the sampling, and the sample distance ||x − y||
and expectation of the distance are calculated. The lower bound of this expectation across all possible
joint distributions is Wassertein distance. However, the lower bound cannot be solved directly, and the
Lipschitz constant k needs to be introduced, so the formula can be expressed as follows:

k × W
(
Pdata, Pg

) = maxa:||fa||Lk Ex∼Pdata
[fa(x)] − Ex∼Pg [fa(x)] (2)

All parameters of fa are limited to a certain range according to the actual situation, and the
derivative of the input sample does not exceed a certain range at this time. So, there must be a
constant k that satisfies the condition, and the loss functions of the generator and discriminator can
be constructed. Their formulas are expressed as follows:

Lgenerator = −Ex−Pg [fα(G(x)] (3)

Ldiscriminator = Ex∼Pg [fα(x)] − Ex∼Pdata
[fα(x)] (4)

3.2 GS-YOLOv5 Model
Deep learning can solve the problems of traditional methods that rely too heavily on datasets

and physical methods that are time-consuming and labor-intensive. At the same time, the YOLOv5
model was chosen and modified accordingly to trade off the speed and accuracy of chuck detection.
The speed of YOLOv5 is still insufficient to meet fixture detection needs, so it is still optimized for
lightness.

3.2.1 Structure of GS-YOLOv5

The computational load of the network in deep learning mainly comes from the convolutional
part, which has to be optimized in order to lighten the network. The algorithm based on deep learning
can effectively obtain a large amount of feature information of the image, so we propose the GS-
YOLOv5 model for leaky cable fixture detection, and the network structure is shown in Fig. 4.

Since the backbone is a deep network, grouped convolution will inevitably cause information loss
between channels. In addition, although Ghost convolution can reduce the extraction of redundant
features [23], if a large number of Ghost convolutions are used, the feature extraction ability will also
decrease. Therefore, we properly retain the standard convolution in the backbone of the network,
and use Ghost convolution to replace the standard convolution only in the residual block. The
attention mechanism is only inserted in the C3 module of residual blocks to enhance the feature
extraction performance. The GS-YOLOv5 model was constructed by replacing the backbone network
of YOLOv5 with the backbone network GS-Net, which incorporated the Ghost module and SENet.
The size of the input image is smaller than possible, mainly due to the design of the feature fusion
structure that is now adopted. Objects of different sizes are divided into different feature maps for
processing, and the best size is between 400 × 400 and 800 × 800. And small objects perform better
with larger input sizes, and the larger the input image, the greater the amount of computation, resulting
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in a decrease in detection speed [31]. The input image size of the model is 640 × 640 × 3. After passing
the GS-Net backbone network consisting of several convolutional modules and GSC3, C3, and SPP
modules, three different levels of feature maps are obtained. Next, these three different levels of feature
maps are fused to obtain the detection results of the three different levels of feature maps, and finally,
the results are presented.

Figure 4: Structure of GS-YOLOv5

3.2.2 Ghost Convolution

Although rich feature maps can be obtained through neural networks, if only standard convolu-
tions are used to generate these feature maps, it may cause waste of computing resources and storage
resources. Assume that the input feature map is X ∈ Rc×h×w, where c, h, w are the number of channels,
height and width of the input feature map. And the output feature map is Y ∈ Rn×h′×w′ , where n, h′,
w′ are the number of channels, height and width of the output feature map. The formula of standard
convolution can be expressed as follows:

Y = X ∗ f + b (5)

where b is the offset term, f ∈ Rc×k×k×n is the convolution filter, k is the kernel size, and the parameter
quantity of standard convolution can be expressed as n ·c ·k ·k. Ghost convolution is mainly composed
of standard convolution and linear operation, which can reduce redundant feature information,
learning cost of non-critical features, and computing resources required by the network [32]. Firstly,
the input feature map X ∈ Rc×h×w is convolved with m standard convolutions of c · k · k, and obtain
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the original feature map Y ′ ∈ Rm×h′×w′ , where m ≤ n and m = n/s. So, the parameter quantity of the
original part in Ghost can be expressed as (n/s) · c · k · k. Then, perform s − 1 linear operations on
the original feature map, and superimpose the resulting s − 1 feature maps and original feature map
together to obtain the final output feature map Y ∈ Rn×h′×w′ . The linear operation adopts (s − 1) · (n/s)
single-channel linear kernels with d · d, and the compression ratio can be written as follow:

rc = n · c · k · k
n
s

· c · k · k + (s − 1) · n
s

· d · d
≈ s · c

s + c − 1
≈ s (6)

According to the above analysis, Ghost convolution can compress the parameter quantity to 1/s
of the standard convolution. Therefore, using Ghost convolution can further improve the detection
speed of the model.

3.3 Model Compression and Grad-CAM
3.3.1 Compression Strategy

The implementation process of channel pruning is simple, the compression efficiency is high, and
the detection accuracy can be fine-tuned to find a suitable model, so we use channel pruning to achieve
model compression [33]. Due to the large depth of the backbone, in order to prevent the model from
overfitting and speed up the model convergence, we use the absolute value of the scaling factor γ of
the BN layer to measure the importance of the channel. The normalization formula of the BN layer is
expressed as:

Zout = γ × Zin − μ√
σ 2 + ε

+ β (7)

where μ is the mean of the input feature map, σ 2 is the variance, and β is the bias. If the value of γ is
small, the corresponding output function Zout will be correspondingly smaller, and such channels can
be clipped. During training, sparsity is achieved by adding a L1 regularity constraint of γ to the loss
function. The formula is written as follows:

Lout =
∑
(x,y)

l (f (x, W) , y) + sr
∑
y∈	

g (γ ) (8)

The first term is the training loss of the network. x and y are the input and output of the training,
respectively, and W is the training parameter in the network. The second term is the regularity
constraint, where g(γ ) = |γ | and sr is the penalty coefficient to balance the two loss terms. After sparse
training, the closer the channel pruning factor is to 0, the less important the channel is. Therefore, such
channels also need to be pruned to obtain a more lightweight model. As the pruning rate increases, the
model compression effect will get better and better, but the accuracy will also decrease. Fine-tuning can
be used to fix the accuracy of the network so that the model can meet the needs of detection accuracy.

3.3.2 Crad-CAM Vision

To visualize the training process of the model, Grad-CAM uses the output for backpropagation
to get the contribution of each pixel in the feature map [34]. The formula is expressed as follows:

αc
k = 1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(9)
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where αc
k represents the contribution of the k-th feature map to category c, yc represents the prediction

score of the network for category c, Z is the size of the feature map, and Ak
ij represents the pixel (i, j)

of the k-th feature map. According to the degree of contribution, all feature maps are weighted and
summed, and Grad-CAM is obtained through the ReLU activation function. The formula is defined
as follows:

Lc
Grad−CAM = ReLU

(∑
k

αc
kA

k

)
(10)

When the contribution value is less than 0, this part of the feature map has no positive effect on
the classification result, so it is necessary to use the ReLU to remove the part less than 0. Grad-CAM
can display the key areas of the input image and intuitively reflect the influence of each part of the
original image on the detection result.

4 Experiments

This section will present a more detailed introduction to leaky cable fixture detection. To
verify the excellent performance of our model proposed in this paper, we have performed extensive
ablation studies and comparative experiments. We first conducted ablation experiments to verify the
performance of the Ghost and SE modules. Besides, we performed sparse training and fine-tuned the
model by cropping, then trained other mainstream models to compare with this paper’s model, and
finally verified that our model was superior by visualization.

4.1 Experimental Environment and Evaluation Metrics
The whole experiment is conducted on the Windows10 operating system, the CPU is Intel(R)

Core (TM) i7-8750H CPU@2.20GHZ, the GPU is NVIDIA GeForce GTX 1050Ti, the deep learning
framework is based on Pytorch1.8 and CUDA10.2, the initial learning rate of the model is 0.001, and
the momentum parameter is 0.937. In the learning rate update, the warmup method is used to adjust
the learning rate so that the model converges faster and the effect is better. We use the mean average
precision (mAP), parameter quantity, model volume, and FPS as the evaluation metrics.

4.2 Fixture Data and Data Augmentation
In this section, the fixture data will be introduced in detail. A high-speed camera needs to be placed

on the window of trains. As shown in Fig. 5a, we choose a CMOS dual-line camera for the whole
shooting process. Then we collect fixture images during the whole train journey. Since the camera has
its light source and is always open for the entire working time, the lighting is stable throughout the
shooting. The normal fixture is shown in Fig. 5b, and the faulty fixture is shown in Fig. 5c. Since the
number of normal fixtures is vast, we only perform augmentation operations on the faulty fixtures.

In order to verify the superiority of the RW-DCGAN model proposed in this paper, we will
conduct comparison experiments of the output fixture image, and the results are shown in Table 1.
We show the augmentation effect of GAN, DCGAN, and RW-DCGAN on fixture images. It can be
found that after multiple epochs of training, the quality of output images generated by GAN and
DCGAN is not high, and the fixture part features are blurred and indistinguishable. Thanks to the
inclusion of the W distance loss function and Dropout, for the same number of training session. The
images generated by the proposed RW-DCGAN are clear and significantly outperform other models.
Because of the residual network, the image quality of our proposed model is higher than others and
closer to the real tunnel fixture picture. A total of 1500 faulty fixtures and 1500 normal fixtures are
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used in the experiment, which are divided into the training set, validation set and test set according to
the ratio of 3:1:1.

Figure 5: The camera and leaky cable fixture. (a) The CMOS dual-line camera. (b) The normal fixture.
(c) The faulty fixture

Table 1: Comparison of generated fixture image with different models

Model Generated fixture image

GAN

DCGAN

RW-DCGAN

4.3 Experiments Main Results
4.3.1 Ablation Experiment

In order to verify the effectiveness of our method, we designed ablation experiments by adding the
proposed modules gradually. As shown in Table 2, after adding SENet, the model volume, parameter
quantity, and detection speed decreased slightly, while mAP increased. It can prove that the attention
mechanism can improve network recognition accuracy. If only Ghost is added, the model volume and
parameter quantity are reduced, and the mAP is reduced by 0.8%. Although the precision is slightly
lost, the detection speed is greatly improved compared to the YOLOv5 model. This is enough to show
that Ghost convolution not only reduces the number of parameters, but also speeds up detection. After
adding both SENet and Ghost, the model volume and parameters are significantly reduced, mAP is
increased by 5.1% compared with YOLOv5, and the speed has no obvious change compared with
G-YOLOv5, which also reflects that the improved model in this paper has more advantages.
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Table 2: Ablation experiment analysis of improved algorithm network

Model Model volume
(MB)

Parameter
quantity (MB)

mAP (all) mAP
(faulty)

mAP
(normal)

FPS

YOLOv5 40.4 20.08 0.773 0.863 0.682 76.92
S-YOLOv5 40.8 20.29 0.802 0.876 0.728 74.07
G-YOLOv5 37.9 18.99 0.765 0.856 0.674 81.43
GS-YOLOv5 37.9 18.81 0.824 0.891 0.759 80.42

4.3.2 Model Compression

We set different penalty coefficient s for sparse training of GS-YOLOv5. In the sparse training and
clipping sections, the penalty coefficient is selected. Generally, the penalty factor needs to be higher,
which will cause the model to be sparse too slowly. The sparseness effect is not good, and the penalty
coefficient is too high to cause a significant loss of accuracy, so the penalty coefficient is generally
set between 0.0001 and 0.005. The values of s in the experiment are 0.0001, 0.0005, 0.001, and 0.005,
respectively. Fig. 6 shows the effect of different penalty coefficients on mAP during training.

Figure 6: The line curve of mAP with different penalty coefficients

In order to express the sparsity effect more intuitively, we draw the γ distribution changes
corresponding to different penalty coefficient s, as shown in Fig. 7. When s is 0.005, the γ distribution
basically tends to 0. Due to the large loss of accuracy, it is difficult to recover in the later stage. When
s is 0.0001, the γ distribution still mostly does not tend to 0. Although the accuracy is preserved, the
improvement in model volume and speed is limited. To balance the detection accuracy and model
volume, we set s to 0.0005 or 0.001.
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Figure 7: The line curve of γ distribution with different penalty coefficients. (a) s = 0.001 (b) s = 0.0005
(c) s = 0.0001 (d) s = 0.005

To obtain the best penalty coefficient s, we set the pruning ratio (pr) as 50%, 60%, 70%, 80%, and
the detection results of pruning and fine-tuning can be shown in Table 3.

Table 3: Detection results of pruning and fine-tuning

s Crop scale Model volume (MB) Parameter
quantity (MB)

mAP (before
fine-tuning)

mAP (after
fine-tuning)

FPS

0.001 50% 20.6 10.03 0.781 0.799 76.92
60% 16.8 8.14 0.763 0.791 81.30
70% 12.5 6.01 0.749 0.787 89.29
80% 10.7 5.13 0.372 0.769 93.46

0.0005 50% 20.4 9.97 0.743 0.806 77.51
60% 16.7 8.11 0.685 0.796 90.54
70% 12.5 6.01 0.693 0.794 91.74
80% 10.7 5.12 0.473 0.768 99.99

It can be found that when s is set to 0.0005, fine-tuning can play a great role, and the detection
speed is significantly higher than that when s is 0.001. With the increase of the pruning ratio, although
model volume and parameter quantity will be significantly reduced, and detection speed will increase,
mAP will also decrease. After comprehensive comparison and analysis, we finally selected the GS-
YOLOv5 with a pruning ratio of 70% and set s to 0.0005. In order to reflect the training process more
intuitively, we show the mAP value with different coefficients and different pruning ratios in Fig. 8.

4.4 Comparison Analysis
To sufficiently verify the excellent performance of our method, we compare the GS-YOLOv5 70%

pruning with other mainstream models. As shown in Table 4, Ghost-YOLOv5 is to replace all standard
convolutions in the backbone with Ghost convolution, and MobileNetv3-YOLOv5 is to replace the
backbone with MobileNetv3 [35]. ShuffleNet-YOLOv5 is to replace the backbone with ShuffleNetv2
[36]. Repblock-YOLOv5 is to replace standard convolution with Repblock in the backbone. YOLOv5-
transformer is to add the transformer module to the backbone. The results show that the lightweight
networks MobileNetv3, ShuffleNet, and Repblock have faster speeds because their overall network
layers are less, the number of parameters calculated is also less, but their mAP is low. Because of the
low number of network layers, the extracted feature map needs to be improved, eventually decreasing
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the accuracy rate. Because the accuracy is too low, the detection of fixtures is prone to miss detection,
misdetection, and other phenomena, which is challenging to meet the needs of fixture detection. Other
networks are also inferior to GS-YOLOv5 (70%) in accuracy and speed. Therefore, this paper proposes
that GS-YOLOv5 (70%) is more suitable for tunnel fixture detection.

Figure 8: The line curve of mAP with different penalty coefficients and pruning ratios. (a) s = 0.001
(b) s = 0.0005

Table 4: The performance comparison with other models

Model Model volume
(MB)

Parameter
quantity (MB)

mAP (all) mAP
(faulty)

mAP
(noraml)

FPS

Ghost-YOLOv5 16.6 8.14 0.733 0.815 0.651 90.09
MobileNetv3-YOLOv5 10.1 4.97 0.714 0.793 0.634 123.45
ShuffleNet-YOLOv5 0.84 0.32 0.665 0.723 0.607 142.85
Repblock-YOLOv5 10.9 5.42 0.671 0.735 0.607 169.49
YOLOv5-transformer 40.1 19.95 0.703 0.729 0.677 76.33
GS-YOLOv5 (70%) 12.5 6.01 0.794 0.859 0.729 91.74

To visualize the areas of network attention, we obtain thermal maps for faulty fixtures with the
Grad-CAM algorithm, and the comparison results are shown in Table 5. It can be found that these
comparison models focus not only on the fixture areas, but also pay attention to other background
areas in the tunnel. Because the model in this paper incorporates an attention mechanism that allows
the model to focus more on the card tool, factors such as context have less influence on the model
proposed in this paper. The model proposed in this paper has a high concentration, which can
effectively reflect the fixture area and obtain fixture characteristics. This also highlights the superiority
of the GS-YOLOv5 model.
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Table 5: Grad-CAM results of faulty fixture with different detection models

Model Fixture Grad-CAM vision

Ghost-YOLOv5

MobileNetv3-YOLOv5

ShuffleNet-YOLOv5

Repblock-YOLOv5

YOLOv5-transformer

GS-YOLOv5 (70%)

5 Conclusion

This paper presents an effective method for detecting faulty fixtures. The method first proposes
an RW-DCGAN to enhance the faulty fixture data, obtains higher-quality fixture images by adding
a residual network, and uses a Wasserstein loss function to improve training stability. The Dropout
module is also added to enhance the model’s generalization ability, solving the problems of single
variation, unstable GAN training and poor quality of generated images in traditional methods.
Secondly, GS-YOLOv5 is proposed to enhance fixture detection. Ghost convolution and SENet can
filter the redundant information, which improves the detection accuracy by 5.1% and the detection
speed by 3.5 fps. Finally, we used a model compression strategy to trim the redundant channels. The
final model with a sparsity coefficient of 0.0005 and a trimming ratio of 70% gave the best results
through experimental comparison. After fine-tuning the model, the speed was improved by11.32
fps with a 3% decrease in accuracy. The final model has a 2.1% increase in accuracy and 14.82 fps
faster than YOLOv5. The number of parameters has been reduced by 70%, increasing detection speed
without loss of accuracy. Next, we will conduct research related to diverse classification of damaged
fixtures.
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