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Abstract: The main function of the power communication business is to
monitor, control and manage the power communication network to ensure
normal and stable operation of the power communication network. Commu-
nication services related to dispatching data networks and the transmission
of fault information or feeder automation have high requirements for delay.
If processing time is prolonged, a power business cascade reaction may be
triggered. In order to solve the above problems, this paper establishes an edge
object-linked agent business deployment model for power communication
network to unify the management of data collection, resource allocation and
task scheduling within the system, realizes the virtualization of object-linked
agent computing resources through Docker container technology, designs the
target model of network latency and energy consumption, and introduces
A3C algorithm in deep reinforcement learning, improves it according to
scene characteristics, and sets corresponding optimization strategies. Mini-
mize network delay and energy consumption; At the same time, to ensure that
sensitive power business is handled in time, this paper designs the business
dispatch model and task migration model, and solves the problem of server
failure. Finally, the corresponding simulation program is designed to verify the
feasibility and validity of this method, and to compare it with other existing
mechanisms.

Keywords: Power communication network; dispatching data networks;
resource allocation; A3C algorithm; deep reinforcement learning

1 Introduction

Power network faces millions of households with high service requirements and strong social
influence [1–5]. It is the solid backing of the rapid development of the country. The reliability of
power communication network, which is the bearing net-work of power business, is closely related
to the stable operation of power network. To ensure the continuity of power business and avoid large
power outage accidents [6–11].
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The main function of the power communication business is to monitor, control and manage the
power communication network to ensure the regular and stable operation of the power communication
network [12]. Current power communication business mainly includes power dispatch telephone
control, communication equipment fault diagnosis and alarm, network equipment management,
VLAN configuration, network performance and status chart analysis, port status monitoring and
analysis, network topology management and many other functions [13–16]. The specific characteristics
of the power communication business are shown in Table 1.

Table 1: Power communication business characteristics

Category Application instances Delay requirement Business features

Emergent Dispatching data network, 50∼100 ms Random
Power primary service monitoring, Random
Dispatching telephone control. Cyclical

Important Integrated data network monitoring, 100∼2000 ms Random
Power environment monitoring. Cyclical

Normal Video conference control, >2000 ms Cyclical
Network topology management. Random

The communication business related to the dispatch data network and the failure that will cause
a power interruption are all emergency business, such as from the failure to the issuance of alarm
reminders, dispatcher orders to the communication equipment to complete the routing reversal [17].
Such businesses are sensitive to latency, and if the processing time is prolonged, it may trigger a cascade
of power business, resulting in a large accident [18].

At present, the network management system of the power communication network and the
subsystems it contains are mainly divided and governed [19–25]. The cost of overall operation and
maintenance in this mode is high, so the integrated and integrated system based on cloud platforms has
become a more reliable centralized implementation scheme [26,27]. This year, many cloud scheduling
algorithms have been proposed, such as document [28], which designs a dual-queue job dispatcher
for wind farms, and considers the deadline and priority of jobs to make job scheduling decisions.
Document [29] designs a fast convergence and efficient multi-objective game scheduling algorithm for
distributed cloud platforms. Document [30] implements business scheduling based on dual-threshold
Elastic Resource Management algorithm in high-energy physics.

The rest of the paper is organized as follows. Section 2 introduces the edge IoT agent task
scheduling model. In section 3 we introduce our reliable scheduling method for sensitive power
business based on deep reinforcement learning. Section 4 is simulation and we make conclusion in
section 5.

2 Edge IoT Agent Task Scheduling Model

The edge IoT agent task scheduling model we designed is shown as Fig. 1.

The business deployment model of IoT agent consists of the cloud-based control platform, the
Internet-Link-of-Things Agent server at the edge of the network, and various terminal devices of
the access system [31]. Terminal devices are responsible for data collection and submission to the
Federation of Things Agents. The Federation of Things Control Platform service provides services
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such as deployment monitoring, task scheduling and resource management of the Federation of
Things Agents cluster, monitors the deployment and operation of the Federation of Things Agents
in various regions, manages computing resources, and schedules processing tasks. Due to the different
terminal devices managed by the Material Link Agent, the tasks it can handle are also different. The
management platform allocates the computing resources of the nodes to the corresponding processing
nodes according to the scheduling algorithm according to the type of tasks and the requirements of
resources, that is, edge material association agent, and then the nodes perform the specific task. To
enable the computing task process in the server to run concurrently, the Docker container technology
is introduced to virtualize the computing resources.

Figure 1: Edge IoT agent task scheduling model

2.1 Network Mode
Tasks are stored in the cache sequence according to their arrival order in the Federation of Things

Agent, which is then taken out in a first-in, first-out manner to allocate a corresponding amount of
virtual resources. In this article, the unit of computing resources is the number of CPU cycles per
second (CPU cycles/s), which represents the computation capability in task concurrency. The amount
of virtual computing resources allocated for each task is derived from the deep reinforcement learning
algorithm. Based on this amount of resources, the container creation, modification and destruction
operations are selected. The specific process is detailed in the virtual resource container model. In the
operation of the edge server network, there will be problems such as task preemptive execution, server
overall failure or server memory failure, so the corresponding computing tasks need to be migrated to
maintain the stable and safe operation of the network.

This paper chooses the open-source container management engine Docker as the environment for
the task to run, and designs a virtual resource container running model within the edge server:

1) When a task arrives, the following behaviors occur based on the actions given by the decision
model:

a) If an idle container is not destroyed, the service type is the same, and the capacity is appropriate,
the task will run in the container.
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b) If the free container is not destroyed, but its service type or capacity is not suitable, and the
remaining capacity in the server is insufficient, a new container will be created after destroying
part of the free container.

c) If there are no free containers, create new containers directly if there is still capacity. Otherwise
enter the waiting queue.

2) Start destroying containers in time when tasks are completed and destroy containers if not used
within n time slots.

2.2 Task Scheduling Model
Power communication business periodically collects monitoring data from communication devices

and networks and submits it to power communication cloud management system. In the event of an
unexpected random event, such as a business interruption or equipment failure, it is also handled by
the cloud management system [32]. Cloud Platform Business Scheduler schedules business according
to business priority. Depending on the size of the power communication network managed by the
cloud management system and the level to which the management and control system belongs, the
number of businesses and priority levels in the model also differ. The scheduler sets a queue for each
priority. Businesses with the same priority enter the same queue. The scheduler sends the business to
the management and control system at the appropriate time.

Limited computing resources on cloud platforms result in limited queue length. When business
increases dramatically, the number of businesses waiting to be dispatched in the queue increases, and
the queue is blocked, resulting in increased business delay [33]. The scheduling algorithm proposed in
this paper dynamically adjusts the queue length according to the queue history, calculates the queue
congestion degree and converts it into the waiting cost of the whole queue service. By minimizing the
total cost through the optimization algorithm, the blocking rate and the service delay of the high-
priority service can be effectively reduced.

In the process of regular power business scheduling, there may be some urgent tasks that need to
be preempted for scheduling, or the business processing server may have excessive load or operation
failure. At this time, in order to ensure the normal and stable operation of the power network, the tasks
in the server need to be migrated between containers or servers, and the tasks need to be reallocated
after migration [34,35]. To combine task migration with resource allocation, this paper disassembles
the task migration process:

1) The IOT control platform sends task execution requests to the edge IOT agents at regular
intervals, and the IOT agents feed back the operation of their internal containers to the control
platform. If the management and control platform has sudden emergency businesses that need to
be dispatched, if the management and control platform has not received feedback from the Internet
of things agent for a long time, or the feedback indicates that there is a problem in the operation of a
container, task migration should be carried out for the problem.

2) If there is an urgent business that needs to be scheduled, the corresponding IOT agent needs to
suspend the tasks being executed on the resources required by the business, record the task execution
at this time, and migrate these tasks to other appropriate IOT agents. When the emergency task is
completed, the task can be moved back to the original IOT agent to continue execution.

3) If the physical agent itself fails:

a) If there is a problem with the processing server, the control platform selects another processing
server as the migration target for the task;



IASC, 2023, vol.37, no.1 1057

b) If a container fails, the control platform notifies the edge server to collect and package the
calculated parts, and judges that it should still be executed in the server or migrated to other
servers.

4) After the migration is completed, the task can be regarded as the same as other newly arrived
tasks, and enter the task queue to wait for the reallocation of resources.

2.3 Network Delay Model
Given the volatile defects of memory, a memory database recovery mechanism combining replica

snapshots and log files is proposed. This mechanism uses the existing memory database replica
snapshots and logs to recover the memory database, which can effectively improve the speed and
accuracy of data recovery and maintain the integrity of the memory database.

Network delay consists of calculation delay, transmission delay, delivery delay and queuing delay.
Since this scenario is basically based on the edge layer, this paper mainly considers the calculation
delay and queuing delay within the edge server, as well as the transmission delay and delivery delay
between the edge servers. Because the transmission speed of the edge server is faster, the transmission
delay can be ignored. The network delay formula can be expressed as:

t = tcom + tlin + tpro (1)

Computing Delay. Calculating latency can be defined as the amount of time it takes a computing
task to execute from start to finish, so it is related to the computing power of the edge server and the
amount of computing required to compute the task. The formula is:

tcom = F
vcom

(2)

In the formula, F is the amount of computation for the calculation task, and vcom is the virtual
computing resource allocated to it by the edge server, that is, the CPU consumption per second.

Queue Delay. Because of the limited computing power of the edge server, some computing tasks
cannot get computing resources to be processed at the same time they reach the server and are therefore
dumped into the cache, waiting for enough computing resources to be allocated to it. Queuing delay
is usually affected by the server’s total computing capacity, computing speed, the total task amount
arriving at the server before this task, etc. It can not be calculated accurately by the formula. It is
necessary to simulate the task execution sequence in the server based on the actual situation, and then
deduce the size of queuing delay of a task.

Delivery Delay. When a server fails, it may be necessary to transfer tasks within the failing server
to other server. The time incurred in this process is the delivery delay, mainly related to the geographic
distance between the two servers and the delivery speed. The formula is:

tpro = d
vpro

(3)

In the formula, tpro is the delivery delay , and d is the geographic distance between the two servers,
and the vpro is delivery speed.

2.4 Computing Energy Consumption Models
Service consumption is another performance indicator in the resource allocation optimization

algorithm, which represents the energy consumption of edge server system during the whole process.
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Service consumption is defined as the sum of computing consumption, transmission consumption and
configuration consumption in common network scenarios.

eit = eop,it + etran,it + econ,it (4)

Computing Consumption. Computing consumption corresponds to computing latency in response
latency, which refers to the consumption that the server incurs in completing the computing task for
each computing task assigned to it. The formula is as follows:

eop,it =
∑

j

xijtfijtaij (5)

In the t-slot, xijt means that if the calculation task J is handled by Edge Server i, xijt is 1, otherwise
0, fijt means the amount of computing resources that the server assigns to the calculation task, and aij

means the value that the edge server consumes per unit of resources for the calculation task it generates.

Transmission Consumption. Transmission consumption represents the energy consumption
incurred during data transfer between edge servers. Transmission consumption corresponds to but
does not correspond to the transmission delay in response delay. In the calculation of network delay, the
transmission delay is ignored and only considered. In the calculation of transmission consumption, the
consumption produced by the two steps of transmission and transmission in network communication
is calculated together. The formula is as follows:

etran,it =
∑

j

yijtWitqi +
∑

j

yijtDithi (6)

where yijt means that server i migrates computing tasks to other server j. The first item of the formula
is the consumption generated by the transmission process. Wit represents the size of the data sent by
the server, and qi represents the transmission consumption per unit of data volume of the server; The
latter item is the consumption generated in the transmission process, Dit is the geographical distance
between server i and j, and hi is the transmission consumption per unit distance of server i.

Configuration Consumption. Configuration consumption is incurred by edge servers during
container building, container maintenance, and container destruction. The formula is:

econ,it = neit ∗ enew + nmit ∗ emai + ndit ∗ edes (7)

Among them, neit, nmit and ndit represent the number of containers built, maintained and
destroyed by edge server I within time slot t, and enew, emai and edes represent the energy consumed
by these three processes.

3 Reliable Scheduling Method for Sensitive Power Business Based on Deep Reinforcement Learning

By combining the perception of in-depth learning with the decision-making ability of in-depth
learning, in-depth reinforcement learning can be controlled directly according to the input knowledge,
thus making the solution more similar to human thinking. At present, there are many kinds of
reinforcement learning. Common basic algorithms include Deep Q Network (DQN), AC (Actor-
Critic) and the DPG (Deterministic Policy Gradient) algorithms. Among them, the DDPG algorithm
is gradually formed by the DPG algorithm. The AC algorithm forms the A3C algorithm by adding
an asynchronous Actor-Critic network.

In this paper, A3C algorithm is selected to improve among many deep reinforcement learning
algorithms to solve the edge network resource allocation problem. The A3C algorithm is based on
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the Actor-Critic model and uses agents to learn optimal strategies. Still, the difference is that the A3C
algorithm establishes multiple agents to interact with the environment and provides each agent with a
copy of the environment so that each agent can interact with its own copy of the environment. These
multiple agents are called worker agents and have an independent agent that becomes a global network
to which all agents report, a global network that integrates all experience. If only a single agent interacts
with the environment, it is possible to make the samples highly relevant, and asynchronous learning
can be achieved by using the above methods, thus breaking this correlation.

As mentioned earlier, this paper uses the time-slot method, in which, at most one task arrives
or completes a calculation within a time slot. If there are tasks arriving and the server has remaining
computing capacity or tasks completing and there are computing tasks in the queue, the current state of
the network is formed as state vector St, and the corresponding action values are generated through the
A3C algorithm. To minimize network latency in scenarios and balance network energy consumption,
the objective function of this paper is:

min
I∑

i=1

[
β

(
ti,com + ti,lin + ti,req

) + γ
(
eop,it + etran,it, + econ,it

)]

s.t.
I∑
i

xici ≤ C
(8)

In the formula above, ti,req represents the expected wait delay of a calculation task, β and γ are
balance factors to balance the delay with the unit of energy consumption. The above formula indicates
that the objective of this article is to minimize the difference between actual and expected delays and
network consumption.

Therefore, the reward function rt value of A3C is set to:

rt = β
(
ncom,t + nlin,t

)
ti,req + γ

(
eop,it + etran,it, + econ,it

)
(9)

where ncom,t and nlin,t represent the number of tasks in the server container and queue at time slot t,
respectively, and tslot represents the length of the time slot. In the algorithm architecture, the target
function of A3C is:

minJ(θ) = E[A(s, a) logπ(a|s)] = 1
N

N∑
n=1

Tn∑
t=1

Aθ (st, at)pθ (at
n|st

n) (10)

As mentioned above, restrictions indicate that the sum of the computing capacity allocated by
the server in the current time slot cannot exceed the total computing capacity of the server. This
paper introduces the A3C algorithm to build the objective function, where Aθ (st, at) represents the
dominant function and is the difference between the action value function Qθ (st, at) and the expected
value function Vθ (st):

Aθ (st, at) = Qθ (st, at) − Vθ (st) (11)

Here, Vθ (st) can be derived from the Bellman optimization equation:

Vθ (st) = maxEθ {Rt |st, at } (12)

= max
∑
st+1

[Pr (st+1 |st ) R (st+1, st, at) Vθ (st+1)]

= max
{
(1 − γ) R (st, at) + γ

∑
st+1

Pr (st+1 |st , at) Vθ (st+1)

}
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Similarly, Qθ (st, at) can be derived from this:

Qθ (st, at) = R (st, at) + γ
∑
st+1

Pr (st+1 |at, st ) maxQθ (st+1, at+1) (13)

Where γ is the discount factor, R (st, at) is the reward value generated when action at is selected
with st status, and its calculation formula has been described previously.

The pseudo code of our algorithm is as follow.

Algorithm 1 Reliable scheduling algorithm
Input: Computing Delay ti,com, Queue Delay ti,lin, Delivery Delay ti,req, Computing Consumption eop,it,
Transmission Consumption etran,it,, Configuration Consumption econ,it

Output: scheduling action value
1. Minimize network latency in scenarios and balance network energy consumption according to

min
I∑

i=1

[
β

(
ti,com + ti,lin + ti,req

) + γ
(
eop,it + etran,it, + econ,it

)]
2. Set reward function as rt = β

(
ncom,t + nlin,t

)
ti,req + γ

(
eop,it + etran,it, + econ,it

)
3. Calculate the expected value function Vθ (st) as Eq. (12) and action value function Qθ (st, at) as
Eq. (13)
4. Calculate action value with dominant function Aθ (st, at) = Qθ (st, at) − Vθ (st)

5. return action value

Based on the above objective function, our A3C deep reinforcement learning training algorithm
is shown below.

Algorithm 2 A3C deep reinforcement learning training algorithm
Input: A3C neural network structure of common part, corresponding parameter bit θ , w. A3C neural
network structure of this thread, corresponding parameters θ ′, w′, the number of globally shared
iteration rounds T, the global maximum number of iterations Tmax, the maximum length of single
iteration time series within a thread Tlocal, the state feature dimension n, the action set A, and the step
size α, β, entropy coefficient c, attenuation factor γ , exploration rate ε

Output: A3C neural network parameters of common part θ , w
1. Update time series t=1
2. Reset the gradient update amount of Actor and Critical: dθ←0,dw←0
3. From the A3C neural network synchronization parameters of the common part to the neural
network of this thread: θ ′=θ , w′=w
4. tstart=t, initialization status st

5. Based on policy π (at | st; θ ) Select the action at
6. Execute action at to get reward rt and new state st+1
7. t←t+1,T←T+1
8. If st is in the termination state, or t − tstart==tlocal, go to step 9, otherwise go back to step 5
9. Calculate the position st of the last time series:
10. for i ∈ (t − 1, t − 2, . . . tstart)i ∈ (t − 1, t − 2, . . . tstart):

1) Calculate Q (s, i) Q (s, i) at each time: Q (s, i) ri+ γ Q(s,i+1)
2) Cumulative Actor’s local gradient update:
dθ←dθ+∇θ ′logπθ ′(si,ai)(Q(s,i)−V(Si,w′))+c∇θ ′H(π(si,θ ′))

(Continued)
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Algorithm 2 Continued
3) Cumulative critical local gradient update:
dw←dw+∂(Q(s,i)−V(Si,w′))2∂w′

11. Update the model parameters of the global neural network:
θ=θ−α d θ , w=w− β dw

12. If T>Tmax, the algorithm ends and the A3C neural network parameters of the common part are
output θ , w. Otherwise, go to step 3

4 Simulation

We use two more classical schemes as comparison algorithms:

First-come-first-service algorithm (FCFS): FCFS is a common queue-based scheduling strategy.
Specifically, in the algorithm, we sort according to the time when the request arrives at the edge system.
The first arriving request system will first schedule its tasks, and the next one will not start until the
entire scheduling of the requested tasks is completed.

Fixed Priority Algorithm (FPSA): When a user requests to reach an edge system, the correspond-
ing scheduling priority is obtained according to the calculation formula. Unlike the DDoc algorithm,
the priority is fixed. During the scheduling process, each time we select the request with the highest
priority for scheduling, the next request will not be selected until all tasks in the request have been
fully scheduled. The significance of this benchmark is that in a dynamic environment, the priority of
application requests should also be dynamically adjusted.

We simulated this in an edge computing system with seven heterogeneous edge servers and a
remote cloud data center. The capacity of each edge server is randomly selected from 5 to 10. Generally
speaking, local data transfer to the cloud requires a long delay, and we set the data transfer rate between
the edge servers to be 20 times as high as between the edge servers and the cloud data center. Assuming
that the time of the last container configuration on the edge server is 0.5 s, the effect of this ratio on the
performance of the algorithm will also be investigated later. Since the cloud data center has pre-loaded
all containers, processing tasks in the cloud data center can save associated container configuration
costs. In addition, remote clouds typically have more resources than edge servers. So here we set the
average processing time of the same task in the remote cloud to 0.75 times that of the edge server.

The results show that the DDoc is significantly better than other benchmarks. Specifically, by
default, the number of requests that the algorithm the DDoc meets the application deadline is at least
1.3 times that of the benchmark algorithm. In addition, we performed several simulations to investigate
how different settings of various parameters affect the performance of the algorithm (such as container
configuration time and edge server capacity).

Fig. 2 demonstrates the performance of the three algorithms on the data generated by the DAG
generator. We gradually increased the deadline for all requests from 0.25× of the original value to 2×,
while the other parameters remained unchanged. As the deadline increases, the performance of the
three algorithms becomes better, and more application requests are scheduled within the deadline. It
can also be seen from the data in the diagram that the DDoc algorithm is significantly better than
the benchmark algorithm FCFS and better than the algorithm FPSA. At the default setting of 1.0×,
the percentage of application requests that the algorithm DDoc meets the deadline is 4.2× and 1.3×
for FCFS and FPSA, respectively. The detailed completion rate comparison of the three algorithms is
shown in Table 2.
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Figure 2: Proportion of algorithms meeting application request deadlines

Table 2: Algorithm comparison in completion rate

Algorithm 0.25× 0.5× 1× 1.5× 2×
DDoc 0.07 0.22 0.63 0.91 0.95
FCFS 0.05 0.1 0.15 0.2 0.26
FPSA 0.06 0.18 0.45 0.64 0.73

To clarify why DDoc is superior to the benchmark algorithm, we further analyze it. We first
examine the average task parallelism under each algorithm, which is defined as the average number
of tasks executing, container configurations, and so on, occurring each time. Fig. 3 shows that the
algorithm DDoc has the highest degree of task parallelism, indicating that DDoc can make better use
of server resources than other benchmark algorithms. From the data in the diagram, it can be seen
that the task parallelism of FCFS and FPSA is roughly the same and significantly lower than that
of DDoc, because during the scheduling process, both FSFSFS and FPSA algorithms are directed at
one request and then select another after all their tasks have been scheduled. The parallelism of the
algorithms during this period is entirely dependent on the parallelism of the tasks in the request’s DAG,
and the higher the parallelism of the tasks, the higher the parallelism of the algorithms Consider that
in extreme cases, if the DAG degenerates into a linear relationship, the parallelism of the algorithm is
1, meaning that only one task can be operated on at a time. DDoc chooses one of the tasks in a request
according to the dynamic priority to operate on each schedule, so it is not limited to the parallelism of
DAG tasks, and can improve the parallelism of algorithms by using the relationship between parallel
executions among multiple DAGs, which is mainly limited by the number of resources in the system.

Fig. 4 shows the ratio of each algorithm meeting deadlines under different total number of requests
in the system. It can be seen that the performance of DDoc algorithm is always better than other
algorithms. When the number of requests is small, the performance of each algorithm is not different.
However, as the number of requests increases, the proportion of FCFS and FPSA algorithms meeting
deadlines decreases dramatically, especially when the number of requests is large. DDoc has always
been doing well. The main reason for this is that each time the FCFS algorithm chooses the first arrival
request for scheduling, as the number of requests increases gradually, a large number of subsequent
arrivals are blocked and difficult to process, and eventually discarded beyond the deadline. While the
FPSA algorithm chooses requests to schedule according to priority, it is difficult to make full use
of server resources because of the low parallelism of the algorithm in the scheduling process. The
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DDoc algorithm adjusts the priority of requests according to the deadline of requests, always chooses
the most urgent request to schedule, avoids exceeding the deadline of requests as much as possible,
and has the highest degree of task parallelism in the scheduling process, which enables more tasks to
be processed simultaneously within the system, maximizes resource utilization, and enables as many
requests as possible to be completed within the deadline. However, when the number of requests is
large, the performance of the DDoc algorithm is also unsatisfactory, with a completion rate of nearly
50%.

Figure 3: Task parallelism of algorithms

Figure 4: Proportion of algorithm meeting deadlines with different number of requests

We also performed a number of simulations to investigate the effects of different parameter
settings (container configuration time, edge server capacity) on the algorithm. Fig. 5a shows that the
completion rate of all algorithms decreases with the increase of configuration time. DDoc performs
well because the algorithm gives priority to servers that are already configured with the appropriate
containers when determining the scheduling scheme for tasks, thus avoiding duplicate configuration of
system content servers as much as possible. In addition, Fig. 5b demonstrates the performance changes
of all algorithms under different capacity settings. Increasing capacity means that more containers
can be configured simultaneously within the system, which also reduces the number of containers to
be reconfigured repeatedly and increases task parallelism. From Fig. 3, we have analyzed that DDoc
can fully use the parallelism between server and application, so the performance of DDoc will gain
significantly as capacity increases. The performance of FCFS is poor and is not sensitive to these
parameters, because FCFS always chooses the first arrival request for task scheduling, and when the
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first arrival application request requires a lot of processing time, it will continue to block subsequent
arrival application requests.

Figure 5: Application request completion rate with different container configuration time and edge
server capacity

5 Conclusion

In this paper, the A3C algorithm of deep reinforcement learning network is introduced in network
scenarios where heterogeneous edges mostly serve resource collaboration. Task arrival model, task
migration model, network latency and energy consumption model are established. Virtualization
of edge server computing resources is implemented based on Docker container technology. Task
migration and resource allocation are combined to form an optimization mechanism, which can
reduce network latency and retain excessive energy consumption. This paper verifies the validity and
feasibility of the algorithm by designing a simulation program. It also finds that the algorithm can
keep the network running efficiently and adapt to the fast changes of the network when the network
is busy. However, there is still some room for improvement in this algorithm, such as the complexity
of the algorithm itself is high, so the overall strategy is more complex in operation and learning speed
is slightly slower, which should be improved in future research.
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