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Abstract: In a cloud manufacturing environment with abundant functionally
equivalent cloud services, users naturally desire the highest-quality service(s).
Thus, a comprehensive measurement of quality of service (QoS) is needed. Opti-
mizing the plethora of cloud services has thus become a top priority. Cloud ser-
vice optimization is negatively affected by untrusted QoS data, which are
inevitably provided by some users. To resolve these problems, this paper proposes
a QoS-aware cloud service optimization model and establishes QoS-information
awareness and quantification mechanisms. Untrusted data are assessed by an
information correction method. The weights discovered by the variable precision
Rough Set, which mined the evaluation indicators from historical data, providing
a comprehensive performance ranking of service quality. The manufacturing
cloud service optimization algorithm thus provides a quantitative reference for
service selection. In experimental simulations, this method recommended the
optimal services that met users’ needs, and effectively reduced the impact of dis-
honest users on the selection results.

Keywords: Cloud manufacturing; quality of service; optimization algorithm;
rough set

1 Introduction

As a new type of networked manufacturing, cloud manufacturing utilizes network and cloud
manufacturing service platforms to organize online manufacturing resources (manufacturing clouds) that
meet user needs, thus providing users with various types of on-demand manufacturing services [1].
Therefore, the manufacturing cloud service deployed on the network contains an abundant amount of
information. Many manufacturing cloud services have the same or similar functions, but vary in their
service quality. Users naturally want to select the service(s) offering the highest quality of service (QoS)
[2–5]. The optimization of QoS-based services must solve two simultaneous problems: 1) describing,
quantifying, and monitoring the QoS attributes of manufacturing cloud services, 2) efficiently selecting
the optimal service that meets the QoS requirements of the user among a number of similar services. The
first problem can be approached through real-time sampling, detection, user feedback, or historical data
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obtained through data mining [6–9]; the second problem requires comprehensive consideration of various
QoS performance indicators of the service, and evaluation of their importance. Finally, a flexible multi-
indicator decision is made following a certain strategy, and the final solution is returned after ranking and
selecting the decisions [10–12].

In fact, the QoS experience reported by users is sometimes inconsistent with the QoS information
provided by the manufacturing cloud service registry. In some cases, this inconsistency is significant [13–
16]. On the one hand, some service providers driven by self-interest may deliberately exaggerate their
QoS. On the other hand, not all users leave honest evaluations of the service execution results. Some
users deliberately talk-up or talk-down the QoS, leaving good or bad reviews about the service provider’s
honesty with malicious intent. These situations mainly occur because the QoS value provided by service
registries lacks the corresponding honesty measurements and an information correction mechanism.

In the present paper, the abovementioned problems are resolved by a QoS-aware cloud service
optimization model that meets the specific needs of a manufacturing industry in the cloud-manufacturing
environment. First, the collection, quantification, and information correction methods of QoS evaluation
indicators suitable for cloud-manufacturing businesses are discussed. Next, the weights of various
evaluation indicators are obtained from a large numbers of historical data records through a variable
precision rough set. These weights are combined with the preset evaluation indicator weights of users
with specific business needs and personal preferences. Finally, multi-indicator decisions are made by
mining the weights of the indicators, thereby finding the optimal service to recommend to users.

The main contributions of this paper are summarized as follows:

1) A novel QoS information model of manufacturing cloud services accommodating the characteristics
of the manufacturing industry is proposed.

2) A QoS information correction method that effectively reduces the influence of untrusted data on the
selection results is proposed.

3) Theoretical and experimental analyses confirm the effectiveness of the proposed optimization
algorithm for manufacturing cloud services, and the objectiveness of the proposed variable
precision rough set weight method.

The rest of this paper is organized as follows. In Section 2, we give an overview of relevant work.
Section 3 illustrates QoS-information awareness and quantification mechanisms. A QoS-aware cloud
service optimization model are given in Section 4. In Section 5 we present the main implementation and
the experiment to verify the efficiency of our method. This is followed by Conclusions and Future Work
in Section 6.

2 Relevant Work

Optimization of manufacturing cloud services has followed two main research directions: a. finding
appropriate resources that match the functional description, b. finding appropriate resources based on
non-functional descriptions. In the first approach, the search is completed when the detailed functional
description of the manufacturing resource matches the required resource functions. This approach is
suitable when initially searching the service. The second approach intends to satisfy the functional
requirements of the service to determine the best service based on certain non-functional requirements.
The best manufacturing resources are found by matching the service quality and resource requirements of
many similar services. In a non-functional resource search, Zhou et al. [17] proposed that both the
resource service management QoS and network performance QoS should be comprehensively considered
in the manufacturing grid QoS evaluation. They also proposed a QoS evaluation model with
11 indicators, including time and price. Liu et al. [18] proposed an extensible calculation model based on
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general QoS and special QoS attributes. Yau et al. [19] proposed a QoS sorting algorithm based on user
satisfaction alone, without considering the weights of the QoS attributes. Tao et al. [20] proposed a non-
functional QoS evaluation method and a resource service optimization algorithm for manufacturing-
resource services. Their method constructs an intuitionistic fuzzy set, combining intuitionistic fuzzy set
theory and its corresponding operation rules.

The reliability of QoS data has attracted many researchers of Web services. Xu et al. [21] measured the
reliability of each user in a cloud service-selection framework based on user reputation, and proposed a novel
calculation method of user reputation. Xiong [22] considered the impact of similarity among users, and
proposed a peer trust model that evaluates the reliability of users. Wang et al. [23] assessed service
reputation by feedback verification, confirmation, and feedback tests. A trust framework that enables
services to build reliable trust relationships has also been proposed [24,25].

As indicated above, QoS-aware selection of Web services has been studied from many perspectives,
providing valuable references for selecting manufacturing cloud services. However, unlike Web services,
manufacturing cloud services must abide by certain special requirements of the industry. The research
object of Web services is developing computing and software resources. Manufacturing cloud services
must provide not only the computing and software resources, but also other manufacturing resources and
manufacturing capabilities. To cope with the large number of complex manufacturing services, the
description model of the QoS information should differ from that of Web services. Using a non-functional
description method, the present model attempts to improve the effectiveness of optimization models for
cloud manufacturing services.

3 QoS Awareness and Information Correction of Manufacturing Cloud Services

3.1 QoS-aware Model of Manufacturing Cloud Services

In this paper, manufacturing cloud services are divided into hardware and software cloud services.
Hardware cloud services produce and manufacture the equipment, whereas software cloud services
deliver the software resources. To develop a QoS-aware model for manufacturing cloud services, we first
define the information of the manufacturing cloud service.

Definition 1. The QoS information of a manufacturing cloud service S can be modeled as
SQoS ¼ fpprice; ptime; prel; pava; phong, where pprice is the price of the cloud service. If S is a hardware
cloud service, the price includes the outsourcing and transportation costs. Denoting the current average
outsourcing and transporting costs of a single product by Cr and Ct respectively, we have
pprice ¼ Cr þ Ct; if S is a software cloud service, then pprice is the fee of using service S.

ptime represents the time interval between the calling of service S and the receiving of a response. This
value indicates the responsiveness of the cloud service to a user’s request. If S is a hardware cloud service,
the processing and transportation times of the task product are Tproc and Ttrans respectively, and
Ptime ¼ Tcom þ Tdelay; if S is a software cloud service requiring computational time Tcom, the time delay
between issuing the call command and the start of the S execution is Tdelay, so we have
ptime ¼ Tcom þ Tdelay. The above time and price samplings and measurement methods obviously differ
from those of traditional services; in particular, they fully consider the business background of the cloud
service as a product manufacturing service.

The reliability of the service (prel) defines the ability of the cloud service to
P

serviceðpavaÞ is the
probability of normal service operation, and the honesty of the service (phon) defines the extent to which
the user complies with the agreement after the service is fulfilled. The latter is determined by average
evaluation. Suppose that service S is called K times during time interval (t1, t2). Let the number of normal
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responses be Kn, the time of no failures be tn, and the users’ evaluations at each time be Ei. The above three
indices are then defined as

prel ¼ Kn=K (1)

pava ¼ tn=ðt2 � t1Þ; (2)

phon ¼ 1

Kn

XKn

i¼1

Ei: (3)

3.2 QoS Information Correction

In the proposed method, dishonest evaluations are detected by a monitor placed in the cloud
manufacturing service platform, which collects, checks, and verifies the feedback data of users. Data
which are too large or too small, which likely represent the malicious attack data, are filtered out.
Whether data represent a malicious attack is judged by user collaborative filtering. Evaluations given by
the same users using the same services are expected to vary only slightly.

Suppose that user X and user Y access the same service S ¼ fs1; s2; . . . ; skg. The honest evaluations
of the k services given by users X and Y can be expressed as vector spaces Ux: fðs1; x1Þ; ðs2; x2Þ;
ðs3; x3Þ; . . . ; ðsk ; xkÞg and Uy: fðs1; y1Þ; ðs2; y2Þ; ðs3; y3Þ; . . . ; ðsk ; ykÞg, respectively. Usually, the
degree of similarity between two vectors is given by the Euclidean Distance between the vectors.
Defining the Euclidean Distance between the vector spaces Ux and Uy as d ðUx; UyÞ, the distance
between users X and Y is given by:

dðUx;UyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk
i¼1

ðxi � yiÞ2
vuut (4)

The above method gives the set of users U ¼ 1

m

Xm
i¼1

hifu1; u2; . . . umg similar to user X. Suppose that

m00X � type00 users access a service. If user A evaluates the honesty of a new service s as hx, and the

evaluation given by the i�th user is hi, then the average evaluation is ha ¼ 1

m

Xm
i¼1

hi and the honesty of

this user’s evaluation is computed as:

Hon ¼
0; hx � haj j=ha. 1

1� hx � haj j
ha

; hx � haj j=ha � 1

(
(5)

The final evaluation of the users, given by hx � Hon, is then written into the QoS database by the
monitor. Therefore, the setting of the user evaluation honesty can adjust or weaken the subjective factors
of the users, and filter the outliers that might signify malicious attack data.

3.3 Collection and Quantification of QoS Information

The comprehensive QoS indicators of manufacturing cloud services are derived from the historical
records of each evaluation indicator. The collection sources can be divided into two categories: QoS
indicators of the network performance of the software cloud services (such as service computing time and
network transmission delay), and QoS indicators of the manufacturing resources of hardware cloud
services. The former can be extracted from the QoS database of the corresponding cloud manufacturing
service platform, and the latter are generally provided by users (service providers, service users and
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platform operators) of the cloud manufacturing platform. The price of outsourcing, transportation, and other
services can be directly obtained from the user input values on the manufacturing service platform.

Let S ¼ fs1; s2; . . . ; smg be a set of candidate services providing similar services in the
manufacturing cloud pool. The QoS attribute value of each candidate service is inserted into a vector
pi ¼ fpi1; pi2; . . . ; ping. The QoS information of the relevant candidate services when selecting cloud
manufacturing services is then expressed as:

P ¼
p1
p2
. . .
pm

2
664

3
775 ¼

p11; p12; . . . ; p1n
p21; p22; . . . ; p2n
. . . ; . . . ; . . . ; . . . ;
pm1; pm2; . . . ; pmn

2
664

3
775: (6)

To comprehensively evaluate a cloud service, we must quantify the individual QoS indicators. As
different QoS attributes have very different values and measurement units, they cannot be directly
calculated. Instead, their values must be normalized to facilitate the multi-objective decision-making. This
paper uses the following unified quantitative utility function [26]:

Pij ¼
pmax
j � pij

pmax
j � pmin

j

; pmax
j � pmin

j 6¼ 0

1; pmax
j � pmin

j ¼ 0

8><
>: ; (7)

P0
ij ¼

pij � pmin
j

pmax
j � pmin

j

; pmax
j � pmin

j 6¼ 0

1; pmax
j � pmin

j ¼ 0

8><
>: ; (8)

where pmax
j and pmin

j represent the maximum and minimum values of the j�th attribute among all candidate
services in service class S, respectively. The QoS attributes of each candidate service can be divided into
forward and reverse attributes. Forward attribute implies that a larger value corresponds to better service
quality, such as reliability, availability, and service honesty. This can be calculated using Eq. (8). Reverse
attribute implies that a smaller value corresponds to better service quality, such as price and service time.
This can be calculated using Eq. (7). After applying the unified quantization to Eq. (6), the following
matrix is obtained:

P0 ¼
P1

P2

. . .
Pm

2
664

3
775 ¼

P11; P12; . . . ; P1n

P21; P22; . . . ; P2n

. . . ; . . . ; . . . ; . . . ;
Pm1; Pm2; . . . ; Pmn

2
664

3
775 (9)

4 QoS-Based Manufacturing Cloud Service Optimization Model

To optimize a manufacturing cloud service, the performance of each QoS indicator of the service must
be comprehensively considered, and the indicators must be weighted by their importance. This problem
constitutes a typical multi-objective decision problem. Commonly, the weight ratio is calculated between
the decision factors in the decision analysis and the weight calculation. The weights are calculated by the
analytic hierarchy process or a similar method [27,28]. As these methods input the values of artificial
experiences, their decision outputs are strongly subjective. To improve the objectivity, this paper
calculates the decision factors by rough set (Rough Set, RS) theory. The RS is weighted by the
importance of the attributes of each decision condition, which can be analyzed directly from the historical
data records.
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4.1 Attribute Weight Calculation of RS with Variable Precision

Before applying RS theory, we must cluster the QoS attribute values of each manufacturing cloud
service. This paper adopts the k � center clustering method [29]. To reduce the interferences from the
inevitable noises in actual manufacturing businesses, the RSs were processed by Ziarko’s rough-set model
with variable precision [30]. This method relaxes the approximate boundaries of standard RSs, extending
their upper and lower values to a defined precision level b 2 ½0; 0:5Þ. When b ¼ 0, the rough-set model
with variable precision reduces to the classical rough-set model.

Let the tetrad I ¼ ðU ; a ¼ C [ D; V ; FÞ be the QoS information decision-making system, and U be
the non-empty subset of the finite domain of the instance object, where U ¼ fx1; x2; ::; xmg represents
the m history records. Also let A be a non-empty finite set of QoS attributes, C ¼ fa1; a2; ::; an�1g
be the condition attribute set of QoS, D ¼ fang be the decision attribute set, V be the value domain of the
attribute set, and F be the information function of each attribute mapping to the value domain.

Definition 2. Let X and Y be non-empty subsets in a finite domain. If X � Y where � is a partially
ordered relationship, then

cðX ; Y Þ ¼ 1� X \ Y

Xj j ; X 6¼ f

0; X ¼ f

8<
: (10)

where Xj j is the cardinality of the set, defining the number of objects in the equivalent class. c X ; Yð Þ
represents the relative error classification rate of X with respect to Y. If 0 � b, 0:5, then there exists a

majority inclusion relationship Y �
b
X , cðX ; Y Þ � b. When c X ; Yð Þ ¼ 0, there exists a standard

inclusion relationship from Y to X.

In the information decision-making system of QoS, this paper sets X ¼ U=C ¼ fX1; X2; . . . ; X U=Cj jg,
defining the equivalent class divided by the domain U according to the conditional attribute set C.
Meanwhile, Y ¼ U=D ¼ fY1; Y2; . . . ; Y U=Dj jg is the equivalent class divided by the domain U
according to the decision attribute set D.

Definition 3. Given a b 2 ½0; 0:5Þ, the lower approximation b of Yj with respect to the conditional
attribute set C is given by:

PosbXk
¼ [fY 2 U=D j cðXi; XjÞ � bg (11)

The positive region PosbXk
ðYjÞ of b, also denoted as CbðYjÞ, is the set of lower approximations

fCbðY1Þ; CbðY2Þ; . . . ; CbðY jU=DjÞg of all decision classes Yj, representing the probability distribution of

U=C in each decision class.

Definition 4. The information amount of a conditional attribute [30] reflects the ability of the attribute to
classify data objects. The greater the amount of information, the stronger is the ability to classify objects. The
information amount of conditional attribute ak , is calculated as:

cðakÞ ¼ 1

Uj j2
XU=akj j

i¼1

Xij j2; ak 2 C (12)

where Xi is an equivalence class of the conditional attribute ak in U, and Xij j is the cardinality of that
equivalence class.
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Definition 5. The dependency degree [30] of a conditional attribute reflects the dependency degree of the
decision-attribute classification of that attribute. The greater the dependency degree, the more critical is the
attribute. In this paper, the dependency degree of conditional attribute ak is expressed as:

kðakÞ ¼

PU=Dj j

j¼1
Posbak ðYjÞ
�� ��
Uj j (13)

The information amount and dependency of conditional attributes represent different aspects of the
attribute importance, and must be comprehensively evaluated. In this paper, both aspects are considered
equally important. The dependence and information amount of each attribute, calculated by Eqs. (12) and
(13) respectively, provide scattered information. This information must then be normalized to give the
importance (weight) of the conditional attribute. This article proposes the following normalization method:

wk ¼ ðcðakÞ þ kðakÞÞ=2Pn�1

k¼1
ðcðakÞ þ kðakÞÞ=2

; with;
Xn�1

k¼1

wk ¼ 1 (14)

4.2 Optimization Algorithm of the Manufacturing Cloud Service

Let Z ¼ fz1; z2; . . . ; zng be the user-assigned weight of each QoS attribute, andW ¼ fw1; w2; . . . ; wng
be the weight calculated by the RS. S ¼ fs1; s2; . . . ; smg is known as the candidate set of entities providing
similar services in the manufacturing cloud pool. The QoS attribute value of each candidate service is
compiled into the vector Ps ¼ fp1; p2; . . . ; png. The main steps of the proposed optimization algorithm for
manufacturing cloud services are listed below.

Algorithm 1: Optimization algorithm for manufacturing cloud services.

Inputs: 1) QoS decision information system I ¼ ðU ; A ¼ C [ D; V ; FÞ, where U is the domain, C is the
conditional attribute set, and D is the decision attribute set; 2) Weight vector Z given by the user.

Output: Comprehensive performance ranking sequence of QoS.

Step 1 Formulate the matrix P of QoS attribute awareness values in the decision information system I using
Eqs. (1)–(3), (6).

Step 2. Normalize the matrix P to P0 by Eqs. (7) and (8).

Step 3. Select the maximum value in each column of P0 matrix, and compile it into the QoS vector
Pmax ¼ fpmax

1 ; pmax
2 ; . . . ; pmax

n g of the ideal service. Calculate the product of Pmax and the user-provided
weight vector Z.

Step 4: Calculate the information amount of each conditional attribute by Eq. (12), the dependency degree of
each conditional attribute by Eq. (13), and the weight vector W of each attribute by Eq. (14).

Step 5: Compute the weighted product of the i–th row vector Pi and the weight vector W in the P0

matrix, and calculate the distance between Pi and the vector Pmax, that is, the similarity SimðSiÞ ¼

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

j¼1
ðpmax

j � Zj � Pij � wjÞ2
s

between service Si and the ideal service.

Step 6: Output the service sequence in descending order of Sim values.
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5 Experimental Procedure and Results

5.1 Experimental Design

Assisted by the telecom cloud computing platform, a prototype of the cloud manufacturing service test
platform was designed using jdkl5+MyEclipse2019.4.0 as the Integrated Drive Electronics development
environment, Tomcat 8.5 as the server, and MySQL 8.0 and Sybase16.0 as the database and its design
tools, respectively. The call of computer nodes to cloud manufacturing service platform services was
simulated in Mpiblast, a common distributed application software. Because the description and definition
of manufacturing cloud services are highly autonomous and diverse, no common service benchmark
database has been recognized by the vast majority of scholars. Therefore, a standard test set is currently
lacking. Most service-selection tests of manufacturing cloud services instead use randomly generated test
data. The cloud manufacturing service test platform established in this paper includes 1200 manufacturing
cloud services for testing.

As an example, we consider production by a door handle manufacturer. The final production process is
electroplating the door handle To meet the production requirements, 2,0000 door handles must be
electroplated within 20 days. The manufacturer publishes these requirements to the cloud manufacturing
service platform. The QoS attribute value of each service is extracted from the service platform QoS
database. After receiving a service request, the platform-related module queries the hardware cloud
service resource library in the manufacturing cloud pool. Suppose that five similar hardware cloud
services in the pool can meet the functional requirements of the manufacturer. The manufacturer bases its
decision on the cost, time, reliability, availability, and honesty indicators of the five services. The services
and their QoS indicator values are listed in Table 1.

The cost in Table 1 is obtained by summing the processing costs and per-kilometer transportation costs
of a single product. The time is the number of days required for processing and transporting the product.
Service 2 has a reliability value of 40/42, indicating that this service was called 42 times from the QoS
database, and provided 40 normal responses. In a practical scenario, the historical record of Service
S2 revealed 42 bids for its service, and 40 completed contracts among those bids. The availability
describes the probability of a service’s failure-free time during the effective period of the database record.
Honesty (range [0, 5]) is the average evaluation obtained after completing all bid-winning projects. The
honesty data are corrected by the QoS monitor in the cloud manufacturing service platform (see Eq. (5)).
The cost and time indicators are normalized by Eq. (2), and the other indicators are processed by Eq. (3).
The normalized data are listed in Table 2.

Table 1: Similar services that meet the functional requirements of a user

Service Cost (yuan/piece) Time (days) Reliability Availability Honesty

S1 0.60 14 30/30 0.51 4.21

S2 0.61 17 40/42 0.82 4.72

S3 0.64 13 2/10 0.61 1.52

S4 0.65 17 3/3 0.86 4.92

S5 0.63 14 5/5 0.91 4.42
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Based on the attribute weight calculation of the RS, the weight ratio of each attribute was obtained
by analyzing the historical records. The presented experiment accessed the historical records of 5116
manufacturing resources in the manufacturing cloud pool. To demonstrate the reasoning process, we
randomly selected eight records as the reasoning sample. The cost and time factors likely differ among
the processed products, and the data are not directly comparable. The measurement parameter was the
ratio of the bid quote in the record to the bid price of the current business, and the time factor was
analyzed in terms of the advance time ratio. For example, service S1 in Table 1 participated in the
bidding three days in advance of its manufacturing time (10 d), so its time factor was 0.3. The bidding
history of the eight randomly selected manufacturing-resource records are listed in Table 3.

For processing by the RS (which can process only clustered data), the data in the historical database were
clustered by the k�center clustering method described in [29]. The number of clusters was set to 5, and the
clustered data are shown in Table 4.

According to the data in Table 4, the bid-winning decision-making class was Y1 ¼ U=d1 ¼ x1; x2; x4; x8f g,
and the bid-losing decision-making class was Y2 ¼ U=d2 ¼ x3; x5; x6; x7f g. For conditional attribute a5,
the records were divided into equivalent classes U=a5 ¼ f x1; x8f g x2; x4; x6f g; x3; x5; x7f gg, and the
information amount of this conditional attribute was calculated by Eq. (12): c a5ð Þ ¼ 44=128. The
information amounts of the other attributes were similarly obtained as c a1ð Þ ¼ 64=128, c a2ð Þ ¼ 36=128,
c a3ð Þ ¼ 28=128, and c a4ð Þ ¼ 68=128.

Table 2: Normalized QoS indicators of the similar services listed in Table 1

Service Cost (yuan/piece) Time (days) Reliability Availability Honesty

S1 1.01 0.75 1.00 0.00 0.78

S2 0.81 0.00 0.96 0.75 0.95

S3 0.21 1.00 0.00 0.25 0.00

S4 0.00 0.00 1.00 0.92 1.00

S5 0.42 0.75 1.00 1.00 0.86

Table 3: Bid histories of the randomly selected manufacturing resources

Record Cost ratio Advance time ratio Reliability Availability Honesty Bid won

x1 0.97 0.91 0.98 0.91 0.98 Yes

x2 0.91 0.72 0.83 0.88 0.88 Yes

x3 0.71 0.11 0.51 0.78 0.74 No

x4 0.86 0.52 0.75 0.89 0.81 Yes

x5 0.76 0.42 0.66 0.76 0.72 No

x6 0.79 0.52 0.73 0.78 0.87 No

x7 0.66 0.11 0.82 0.88 0.77 No

x8 0.86 0.22 0.69 0.89 0.96 Yes
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Setting b ¼ 0:4 in Eq. (11), the b-lower approximate distributions of Y1 and Y2 with respect to conditional

attribute α5 were calculated as PosbX5
ðY1Þ ¼ fx1; x8g and PosbX5

ðY2Þ ¼ fx3; x5; x7g, respectively. Eq. (13)
gives the dependency degree of conditional attribute a5 as kða5Þ ¼ 10=16. Similarly, we obtained
kða1Þ ¼ 16=16, kða2Þ ¼ 6=16, kða3Þ ¼ 4=16, kða4Þ ¼ 14=16. By Eq. (11), we then obtained w1 ¼ 0:31,
w2 ¼ 0:15, w3 ¼ 0:10, w4 ¼ 0:29, and w5 ¼ 0:15. After analyzing a large number of collected
experimental data and considering the suggestions of manufacturing experts, the pre-entered attribute
preference weights were set to Z ¼ 0:4; 0:1; 0:1; 0:2; 0:2f g. Using the data information in Table 2, the
similarities of the services were calculated by Algorithm 1, thus obtaining sim S1ð Þ ¼ 0:78, sim S2ð Þ ¼ 0:82,
sim S3ð Þ ¼ 0:59, sim S4ð Þ ¼ 0:60, and sim S5ð Þ ¼ 0:73. After ranking the performances of the services as
S2. S1. S5. S4 . S3, service s2 was selected as the optimal choice.

If the weights of the QoS indicators are ignored or set to the same value, the data of Table 1 yield
sim S1ð Þ ¼ 0:73, sim S2ð Þ ¼ 0:63, sim S3ð Þ ¼ 0:45, sim S4ð Þ ¼ 0:55, sim S5ð Þ ¼ 0:76, and the services are
ranked as S5. S1. S2 . S4 . S3. Service S5 receives the best performance score because it requires a
shorter time and has a high contract completion rate, but its cost is high and its honesty is only average.
Overall, S5 gives a balanced performance. When the weights are the weights Z preset by the user, the data
of Table 1 give sim S1ð Þ ¼ 0:76, sim S2ð Þ ¼ 0:74, sim S3ð Þ ¼ 0:45, sim S4ð Þ ¼ 0:55, and sim S5ð Þ ¼ 0:68. In
this case, the services are ranked S1. S2 . S5 . S4 . S3. Service S1 outperforms S2 and S5 because the cost
factor carries a high weight. The weight of the cost factor was obviously larger in Z than in W (the weight
vector mined by the RS), but the weights of availability and honesty were not distinguished in Z and W.
When considering the cost factor, the availability weight was slightly higher than that of honesty, consistent
with real production, and confirming the higher objectivity of mining the weights from historical data over
relying on user evaluations. In the experiment, Service S2 outperformed Service S1 because the price,
availability, and honesty weights were all adjusted to make it more appealing.

5.2 Comparison of Selection Success Rate

In traditional information retrieval, the performance of retrieval algorithms is commonly estimated by
the precision. In the present experiment, the performance of the selection algorithm was analyzed by a
variant of precision called the success rate. With the aim of recommending optimal services to users, the
selection success rate is defined as follows:

Table 4: Information decision-making in the bid histories of the manufacturing services

Record Cost ratio
(α1)

Advance time ratio
(α2)

Reliability
(α3)

Availability
(α4)

Honesty
(α5)

Bid won
(D)

x1 1 1 1 1 1 1

x2 1 2 2 1 2 1

x3 2 4 5 2 3 0

x4 1 3 3 1 2 1

x5 2 3 4 2 3 0

x6 2 3 3 2 2 0

x7 2 4 2 1 3 0

x8 1 4 4 1 1 1
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success rate ¼ number of accepted recommendations

total number of recommendations
� 100% (15)

This experiment measured the success rates of three selection methods: the equal-weight selection
method (in which the conditional attribute weights are evenly distributed and the QoS value is neither
updated nor corrected), the user fixed-weight selection method (in which the weights are preset by the
user, and the QoS value is neither updated nor corrected) and the hybrid fixed-weight selection method
(the proposed method, in which the user-set weights are combined with the rough-set weights). The QoS
value in the hybrid method is adjusted by honesty detection and an information correction mechanism.
Simulations were executed on 20 manufacturing operations, each considered by 100 users for service
selection. The success rates obtained in the comparison experiment are plotted in Fig. 1.

As shown in Fig. 1, the user fixed-weight selection method was more successful than the equal-weight
service-selection method in most cases, indicating the importance of considering the users’ expectation and
their preferred evaluation factors. As the equal-weight selection method does not consider the weight
differences between the QoS performance indicators, its success rate was relatively low and unstable.
Meanwhile, the user fixed-weight selection method is blinded to some extent by the preferences of the
weight setter, so its success rate fluctuated greatly. Initially, the hybrid fixed-weight selection method did
not outperform the user fixed-weight selection method, because it lacked a historical record in the earliest
stages. As the historical database extended, the success rate of the hybrid method gradually increased,
indicating that the weights became increasingly more objective. The stability of the success rate also
improved over time. The proposed method clearly outperformed the other two methods in terms of
selection success rate.

5.3 Dishonesty Evaluation Experiment

For the dishonesty evaluation, we simulated 100 randomly selected services evaluated by up to
200 dishonest users. The selection success rates of the three selection methods are compared in Fig. 2.

As shown in Fig. 2, increasing the number of dishonest users reduced the success rates of the equal-
weight and user fixed-weight selection methods, because neither method adopts an honesty information
detection and correction mechanism. The equal-weight selection method was especially sensitive to

Figure 1: Precision comparison of three selection methods
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dishonest evaluations, because its honesty weight was relatively large. The hybrid fixed-weight selection
method introduces a QoS information correction mechanism, and collects the user evaluation data by a
monitor placed on the cloud manufacturing service platform. The low quality of their evaluation data
reduces the credibility of dishonest users; accordingly, these users score very lowly in the QoS honesty
calculation and their evaluation information will be filtered out. Therefore, increasing the number of
dishonest users barely affected the success rate of the hybrid fixed-weight selection method.

6 Conclusions and Future Work

This paper proposed a QoS-aware cloud service optimization model in the cloud-manufacturing
environment. The study established the QoS evaluation indicators, information-aware models, and the
quantification methods suitable for cloud-manufacturing businesses, and provided an honesty information
correction method that filters out dishonest evaluations. The weights discovered by the variable precision
RS, which mined the evaluation indicators from historical data, providing a comprehensive performance
ranking of service quality. The manufacturing cloud service optimization algorithm thus provides a
quantitative reference for service selection. In experimental simulations, this method recommended the
optimal services and effectively reduced the impact of dishonest users on the selection results. In the next
step, we will research the combination technology of manufacturing cloud services, conduct in-depth
studies on the task decomposition, and improve the functionality of the developed system prototype.
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