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Abstract: Type 2 diabetes patients often suffer from microvascular compli-
cations of diabetes. These complications, in turn, often lead to vision impair-
ment. Diabetic Retinopathy (DR) detection in its early stage can rescue people
from long-term complications that could lead to permanent blindness. In this
study, we propose a complex deep convolutional neural network architecture
with an inception module for automated diagnosis of DR. The proposed novel
Hybrid Inception U-Net (HIUNET) comprises various inception modules
connected in the U-Net fashion using activation maximization and filter map
to produce the image mask. First, inception blocks were used to enlarge the
model’s width by substituting it with primary convolutional layers. Then,
aggregation blocks were used to deepen the model to extract more compact
and discriminating features. Finally, the downsampling blocks were adopted
to reduce the feature map size to decrease the learning time, and the upsam-
pling blocks were used to resize the feature maps. This methodology ensured
high prominence to lesion regions compared to the non-lesion regions. The
performance of the proposed model was assessed on two benchmark compet-
itive datasets called Asia Pacific Tele-Ophthalmology Society (APTOS) and
KAGGLE, attaining accuracy rates of 95% and 92%, respectively.
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1 Introduction

Medical image segmentation has gained immense attention from academics pursuing image
processing, mainly owing to its advantages in medical image analysis [1]. Diabetes affects millions
of individuals worldwide, and afflicted people from age 20 to 74 years alike can develop Diabetic
Retinopathy (DR) due to hysterical diabetes [2]. Two tools for evaluating the severity of diabetic eye
disease are the Early Treatment DR study grading system and the International Clinical Diabetic
Retinopathy (ICDR) disease severity scale [3]. The ICDR scale is a conventional clinical scale used
to evaluate the severity of DR. Artificial Intelligence (AI) identifies and grades the severity of DR into
no DR, mild, non-proliferative DR (NPDR), moderate NPDR, severe NPDR, or proliferative DR [4].
Various types of lesions, including microaneurysms (MAs), hemorrhages (HMs), and exudates (EXs),
whether soft or hard, can be indicative of DR [5]. Small blood vessels in the retina can grow and become
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MAs, which appear as red spots with sharp edges. EXs are the lipids and lipoproteins that accumulate
along the leaking capillaries inside the retina that appear as yellow or white spots of variable sizes.
Table 1 expounds on the typical characteristics of the various types of DR. White spots in the retina
are induced by protein leakage from blocked blood vessels. EX can be either soft or hard. HM are
blood deposits that appear as red dots with irregular edges caused by faulty or thin blood vessels.
Automated image segmentation extracts the features from the fundus images for retinal blood vessels
[6]. To date, several methods for classifying arteries and veins in fundus images have been extensively
reviewed [7]. The authors proposed the separation of Escherichia coli from blood cells [8]. The authors
introduced a framework that offers a defensive model against adversarial training, the speckle-noise
attack, and a feature fusion strategy that maintains the classification with accurate labeling [9]. The
authors presented the hemorrhage detection from the 3D images [10]. The authors have proposed
the detection of DR using a fusion of textural and ridgelet features of retinal images [11]. As the
manual classification of DR is time-consuming and expensive, even for experienced experts, automated
diagnosis has become commonplace. AI-assisted diagnosis precisely determines the severity of DR in a
shorter time and enables better treatment to reduce cases of blindness effectively. Over the years, several
automated systems and models have been developed to diagnose DR with Deep Learning taking the
lead. Owing to their reliable DR classification, these strategies are now being widely explored.

Table 1: Various stages of DR

Classes Standard features of fundus images

No DR (0) No abnormalities
Mild (1) Signs of Microaneurysms
Moderate (2) Several symptoms of Microaneurysms, Exudates, and Hemorrhages
Severe (3) Four quadrants of the retina have irregular characteristics
Proliferative (4) Vitreous hemorrhage, severe retinal proliferative

Compared to traditional segmentation approaches [12], deep learning methods became quite
popular due to their better performance [13]. The deep learning models developed for better per-
formance using better hardware and Graphics Processing Units (GPUs) such as Alex Net [14], Visual
Geometry Group (VGG) [15], Deep Lab [16], Google Net [17], Residual network [18], and Dense
Net [19]. In the domain of computer vision, these network models are pretty compelling. Although
extensive studies have verified the competence of network models such as AlexNet and VGG, none
are cost-effective. In contrast to the previous models, the Google Net architecture introduced an
“Inception module” to create a better, minimalist computer network architecture [17]. This module
mainly increases the rate at which computing resources are used in its width and depth of layers while
maintaining the budget. U-Net architectures have achieved outstanding results in various medical
image segmentation applications. U-Net is a Convolutional Neural Network (CNN) containing a
contracting and expansive path. Convolution layers create segmentations by extracting representative
information from input images [20]. The main objective here was to increase the effectiveness of DR
autonomous identification systems. A potential method proposed for detecting DR in its early stages
based on Deep CNN (DCNN) capacity to classify retinal images.
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1.1 Limitations
High efficiency and robustness are essential in the diagnosis of medical images. However, properly

segmenting disease boundaries is challenging due to their arbitrary shape, color, and location. Deep
learning models with low generalization ability are limited in handling segmentation and prediction of
the severity of DR. The existing U-Net models have low interpretability and confidence in decision-
making.

Despite high computational complexity, these existing systems present limited accuracy in cat-
egorizing the severity levels of DR. Hence, to tackle this challenge, we propose a Hybrid Inception
U-Net with low computational complexity and a high generalization ability for accurate prediction
and categorization of DR severity. Inception blocks are designed to extract discriminating features
from the input by using varied convolutional filter sizes with various scales.

1.2 Contributions
The primary aim of this study is to introduce a novel CNN architecture for the detection of DR,

modeled on the U-Net, that uses inception block concatenations to pass information between layers
while outperforming the current extraction techniques. The salient contributions of the proposed work
are as follows:

• Design and development of Hybrid Inception U-Net (HIUNET) to increase the efficiency in
segmenting DR under variations against color, shape, and location. The proposed HIUNET
indicates where dilated convolution ends, and the proposed model’s encoding part aims to
enlarge the receptive field.

• Application of custom pre-processing techniques to reduce noise at the edges of lesions.
• Extensive experimentation; executed on APTOS and KAGGLE datasets.

1.3 Research Gaps
The existing U-Net systems are limited in accuracy in categorizing the various severity levels of

DR. Conventional hand-crafted Deep Learning models are still inept in classifying the severity of DR,
based on images, despite their high computational complexity. Though deep ensemble models yield
better accuracy with high-resolution images, low-resolution images compromise its accuracy curtailing
its potential in generalized disease prediction.

• To cover this challenge, we have proposed a Hybrid Inception U-Net with limited computational
complexity and high generalization ability to yield better accuracy in categorizing diabetic
severity prediction.

• Inception blocks in the proposed work extract discriminating features from the input using
various convolutional filter sizes with varied scales. The blocks enlarge the model’s width by
substituting it with primary convolutional layers. Then, aggregation blocks deepen the model
to extract more compact and discriminating features.

• Finally, the downsampling blocks reduced the feature map size to decrease the learning time,
and the upsampling blocks resized the feature maps. This methodology ensured high contrast
of lesions to the non-lesion regions.
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Subsequent sections present a structured and detailed explanation of the model. While Section 2
is a systematic survey of conventional practices and deep learning approaches implemented in DR
diagnosis, Section 3 presents the proposed HIUNET model for DR. Section 4 stipulates the evaluation
of the proposed system, and Section 5 concludes this report.

2 Literature Survey
2.1 Traditional Practices

Traditional image classification uses three primary approaches to encode scale, rotate, and illumi-
nation variations: Histogram of Oriented Gradients (HoG) [21], Scale-Invariant Feature Transform
(SIFT) [22], and Local Binary Pattern (LBP) [23]. Until feature extraction, Hessian-matrix-based
candidate selection was used [24], and after that, the Support Vector Machine (SVM) classifier was in
use. A previous study extracted hybrid features for DR classification [25]. In another study, a multilayer
perception neural network obtains the components for categorization [26]. Eventually, an algorithm
for MA detection was developed for image analysis [27]. It attained 83.62% sensitivity for three images
with 39 injuries. The detection of red lesions method has also been proposed, wherein the lesions were
labeled as candidates [28]. The structures of the candidates’ blood vessels were subtracted to reduce
false positives. It increased the sensitivity by 94% and specificity by 87% when tested on 89 images.
However, the disadvantage of this approach was a longer computation time, as it took three minutes
per image. Pre-processing techniques, such as correlation, have also been applied to identify bleeding
images [29], with a sensitivity of 85%. The disadvantage of this model was a high false positive rate,
with four false positives per image.

The identification of MA was accomplished when the traversal segment enrapt on maximum
pre-processing pixels [30]. The set of features used for the Bayesian classification includes statistical
measures and changes in cross-section orientation. MA was detected through two approaches [31].
Morphological operations and the classifier of Naive Bayes were used for coarse and fine segmenta-
tion, respectively. Eighteen MA features were obtained for classification, giving an 85.68% sensitivity,
99.99% specificity, a precision of 83.34%, and an accuracy of 99.99%. Some studies have shown that
MAs can be detected by finding blobs (regions of interest) using two approaches [32,33]. One method
was for MA extraction, and the other was for ensemble-based MA detection. In terms of performance,
this model was competitive compared to other individual detectors. Another study proposed Radon
transform (RT) and a multi-overlapping windows algorithm To detect MAs [34]. Here, three different
databases were used for performance evaluation. The model gained 94% sensitivity and 75% specificity
for the Mashhad dataset. However, for the second local database, the model exhibited 100% specificity
and 70% specificity. Another study used automated technology to detect DR based on fundus images
[35]. A retrospective analysis was done from the eye check DR screening project using non-mydriatic
images. Referable DR (RDR) was detected with 84% sensitivity and 64% specificity. For detecting DR
lesions, a previous study proposed a deep convolutional network analysis (DCNN) [36]. Another study
presented a DCNN model using traditional machine learning algorithms, with 94% area under the
curve, 93% sensitivity, and 87% specificity, determined using the Messidor-2 and E-Ophtha datasets
[37]. The authors proposed a study for identifying DR [38]. Their sensitivity and specificity for RDR
were 90.5% and 91.6%, respectively, while for Sight Threatening Diabetic Retinopathy (STDR) were
100% and 91.1%. To effectively detect microaneurysms, the authors developed a hybrid text/image
method [39]. This model had a precision of 99.7% and a recall of 87.8%, which compares favorably
to state-of-the-art algorithms. The identification of early DR has also been discussed [40]. In this
paper, the author further extracted features using Principal Component Analysis (PCA) and Radon
transform and classified the components using a hierarchical system of classifiers. The proposed
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method analysis was done on diaretDB1, and sensitivity of 92.32% and 88.06%, respectively, were
achieved.

2.2 Deep CNN Approaches
As the CNN AlexNet became popular in many functional applications, the focus shifted to CNN

architectures [8]. Put forward a five-stage deep CNN as proposed for DR screening [41]. For detecting
DR in the early stages, a deep CNN architecture with PCA is developed [42]. A CNN architecture was
suggested by the authors in which data augmentation is done to identify features such as MA, EX, and
HA in over 5,000 fundus images with 95% sensitivity and 75% accuracy [43]. The authors proposed
a ResNet architecture, and it was reviewed for the arrangement of fundus images into normal and
abnormal images, achieving 85% accuracy and 86% sensitivity [44]. The authors presented a Siamese
network to detect the automated grading of DR in which input images are separated into small patches
and extracted from the local-level features [45]. The authors presented an ensemble-based system
dedicated to DR and diabetic macular edema. It achieved an accuracy of 90.07% for the five-class DR
task and 96.85% accuracy for three-class diabetic macular edema [46]. Houby presented a CNN model
using transfer learning to detect and stage classification and got accuracies of 86.5, 80.5, 63.5, and 73.7
for 2-class, 3-class, 4-class, and 5-class classifications, respectively [47]. A DCNN methodology with
applied data augmentation obtained an accuracy of 94.5% [48]. The authors presented five CNN-based
designs of AlexNet, GoogleNet, InceptionV4, Inception ResNetV2, and ResNetXt-50 models to detect
DR [49]. The authors put forward a deep network patch-based approach and achieved a sensitivity
of 0.940-95% CI [50]. Das, Biswas, and Bandyopadhyay presented a small and large dataset in which
machine learning and deep learning are used to separate and analyze the features [51]. The authors
presented an innovative approach to detect and classify DR using hybrid residual U-Net [52,53] The
authors obtained an accuracy of 80.8% in an ensemble concept using the Kaggle dataset. The author
presented a CAD system to detect DR [54]. The authors presented different models, such as VGG16,
VGG19, and CNN, to detect DR with the help of illumination and field of view and achieved 80%
to 83% accuracy [55]. A study presented a diagnosis of DR from fundus images, followed by pre-
processing of the fundus images, data augmentation, and finally, application to the deep convolutional
neural network. The team achieved an accuracy of 88.72% [56]. The performance of a proposed
model was reported to achieve an accuracy of 83.09% using modified Xception architecture [57]. In
a study, the authors proposed identifying the DR using pre-processing, convolution, rectified linear,
pooling, and fully connected layers [58]. Potential treatment methods using fuzzy hypersoft mappings
for identifying disease have also been used [59]. Comparative study of existing models can be shown
in Table 2.

Table 2: Comparative study of existing models

Ref. No Name of the dataset DL method Methodology # images Accuracy

[57] Kaggle APTOS CNN–modified
Xception

Deep layer aggregation
that combines multilevel
features from different
convolutional layers of
Xception architecture

3662 83.09

(Continued)



1018 IASC, 2023, vol.37, no.1

Table 2: Continued
Ref. No Name of the dataset DL method Methodology # images Accuracy

[58] Kaggle APTOS CNN The model consists of
pre-processing, five-stage
convolution, rectified
linear and pooling layers
followed by the three
fully connected layers

3662 77.00

[54] Kaggle CNN A novel
Gaussian–approach
using a multiple-learning
framework allows the
detection of DR

7000 74.00

[55] Kaggle CNN, VGG-16,
VGG-19

This model analyzes
fundus images with
varying illumination and
field of view to generate
the severity of DR

35126 82.00

[56] Kaggle CNN Data pre-processing,
augmentation, and
applied deep CNN for
prediction of DR

4476 88.72

[53] Kaggle CNN Ensemble of five deep
CNN models (ResNet50,
InceptionV3, Xception,
Dense121, Dense169)

35126 80.8

[47] Kaggle CNN The pre-trained VGG16
model was applied using
transfer learning

35126 73.7

[44] Kaggle CNN ResNet was used to
detect the binary
classification of DR

35126 85.00

[52] Kaggle CNN A novel hybrid residual
U-Net model was used to
detect the severity of DR

35126 94.00

3 Severity Prediction of Diabetic Retinopathy Using HIUNET

To surpass earlier models, we proposed Hybrid Inception U-Net (HIUNET), amalgamated with
customized Inception and U-Net models. KAGGLE and APTOS datasets containing 35126 and 3662
DR images, respectively, were used in this study. The DR images were classified into normal (no DR),
mild, moderate, severe, and proliferative. The schematic overview of the whole paper is shown in Fig. 1.
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Figure 1: The schematic overview of the proposed model

3.1 Pre-Processing
Generally, the images captured from different devices follow specific techniques developed by

different organizations to produce the specification of images. Pre-processing is the principal technique
that makes different devices familiar with the features of DR images. The process of pre-processing is
as follows:

3.1.1 Pixel Cropping

The images in the dataset are not uniform. To make them uniform, they are cropped.

3.1.2 Image Resizing

The images are resized for efficient training of the models, as each image contains a different
resolution.

3.1.3 Circle Drawing

The edges of the resized images are molded circularly.

3.1.4 Gaussian Blur

After the images are cropped, they have different resolutions and lighting conditions. So, a
smoothing technique is performed using Gaussian blur to remove noise from the images using Eq. (1),
as shown in Fig. 2.

G (p, q) = 1
2ψ2

e− p2+q2

2σ2 (1)

where p is the horizontal axis, q is the vertical axis, and σ is the standard deviation of the Gaussian
distribution.

Figure 2: (a) Input, (b) Cropped, (c) Resized, (d) Circle drawn, (e) Gaussian

3.2 Proposed HIUNET
This study proposed a novel hybrid Inception U-Net (HIUNET). This architecture consists

of a contracting and expansive path. In regular inception, the original block can be modified as
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Modified Inception block 1 and Modified Inception block 2. These blocks were further split into
four inception modules, namely, Inception Module 1, Inception Module 2, Inception Module 3, and
Inception Module 4, as shown in Fig. 3. The original Inception block comprises 1 × 1 convolution,
3 × 3 convolution, 5 × 5 convolution, and 3 × 3 max pooling. During training to reduce the calculation
time and dimensions before each branch, a 1 × 1 convolution was added. The results obtained from the
four branches are fused by acquiring feature information at different scales. During the convolution,
adopting 1 × 1, 3 × 3, and 5 × 5 layers, set the convolution stride to 1 and the padding pixel to 0, 1,
and 2, respectively.

After processing, the features thus obtained with similar dimensions were fused to get the final
feature set. In this study, two modified Inception blocks, which further comprised three Inception
Modules, were used. The inception module 1 consists of convolution, batch normalization, and
activation. The inception module 2 consists of convolution, batch normalization, activation, con-
volution, batch normalization, and activation. Inception module 3 consists of convolution, batch
normalization, activation, convolution, convolution, batch normalization, and activation. The input
images are processed with 3 × 3 different Inception modules to obtain the feature map with increased
channels. The modified Inception block-2 gets good results compared to Inception block-1 because,
in Inception block-2, a 3 × 3 max pooling layer is used to reduce feature information and redundant
information. This process ensures the extraction of meaningful feature information. This max pooling
layer reduces overfitting and computational cost. Thus, Inception block-2 gets good results compared
to Inception block-1.

Figure 3: (Continued)
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Figure 3: The modified inception modules

Fig. 4 shows the functioning of the actual Inception U-Net architecture. In pixel-based image
segmentation, U-Net is the prominent CNN architecture in the classification task. In the proposed
work, inception blocks were integrated into U-Net and customized convolution layers to realize high
accuracy in severity prediction. Initially, the width of the network is enlarged by adding parallel filters
of different sizes to the primary U-Net model. In the proposed model, only parallel layers were used
to reduce the number of parameters and computational complexity. In this proposed model, as shown
in Fig. 5, we designed the downsampling/contraction and the upsampling/expansion paths for pattern
recognition and returned the output in the input size. The model was customized to reduce the input
using switch normalization. This technique automatically adapts different reduction operations, such
as batch norm, instance norm, and layer norm. Appropriate padding was used by all convolutions. An
activation function ReLu was used for intermediate convolutions, including inception and sigmoid for
the output. The input images are processed with 3 × 3 sized filters in Inception modules to obtain the
feature map with increased channels. The modified Inception block-2 produces good results compared
to Inception block-1 because in Inception block-2 (MIU-Net), a 3 × 3 max pooling layer is used to
reduce redundant feature information and extract meaningful features. Further, max pooling aids
in reducing overfitting and computational costs. Thus, Modified Inception block-2 gets good results
when compared to Inception block-1.
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Figure 4: Architecture of inception U-net (IUNET)
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Figure 5: Architecture of the proposed hybrid inception U-Net (HIUNET)
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3.2.1 Contracting Path

It comprises 3 × 3 convolutions, followed by an activation function named ReLu and batch
normalization. Then, 2 × 2 max pooling is done to reduce the spatial dimensions. The analysis path is
shown in Eq. (2):

xn+1 = d1×1(d1×1 (xn ) ◦ db (d3×3 (d1×1 (xn ))) ◦ db (d3×3 (db (d3×3 (d1×1 (xn))))) + xn (2)

Here, the image size was reduced to 224 × 224 × 32. The feature channels were doubled after the
completion of each downsampling step.

3.2.2 Expansive Path

It receives the contracting path’s output, which serves as this path’s input. After upsampling,
the image size was decreased to 28 × 28 × 512, followed by a 2 × 2 transpose convolution wherein
the feature channels were halved. The expanding route up samples the feature map at each stage.
Concatenation with the feature map obtained from the contracting path was followed by 3 × 3
convolution and ReLu. Finally, a 1 × 1 convolution was used to map the channels to the desired
number of classes.

3.2.3 Merging of Expanding and Contracting Paths

Concatenating the prior outputs is the fundamental goal of establishing the identity block link
between the contraction and expansion paths. The difference between regular and identical blocks is
that batch normalization is implemented after each convolution block. Due to the limited feature map,
the identity blocks are preserved at the network’s center, and smaller kernels are used in favor of bigger
ones to save time and resources. Assume batch normalization as DB layer, mp × p (•) for the max-
pooling layer, and bp × p stands for a p ∗ p convolution layer. The ◦ sign, which denotes concatenation,
follows the proposed residual module. lIR stands for the bottleneck layer. The performance of the
suggested residual module is described in Eq. (3):

xl+1 = d1×1 (d1×1 (xl) ◦ db (d1×1 (k3×3 (xl))) ◦ db (d3×1 (db (d1×3 (d1×1 (xl )))))) + xl (3)

The (l + 1)th layer of the identity block generates the output as shown in Eq. (4):

xl+1 = lIR ([x0, x1, . . . , xl]) (4)

Combining the feature maps results in [x0, x1, . . . , xl].

3.2.4 Downsampling and Upsampling Blocks

These blocks are employed to increase and decrease the maps’ size and improve accuracy. Let d2
p×p()

mean two-stride convolution layer, t2
p×p() mean two-stride convolution transposed layer, m2

p×p() mean
max pooling layer with two strides, and u2 mean upsampling layer with two strides. The down-sample
is represented in Eq. (5):

xl+1 = d1×1

(
d2

3×3 (d1×1 (xl)) ◦ d2
3×3 (d3×3 (d1×1 (xl))) ◦ m2

3×3 (xl)
)

(5)

The term for the upsampling block is shown in Eq. (6):

xl+1 = t1×1

(
t2

3×3 (t1×1 (x l )) ◦ t2
3×3 (t3×3 ( t1×1 (xl ))) ◦ u2 (xl)

)
(6)



IASC, 2023, vol.37, no.1 1025

As inputs, the trained images are employed. After each residual block, the number of channels
doubles. The feature map was reduced by half after downsampling, showing a direction toward
contraction. The feature map’s channel number was cut in half, and its size was doubled after
upsampling since the residual block was on an extended path.

4 Experimental Results and Discussions

Using pre-trained models from the APTOS and KAGGLE datasets, the proposed model analysis
was carried out using HIUNET.

4.1 About Datasets
This study’s APTOS and KAGGLE datasets comprised 3662 and 35126 samples separated into

five classes. From APTOS, 733 samples were used for performance assessment, while 2929 samples
were used for model creation in Table 3. For KAGGLE, 7026 samples were used for performance
assessment, while 28100 samples were used for model creation.

Table 3: Analysis of the datasets for testing and training images

Severity level # of images # of images for training #of images for testing

APTOS KAGGLE APTOS KAGGLE APTOS KAGGLE

Normal 1805 25810 1444 20646 361 5164
Mild 370 2443 285 1932 85 511
Moderate 999 5292 809 4246 190 1046
Severe 193 873 160 700 33 173
Proliferative 295 708 231 576 64 132
Total 3662 35126 2929 28100 733 7026

4.2 Hyperparameter Tuning
Hyperparameter tuning is selecting a collection of parameters to learn an algorithm. The learning

process is managed using its value. To generalize data patterns, a model needs constraints, weights,
and learning rates. These measurements are called hyperparameters. The performance of the proposed
model is improvised through hyper-parameter tuning. In the proposed work, parameters are tweaked
through manual search and optimization achieved through the following list of hyper-parameters in
Table 4, along with the size of the input image, different optimizers, different learning rates, batch size,
and the number of epochs.

4.3 Pre-Trained Models’ Performance Evaluation
The APTOS and KAGGLE datasets in this study were pre-processed. Pre-trained models VGG-16

and VGG-19 were applied. With a learning rate of 0.0001 for both extension to the Adaptive Moment
estimation (Adamax) and Stochastic Gradient Descent (SGD), the VGG-16 model has 134,281,029
trainable parameters, with 91% and 81% accuracy rates, respectively. With learning rates of 0.001,
0.0001, and 0.00001 for Adamax, Adaptive Moment estimation (Adam), Nesterov-Accelerated Adap-
tive Moment Estimation (NADAM), and SGD, respectively, VGG-19 has 139,590,725 trained param-
eters, with an accuracy rate of 91%. There are 2,712,897 parameters in the IUNET Model. With
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learning rates of 0.0001 and 0.00001 for Adam and Adamax, respectively, IUNET exhibits a 94%
accuracy rate. In contrast, with learning rates of 0.001, 0.001, and 0.00001 for NADAM, RMSProp,
and SGD, respectively, it exhibits an 84% accuracy rate. The MIUNET model has 2,545,637 trainable
parameters. With Adamax and NADAM, the MIUNET obtained an accuracy rate of 93% at a learning
rate of 0.001, while with SGD, it reached an accuracy rate of 84% at a learning rate of 0.00001. We
proposed a novel HIUNET model with 2,143,370 trainable parameters. With learning rates of 0.0001
and 0.0001 for Adam and SGD, the proposed HIUNET model achieved accuracy rates of 95% and
86%, respectively. The HIUNET model outperformed the pre-trained models in terms of accuracy.
The APTOS dataset was applied to different models with different learning rates.

Table 4: The output of various cutting-edge techniques is evaluated using hyper-parameters

Models Number of
parameters

Input size No. of
epochs

Batch size Optimizer Learning
rate

Regularizer

VGG-16 134,281,029 224 ∗ 224 30 8 Adam ()
Adamax ()
NADAM ()
RMSprop ()
SGD ()

0.001
0.0001
0.00001

L2 with
0.01 as a
factor

VGG-19 139,590,725
IUNET 2,712,897
MIUNET 2,545,637
HIUNET 2,143,370

The models’ results are shown in Fig. 6. After pre-processing, the models were tested against the
KAGGLE dataset. With learning rates of 0.0001 and 0.001 for NADAM and SGD optimizers, the
VGG-16 model achieved accuracy rates of 90% and 84%, respectively. Furthermore, with learning rates
of 0.0001 for Adamax and 0.0001 for the Root Mean Squared Propagation (RMSprop) optimizer, the
VGG-19 model achieved accuracy rates of 90% and 83%, respectively. The IUNET model obtained
a 90% accuracy rate with learning rates of 0.001 and 0.0001 for RMSprop and an 84% accuracy rate
with a learning rate of 0.001 for NADAM.

Figure 6: (Continued)
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Figure 6: Performance comparison of the proposed method with various classifiers on the APTOS
dataset

The MIUNET model achieved a 90% accuracy rate with learning rates of 0.00001, 0.001, and
0.00001 for Adam, NADAM, and RMSprop, respectively, and 87% accuracy with a learning rate of
0.001 for SDG. The results for all the models are shown in Fig. 7.

Figure 7: Performance comparison of the proposed method with various classifiers on the Kaggle
dataset
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Our proposed HIUNET model achieved a 92% accuracy rate with a learning rate of 0.0001 for
Adam but only a 90% accuracy rate with learning rates of 0.00001, 0.001, and 0.00001 for Adamax,
NADAM, and SGD, respectively. Again, our proposed HIUNET model outperformed the pre-trained
models in terms of accuracy. The KAGGLE dataset was applied to different models with different
learning rates.

Our proposed HIUNET model had 2,143,370 trainable parameters. Compared to VGG-16
(134,281,029), VGG-19 (139,590,725), IUNET (2,712,897), and MIUNET (2,545,637), our model
had significantly fewer trainable parameters (23,544,837). Even with fewer parameters, our suggested
HIUNET model beat the state-of-the-art techniques, obtaining an accuracy rate of 95% on the ATPOS
dataset and 92% on the KAGGLE dataset. The performance of CNN models is based on their learning
rate. A higher learning rate accelerates the learning process and increases the loss function, while a
lower learning rate causes the loss function to decrease steadily.

An optimum learning rate must be chosen to minimize the loss function in classification problems.
Adamax, as an optimizer, with a learning rate of 0.00001, yields a higher performance when compared
to the remaining hyperparameters. The result obtained from the proposed HIUNET model is even
better than the existing models. The APTOS and KAGGLE datasets were used to train our model,
which attained 95% and 92% accuracy rates, respectively, outperforming the current models described
in Table 5.

Table 5: Performance of proposed vs. existing models

Authors Corpus # of samples Accuracy Precision Recall F1-score

[54] KAGGLE 7025 0.74 - - -
[55] 35126 0.83 - - -
[43] 80000 0.75 - - -
[44] 35000 0.85 - - -
[46] 22700 0.90 - - -
[50] 15919 0.82 - - -
[53] 35126 0.80 0.63 0.65 0.53
[56] 4476 0.88 0.95 0.94 -
[47] 41450 0.73 0.66 0.67 0.64
[52] 35126 0.91 - - -

[52] APTOS 3662 0.94 - - -
[44] 3662 0.77 - - -
[57] 3662 0.83 - - -

HIUNET APTOS 3662 0.95 0.86 0.86 0.86
KAGGLE 35126 0.92 0.82 0.74 0.78

The proposed study has failed to predict correct class labels for the low-contrast images and could
not pan out poorly segmented pupil images. However, there is a score to improve the generalization
capability of the proposed work.
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5 Conclusion

DR is a microvascular complication, and early detection of DR can prevent permanent blindness.
In this work, a novel Hybrid Inception U-Net was proposed for high-precision automated DR
diagnosis. In the proposed model, only parallel layers were used to reduce the number of parameters
and computational complexity. Further, the model followed the downsampling/contraction and the
upsampling/expansion paths to detect DR with the actual input size. The proposed model has
obtained the feature map with increased channels, and the input images are processed with 3 × 3
sized filters in Inception modules. The modified Inception block-2 has yielded better results when
compared to Inception block-1 due to the presence of a 3 × 3 max pooling layer to reduce redundant
feature information and extract meaningful features. The proposed model has high generalization and
effectively highlights lesions more than previously achieved. Our proposed HIUNET model labels
the images according to their severity. On APTOS and KAGGLE, our proposed model’s accuracy
rates were 95% and 92%, respectively. The suggested model is anticipated to be extremely helpful for
ophthalmologists in identifying precise DR severity in a relatively shorter time.
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