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Abstract: Wind power volatility not only limits the large-scale grid connection
but also poses many challenges to safe grid operation. Accurate wind power
prediction can mitigate the adverse effects of wind power volatility on wind
power grid connections. For the characteristics of wind power antecedent
data and precedent data jointly to determine the prediction accuracy of
the prediction model, the short-term prediction of wind power based on a
combined neural network is proposed. First, the Bi-directional Long Short
Term Memory (BILSTM) network prediction model is constructed, and the
bi-directional nature of the BiLSTM network is used to deeply mine the wind
power data information and find the correlation information within the data.
Secondly, to avoid the limitation of a single prediction model when the wind
power changes abruptly, the Wavelet Transform-Improved Adaptive Genetic
Algorithm-Back Propagation (WT-IAGA-BP) neural network based on the
combination of the WT-IAGA-BP neural network and BiLSTM network is
constructed for the short-term prediction of wind power. Finally, comparing
with LSTM, BiLSTM, WT-LSTM, WT-BiLSTM, WT-IAGA-BP, and WT-
TAGA-BP&LSTM prediction models, it is verified that the wind power short-
term prediction model based on the combination of WT-IAGA-BP neural
network and BiLSTM network has higher prediction accuracy.

Keywords: Wind power prediction; wavelet transform; back propagation
neural network; bi-directional long short term memory

1 Introduction

The consumption of traditional energy sources is increasing every year, which leads to a decrease
in storage capacity. At the same time, the consumption of traditional energy sources has brought
about many environmental problems, such as the greenhouse effect caused by the emission of CO,,
exhausted pollution from cars, and, nuclear waste. Under the dual challenge of energy shortage and
environmental crisis, the researchers and utilization of new energy sources have become the focus of
global attention, among which wind energy, as a new energy source, has the advantages of abundant
storage, non-pollution, and renewable. Therefore, wind power is receiving more and more attention
at home and abroad, and all countries worldwide are vigorously developing wind power technology.
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At the same time, the intermittent, random, and fluctuating nature of wind speed not only limits the
integration of large-scale wind power into the grid but also poses many challenges to the safe and
stable operation of power systems [1,2]. This poses many challenges to the safe and stable operation
of power systems. Accurate wind power forecasting can help to improve the competitiveness of wind
power in the electricity market and help the dispatching department to adjust the dispatching plan in
time and reduce the cost of wind power generation.

According to industry standards, domestic wind power forecasting is mainly divided into ultra-
short-term forecasting and short-term forecasting. Wind power ultra-short-term forecasting is to
forecast the wind power output of wind farms from 15 min to 4 h in the future, which needs to update
the forecast results dynamically every 15min, and its prediction time resolution is 15 min, and the
single prediction time of ultra-short-term is less than 5min [3]; wind power short-term forecasting
can predict the wind farm output power from zero hours of the next day to 72 h in the future, and its
prediction time resolution is 15 min, executed twice a day, and the single calculation time should be less
than 5 min. where the historical wind power, wind speed, and wind direction of wind farms in the short
term have obvious randomness and volatility [4]. Deep neural networks can adapt to deep mining of
nonlinear data information and fully learn the intrinsic correlation information of wind power data.
Deep neural networks capture the implied laws of the input information by constructing a multilayer
network structure while being able to perform nonlinear changes through complex implied layers as
well as fully connected layers to effectively process wind power data and improve prediction accuracy
[5].

The wind turbines are under alternating load and stochastic environment for a long time,
resulting in the collected wind power data often containing noisy signals, which affects the prediction
effect of the prediction model [6]. When the wind power data contains too sever noise sequences, a
single prediction model cannot effectively solve the wind power prediction problem [7,8]. Therefore,
combined prediction models have attracted much attention and achieved better prediction results.
Combined models include neural networks combined with wavelet transform [9], combined numerical
weather prediction (NWP) [10], deep learning [11,12], and other models [13,14], among which deep
neural networks are the current cutting-edge methods for wind power prediction. Compared with
the traditional shallow artificial neural networks, deep neural networks have strong learning ability
and generalization abilities for big data, and are capable of mining the internal logical features of
the data. Convolutional Neural Networks (CNN) mainly exploits the spatial correlation of high-
dimensional features, while RNNs mainly exploit the temporal correlation of serial information [15].
Due to the gradient disappearance of Recurrent Neural Network (RNN), Long Short-term Memory
(LSTM) neural network is proposed based on RNN [16]. LSTM solves the gradient disappearance
problem of RNN by considering long-range historical data information in prediction. In time-series
data prediction, the correlation between the beginning and end of sequence data and the sequence
is large, and LSTM can learn the long-term dependence between time series to improve the model
prediction accuracy [17]. One LSTM layer can process time series data forward, while a single Bi-
directional Long Short-Term Memory (BiLSTM) network can process time series data forward and
backward in parallel to find the correlation information within the data and improve the wind
power prediction accuracy [!8]. In addition, the wind power prediction performance is highly related
to critical parameters, such as initial weights and threshold values for back propagation neural
networks. Therefore, several optimization algorithm, such genetic algorithm (GA), particle swarm
optimization (PSO), Whale optimization algorithm and so on, are often introduced to tune vital
parameters and promote prediction accuracy. Genetic algorithm is widely used due to its advantages
including impressive adaptiveness, parallel computing and gradient independent. However, genetic
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algorithms is ape to converge to local optimal. Thus, improve adaptiveness genetic algorithm (IAGA)
is established with adaptive cross probability and mutation probability based on sigmoid function.
Experimental results revealed by numerous literatures verified the effectiveness of IAGA. In order to
tackle disadvantages of existed models and establish an accurate, robust and adaptable wind power
prediction model, data preprocessing technique, including data segments, 3o criterion, data packing
and correction, are used to improve historical data quality. Afterwards, back propagation neural
network combined with BiLSTM is created to forecast wind power. Moreover, improved adaptiveness
genetic algorithm is introduced to tune critical parameter and enhance prediction performance.

The rest of the paper is organized as follows. The reviews of techniques for wind power data
preprocessing and mining are described in Section 2. The details of combined neural network-based
wind power prediction model is presented in Section 3. The results of prediction models, comparison
and discussion are provided in Section 4. At last, Section 5 outlines the conclusion and future directions
related to the proposed work.

2 Wind Power Data Processing and Mining
2.1 Wind Power Data Pre-Processing

Due to weather factors, wind speed sensor failures, and downtime maintenance at wind farms,
the collected wind power actual measurement data have missing values and abnormal values, which
destroy the original internal characteristics of wind power data and affect the accuracy of wind power

prediction. Therefore, the historical wind power data are cleaned, and the abnormal data are classified,
identified, deleted, and filled.

The Pauta criterion (3-sigma), as one of the anomaly data detection methods, has the advantages
of simple calculation and wide applicability. In this paper, the 3¢ criterion is used to identify as well
as reject the outliers, the basic calculation methods is shown as Egs. (1) and (2).

1 : o
= oD 0
>
n

where p; is the original data of wind power, n denotes the sample number and o is the standard
Deviation. When P, is larger than 3o, the data will be regarded as abnormal data and be abandoned.

The Lagrangian interpolation method is used to fill in and correct the missing data [19]. The basic
theory for Lagrangian interpolation approach is shown as below:

Given y is (n—1) order polynomial about x; When the random dataset (x;, y,), (x5, 12), . . ., (X0, Vu)
is computed by Eq. (3) and the results can be obtained by Eq. (4)

y=atax+ax+---+ax"’ (3)
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Since the units and magnitudes are different among different features in wind power prediction.
To reduce the adverse effects of unit and magnitude differences on the prediction results, the wind
power data are normalized. The normalization formula for wind speed and wind direction is shown in
Eq. (6) to improve the wind power data processing and calculation capability of the prediction model.

X — Xmin

X=—-" (6)

Xmax — Xmin
where x is the original data; X, is the minimum value of the original data; X, is the maximum value
of the original data.

The historical power series data are normalized using the standardized values as follows.

P
P=5 (7

where P is the actual power figure; S is the installed capacity.

The wind direction data values for wind farms are from 0 to 360°, and the sine and cosine values
of the wind angle are selected and normalized as shown in the following formula.

y;m =siny ®)

Vi = COS Y 9)

2.2 Wavelet Decomposition and Reconstruction

Wavelet Transform (WT) is widely used in engineering to form wavelet bases by stretching and
translating wavelets. WT can analyze wind speed, wind direction, and historical wind power time series
signals in multi-scale refinement, and obtain each sequence of wind power data input signals, which can
better solve the contradiction between the time domain and frequency domain resolution [20]. Among
them, Daubechies (dbN) series wavelets have better time domain localization analysis and frequency
division capability and are often used for detecting and dividing abnormal signals, etc. There are 49
types of dbN series wavelets (db1-db49), and the smaller the order value of wavelet selection, the faster
the decomposition speed and the lower the frequency band resolution. dbN selects a larger order
value, the slower the decomposition speed and the stronger the frequency band capability [21]. The
db3, db4, dbS5, and db6 can smoothly decompose non-smooth signals, among which the db4 wavelet
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reconstruction error is relatively small and the optimal number of decomposition layers for the db4
wavelet is 4 [22]. Due to the intermittent, random, and fluctuating nature of wind power signals, to
approximate the layer that does not contain interference signals and keep the characteristic frequency
band with details to reconstruct the signal, this paper selects a db4 wavelet to decompose the wind
power data in 4 layers.

3 Combined Neural Network-Based Wind Power Prediction Model
3.1 Principle of Wind Power Prediction Based on IAGA-BP Neural Network

Artificial Neural Networks (ANNSs) have great potential for analyzing non-stationary signals
and are capable of handling problems that cannot be explicitly defined. Among them, the Back-
Propagation Training network (BP) has self-learning capability and is theoretically capable of approx-
imating any non-linear continuous function with arbitrary accuracy to solve problems with complex
internal mechanisms [23]. The BP neural network is constructed for wind power prediction, and its
structural model contains an input layer, an implicit layer, and an output layer, as shown in Fig. 1.

(1) The input processed wind power data is used to calculate the output of each neuron in the
implicit and output layers of the network by designing the network structure and the weights
and thresholds from the previous iteration. The output H of the implicit layer is calculated
based on the input wind speed, wind direction, the connection weights w, between the input
and implicit layers, and the threshold a of the implicit layer.

(2) The impact of each weight and threshold on the total error is calculated from the output layer
forward, which is used to correct the weights and thresholds in the output and implicit layers.
Based on the wind power prediction value O of the BP neural network and the actual output
power value Y of the wind turbine, the network prediction error e is calculated, and then the
weights w,, w, and thresholds of the BP neural network are updated according to e.

input layer hidden layer output layer

Figure 1: Basis structure of back propagation neural network

BP neural network for wind power prediction, the model parameters tend to fall into local minima
and not get the global optimum. Genetic Algorithm (GA), formed by biological evolution and genetics,
has the advantages of excellent adaptiveness, parallel processing and no dependence on gradients,
but GA tends to fall into local optimum prematurely. Therefore, the GA is improved by adaptively
changing the crossover probability value p. and variation probability value p,, through the sigmoid
function. When the population diversity is poor, increase p, and p,, to improve the variation probability
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of inferior individuals and produce more superior individuals; when the population diversity is high,
decrease p. and p,, to improve the superior individuals of the population, so that the population
can obtain the global optimum value. The BP neural network is optimized using the Improved
Adaptive Genetic Algorithm (IAGA), which optimizes the initial weights and thresholds of the BP
neural network to find the optimal individuals of the population. The WT-IAGA-BP neural network

modeling process is shown in Fig. 2.
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Figure 2: Flowchart of WT-IAGA-BP Wind power prediction model
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3.2 Principles of BiLSTM-Based Wind Power Prediction

The Long Short-Term Memory (LSTM) model was devised by Hochreiter et al. To overcome
the gradient disappearance of RNN networks, input gates, output gates, and forgetting gates were
introduced into the neurons to control the state variables of LSTM neurons. The introduction of logic
gates captures the temporal correlation characteristics of data signals, enables a long time effective
data storage and acquisition, and avoids the gradient vanishing of RNN networks. The unidirectional
LSTM network can process time series data forward, while the Bi-directional Long Short-Term
Memory (BiLSTM) network can process time series data forward and backward in parallel. As wind
power data is time-series data, the bi-directional nature of the BILSTM network enables the deep
mining of correlation information between time-series wind power data and the search for implied

-

regular relationships between the input data. The BILSTM network structure is shown in Fig. 3.

output
layer

Backward

LSTM

Forward
LSTM

input
layer

Figure 3: Basic structure of BILSTM network

The forward layer is connected to the output layer together with the backward layer, sharing the
weights wl, w2, w3, w4, w5, and w6. When the network layer is computed forward, the forward layer is
computed forward from moment 1 to moment t and the output of the backward hidden layer is stored
at each moment. In the reverse direction, the backward layer is computed backward along moment
t to moment 1 and the output of the backward implicit layer is stored at each moment. Finally, the
outputs of the forward and backward layers are combined to output the final predictions of the model.

The implied layer state /, of the forward LSTM network at moment ¢ of the BILSTM is calculated

from the state 4,_,; at moment 7—1, as shown in Eq. (10).
h, :f (W]X, + Wth—l) (10)
where g, is the implied layer state of the forward LSTM network at moment t; xt is the input at moment

t, and /,_, is the implied layer state of the forward LSTM network at moment t—1.

The implied layer state }7, of the BILSTM at moment ¢ of the inverse LSTM network is calculated

from the state /,_, at moment r—1, as shown in Eq. (11).
h=f (wzx, T wshf_l) (a1

where /, is the hidden layer state of the inverse LSTM network at time #; h: ; is the hidden layer state
of the inverse LSTM network at time 7—1.
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The final neuronal output, is shown in Eq. (12).
0, = g(wyX, + weh)) (12)

where // is the overall hidden state of the network.

3.3 Principles of Wind Power Prediction Based on the Combination of WT-IAGA-BP and BIiLSTM

The main steps of the wind power short-term prediction based on the combination of WT-IAGA-
BP and BiLSTM are as follows. The structure of the wind power short-term prediction model based
on the combination of WT-IAGA-BP and BiLSTM is shown in Fig. 4.

start
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frequency sequence d1 frequency sequence a4
A 4 v
Normalized high frequency al Normalized high frequency a4
v v
W(t), D(t), P(t) of the wavelet sample d1 W(t), D(t), P(t) of the wavelet sample a4
BiLSTM network W(t+1), D(t+1) Taga-bp neural Taga-bp neural W(t+1), D(t+1) BiLSTM
training wavelet sample d1 network training |.-{ network training wavelet sample a4 network training

Predict d1 of Predict d1 of Predict a4 of Predict a4 of
P’(t+1) * \ P(t+1) P(t+1) | + P’(t+1)
Adaptive weight Adaptive weight
processing . processing

Inverse
normalization v

Inverse normalization

The wavelet reconstruction

v

Predicted value of wind power

Calculate the error of Mae and
other evaluation indexes

End

Figure 4: Flowchart of WT-IAGA-BP neural network and BiLSTM network combined model

(1) The original data is first cleaned to remove abnormal data values and fill in the missing data,
thus improving the accuracy of the prediction model. At the same time, the wind power data
is normalized to improve the efficiency of the model operations.
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(2) Due to the randomness, volatility, and intermittency of wind power data, compared with the
direct use of raw data for wind power prediction, the wavelet decomposition can fully extract
the time domain signal and frequency domain signal in a given time series, which has a strong
signal characterization capability and improves the model prediction accuracy. Therefore,
dbN wavelets are used to carry out wavelet decomposition of wind power data, the number
of layers of decomposition is selected, and the decomposed high and low-frequency signals
are finally obtained. Among them, the low-frequency signal sequence responds to the wind
power variation trend, and the high-frequency signal sequence responds to the high-frequency
characteristics of wind speed, humidity, temperature, air pressure, wind direction, and other
climatic factors.

(3) The asymmetric IAGA-BP neural network and BiLSTM network models are selected for the
prediction of data at different frequencies. The parameters of the asymmetric IAGA-BP neural
network and the BILSTM network model are adjusted according to the specific decomposition
data characteristics, and the BILSTM network is optimized using Adam. The Dropout strategy
is also used in the BiLSTM deep network model. As too many parameters such as the number
of hidden layers, the number of neurons in the hidden layer, and the weights of the deep neural
network model can easily lead to overfitting, the Dropout strategy is used in the BiILSTM deep
network model to randomly select nodes to modify the structure of the neural network itself,
to improve the generalization power of the model and avoid overfitting [24-26].

(4) Based on the simulation results of the prediction model, the optimal parameters of the
combined model are found. The prediction values of each series are back-normalized and the
series model with high prediction accuracy is selected for the adaptive weight combination
according to the prediction accuracy of each time-series data. The prediction results are also
reconstructed to obtain the wind power values at the predicted time points.

The output power of wind turbines is mainly affected by the wind speed and wind direction of
the wind farm, which requires wind speed and wind direction meteorological information as well
as historical wind power as input. X,=[x!, X, x,, X,_1,..., X2, X;] (¢€[1, n]), x!, x¢, x, are the wind
speed, wind direction, and power at time t. Yz, = [Vi, »}, V%, ..., V'] is the wind power predicted
output by WT-IAGA-BP neural network, while Y, = [y}, 4, %, ..., /] is the wind power predicted
output by the BILSTM network. To reduce the prediction error of the combined model, the adaptive
weighting method is adopted to combine the models. The weighting module obtains the final wind
power prediction value Y by assigning different weights adaptively to the wind power forecasted
outputs of different prediction models and by linearly summing Yj, and Yy, and the final predict

value is Y = [y, V5, ¥s, ..., ¥»). The adaptive combination weights are calculated as shown in
(13)—(15).

Yl = C(l YBP (13)
Y2 == az YBL (14)
Y=Y+ 7Y, (15)

where «; and «, are the weight matrices of different predict models, and the optimal values of «; and
o, are obtained during the training process of the combined prediction model.
The weight matrix can be computed by formula shown in Eqs. (16) and (17).
1 - Ve — j}r
E=-
a2

(16)
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where y, represents the actual wind power at time 7 and J, is the predicted wind power at time 7. besides,
E, denotes the MAE value of the /-th sequence for forecasting model and «, is the combined weight
of the A-th sequence.

4 Simulation Experiments
4.1 Raw Data Processing

This paper takes the Sotavento wind farm in Spain, with a total installed capacity of 17.56 MW,
as the research object, and collects some historical data on the wind farm, including wind speed, wind
direction, and historical wind power data of the wind farm. The sampling interval of the wind power
historical data was 10 min, and the sampling points of the first 12 days of the data (1~1728) were taken
to construct the training samples; the sampling points of the last 3 days of the data (1729~2160) were
used for the prediction samples. As the wind power of the wind farm was predicted, the wind farm
power generation collected every 10 min was multiplied by 6 to convert the wind power data.

Daubechies (dbN) series wavelets have better time domain localization analysis and frequency
splitting capability and are commonly used for detecting and splitting abnormal signals, etc. The
decomposed signal has better smoothness than other wavelet decompositions. The wavelet decom-
position is carried out on the original wind speed, wind direction, and power data, and different
wavelet functions and decomposition layers are selected for the wavelet decomposition, and the signal
reconstruction errors are shown in Table 1.

Table 1: MAE of wind power reconstructed by different wavelet functions

Layer number  db3(10%)  db4(10'%)  db5(10"°)  db6(107")

Layer 2 0.1607 0.0293 0.4480 0.0313
Layer 3 0.2547 0.0465 0.7176 0.6917
Layer 4 0.3537 0.0665 0.1015 1.0816
Layer 5 0.4477 0.0832 0.1241 1.3688
Layer 6 0.4941 0.0843 0.1431 1.5748

It can be seen from Table | that the MAE value will get greater with the increase of layers and
different decomposition methods supply different MAE values at different layers. To be specific,
though db3, db4, db5, and db6 can smoothly process the decomposition of non-smooth signals, but
the reconstruction error of the db4 wavelet is the least among all methods. Therefore, the optimal layer
number of decomposition is the layer 4 of the db4 wavelet. In short, layer 4 of the db4 wavelet is chosen
to decompose the wind power data to effectively extract the implied feature signals of wind power data
at each frequency and reduce the influence of wavelet reconstruction error on the prediction accuracy.

4.2 Model Evaluation Metrics
Wind power forecasts deviate from the actual values, and the magnitude of the error provides a
basis for judging the merits of the forecasting model. To study the effect of wind power prediction,
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Mean Absolute Error (MAE), Root Mean Square Error (RMSE), coefficient of determination (R?),
and Maximum Absolute Error (MAE) are used as evaluation indicators. MAE represents the mean
of absolute error between predicted and actual values, as shown in Eq. (18). RMSE is the standard
deviation of the residuals between the predicted and true values. When the curve fits the data, the
smaller the RMSE value, the better the performance of the prediction model, as shown in Eq. (19). R?
indicates the degree of correlation between the two variables. The closer the R? is to 1, the better the
fitted regression effect and the stronger the correlation, as shown in Eq. (20).

z |XS‘1 XYz
MAE =" — (18)
n
Z(XSI XY:
RMSE= |=2%+ — (19)
n
> (X — X3)’
R == (20)
> (X — X3)’

i=1

where X§;, Xy, are the measured and predicted wind power at the ith sampling point, respectively. X7, X7
are the mean measured and predicted power, respectively; # is the number of predicted samples.

Due to the different datasets used in the forecasting models in the literature, it is not easy to
compare the forecasting effects of different models. To facilitate a comparison of the effects of the
combined forecasting models proposed in this paper, the Normalised Mean Absolute Error (NMAE),
as shown in Eq. (21), and the Normalised Root Mean Square Error (NRMSE) were used to evaluate
the forecasting effects, as shown in Eq. (22).

Z |XS1 XY[

1
NMAE = = 0000

21

Z(XSI XYI
NRMSE= |Z2—— —  x —% (22)

where P is the installed capacity of the wind farm.

4.3 Analysis of Experimental Results

To verify the effectiveness of wind power short-term prediction by combining WT-IAGA-BP with
BiLSTM, single model LSTM, BiLSTM, WT-LSTM, WT-BILSTM, WT-IAGA-BP, and combined
WT-IAGA-BP and LSTM models were used for comparison. In this paper, the BILSTM parameters
are set as shown in Table 2 through extensive experiments and the characteristics of each frequency
signal.
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Table 2: Parameter settings for BILSTM network

Parameter name Numerical values Parameter name Numerical values

Fully-connected layer 3 Maximum number of 100
iterations

Number of dropout 2 Initial learning rate 0.005

layers

Number of BiILSTM 2 Gradient threshold 1

layers

Number of layers of 64; 12 Mini-batch size 12

BiLSTM

Fully-connected layer  40; 20; 1 Sequence length longest

Activation functions Number of implied layers Shuffle every-epoch

The db4 wavelet was used to decompose the historical data W, D, P, and the predicted moment
data W, and D,,, in 4 layers, and the subseries of the 4-layer (a4, d1, d2, d3, d4) decomposition were
used in turn to construct the WT-LSTM, WT-BIiLSTM, WT-IAGA-BP, WT-IAGA-BP, and LSTM
combined prediction models, WT-IAGA-BP and BiLSTM combined prediction models so that they
predict the wind power of the subseries after the 4-layer decomposition of the db4 wavelet, and then the
wind power of each of the 4-layer (a4, d1, d2, d3, d4) subseries predicted by WT-LSTM, WT-BiLSTM,
and WT-IAGA-BP are superimposed separately. WT-IAGA-BP and LSTM combined model, WT-
TAGA-BP with BILSTM combined model requires the combination of the predicted subsequences
by adaptive weights and the superposition of the combined sequences. Meanwhile, the LSTM and
BiLSTM models were used for comparison to obtaining seven wind power prediction results, as shown
in Fig. 5.

18 T 1 T T 1 T T
——True value —&— WT-BIiLSTM

-~ -LSTM WT-IAGA-BP

---------- BiLSTM ~%- WT-IAGA-BP&LSTM
""" WT-LSTM ~&-- WT-IAGA-BP&BIiLSTM

10 |

Power/MW

0 50 100 150 200 250 300 350 400 450
Time/10min

Figure 5: Comparison of wind power prediction results with different models
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In the whole process of wind power prediction, compared with the single models LSTM, BiLSTM,
WT-LSTM, WT-BILSTM, WT-IAGA-BP, and the combined model of WT-IAGA-BP and LSTM, the
wind power short-term prediction model based on the combination of WT-IAGA-BP and BiLSTM
can track the wind power in time, and the predicted wind power values are closer to the actual values
and the prediction system is more stable. To minimize the overall error, the combined neural network-
based prediction model tends to be more stable than the single prediction model. In the case of sudden
changes in wind power, combining the results of each series predicted by the WT-IAGA-BP model
and BiLSTM model with adaptive weights, as well as reconstructing the combined subsequence, will
effectively reduce the fluctuation of wind power prediction values. The wind power prediction curves
of the combined models are smoother than those of the single models, and there is no abrupt change
in the prediction errors at the prediction time points. The combined prediction models are important
for improving the wind power consumption capacity and ensuring the safe operation of the grid. The
statistical values of the error indicators for each prediction model are shown in Table 3.

Table 3: Comparison of performance indices of each prediction model

Models MAE MW) RMSE (MW) NMAE (%) NRMSE (%) R? Maximum absolute
error (MW)

LSTM 0.8215 1.2021 4.68% 6.85% 0.8194 5.2731

BILSTM 0.6406 1.0000 3.65% 5.69% 0.8973 5.1063

WT-LSTM 0.8656 1.2085 4.93% 6.88% 0.7638 5.1543

WT-BiLSTM 0.7260 1.0402 4.13% 5.92% 0.8310 4.6941

WT-IAGA-BP 0.6577 0.8291 3.75% 4.72% 0.9259 3.5528

WT-IAGA-BP 0.7129 0.9808 4.06% 5.59% 0.9312 3.8766

& LSTM

WT-IAGA-BP 0.6193 0.8541 3.53% 4.86% 0.9362 3.5396

& BILSTM

After data cleaning, to evaluate the short-term prediction effect of the combined WT-IAGA-
BP and BiLSTM model, the prediction evaluation indexes of db4 decomposed into 4 layers were
calculated. From Table 2, it can be seen that the MAE and RMSE of WT-LSTM increased by 4.41%
and 0.64%, respectively. Compared with LSTM, NMAE and NRMSE of WT-LSTM increased by
0.25% and 0.03%, respectively, and R? decreased by 5.56%. Compared with BiLSTM, the MAE and
RMSE of WT-BILSTM increased by 8.54% and 4.02%, NMAE and NRMSE increased by 0.49%,
0.23%, R? decreased by 6.63%, and the maximum absolute error decreased by 0.4122 MW. Comparing
the prediction results, wavelet decomposition prediction can reduce the maximum error of prediction
and improve the stability of the prediction model. At the same time, Adam’s algorithm can effectively
optimize the BILSTM network, so that BILSTM can fully learn the correlation information between
wind power data. The Dropout strategy can avoid overfitting the BILSTM prediction model during
the training of the BiILSTM prediction model.

When compared to WT-LSTM, the MAE and RMSE of the combined model of WT-IAGA-
BP and BiLSTM decreased by 24.64% and 35.44%, NMAE and NRMSE decreased by 1.40% and
2.02% respectively, R? increased by 17.24% and the maximum absolute error decreased by 1.6147 MW.
When it comes to theWT-BiLSTM, the MAE and RMSE of the combined model of WT-IAGA-
BP and BiLSTM decreased by 10.67% and 18.61%, NMAE and NRMSE decreased by 0.60% and
1.06% respectively, R? improved by 10.52%, and the maximum absolute error decreased by 1.1545 MW.
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The MAE and NMAE of the combined model of WT-IAGA-BP and BiLSTM decreased by 3.84%
and 2.02% respectively compared with WT-IAGA-BP, respectively. While RMSE, NRMSE, and R*
improved by 2.50%, 0.14%, and 1.03%, respectively, and the maximum absolute error decreased by
0.0132 MW. While MAE, RMSE and R? of the combined model of WT-IAGA-BP and BiLSTM is
better than that of WT-IAGA-BP& LSTM 9.36% and 12.67%, and R? increased 0.5%, respectively. The
results show that the combined prediction model based on WT-IAGA-BP and BiLSTM can overcome
the limitations of a single model and improve the stability and accuracy of the prediction model during
sudden changes in wind power.

The above simulation results and analysis show that the establishment of a short-term wind
power prediction model based on the combination of WT-IAGA-BP and BiLSTM has a stable global
optimization finding capability, which can effectively reduce the volatility of the prediction system and
provide accurate wind power prediction. Compared with LSTM, BiLSTM, WT-LSTM, WT-BIiLSTM,
WT-IAGA-BP, and the combined WT-IAGA-BP and LSTM model, the prediction stability and
accuracy of the combined WT-IAGA-BP and BiLSTM prediction model are substantially improved,
and its prediction results are optimal. When the wind power changes, the prediction results of each
series of the WT-IAGA-BP model and BiLSTM model are combined by adaptive weights, and the
combined subsequence is reconstructed, which can effectively reduce the fluctuation of the wind
power prediction value of the single model. The wind power short-term prediction model based on
the combination of WT-IAGA-BP and BiLSTM can better track wind power, minimize the scale of
deviation of the predicted value from the true value and maintain high prediction accuracy. It provides
a new solution for the short-term prediction of wind power, and at the same time provides a theoretical
basis for power generation planning, peak and frequency regulation, and tide optimization.

5 Conclusion

To improve the prediction accuracy, this paper proposes a combination of WT-IAGA-BP and
BiLSTM for the short-term prediction of wind power. Firstly, IAGA is introduced to optimize the
BP neural network weights and thresholds to avoid the BP neural network weights and thresholds
falling into local optimum. Secondly, the db4 wavelet is used to decompose the wind power data
in 4 layers to filter the noise signals in the data. Then, the BILSTM network was used to fuse the
multimodal data using the bi-directional nature of the BiLSTM, and the BiLSTM was optimized
using Adam. At the same time, the Dropout strategy was applied to avoid overfitting of the BILSTM,
and the adaptive weights were used to combine the single model prediction results. Finally, simulation
analysis is performed and compared with LSTM, BiLSTM, WT-LSTM, WT-BILSTM, WT-IAGA-
BP, WT-IAGA-BP & LSTM prediction models. The experimental results show that the combined wind
power short-term prediction model based on WT-IAGA-BP and BiLSTM avoids the over-learning of
deep learning in the case of poor data quality, and can overcome the prediction errors caused by the
non-linearity, uncertainty, and randomness of traditional prediction models. The model proposed in
this paper has stronger robustness and adaptability, and its prediction accuracy is higher, which can
provide a theoretical basis for improving the level of wind power consumption and ensuring stable
grid operation. However, the WT-IAGA-BP neural network and BiLSTM network prediction models
are built separately using sequence data of different frequencies after wavelet decomposition, which
increases the complexity and computational power of the combined model structure and reduces the
training efficiency of the model.

Funding Statement: The authors gratefully acknowledge financial support of national natural science
foundation of China (No. 52067021), natural science foundation of Xinjiang (2022D01C35), excellent



TASC, 2023, vol.37, no.2 1451

youth scientific and technological talents plan of Xinjiang (No. 2019Q012) and major science &
technology special project of Xinjiang Uygur Autonomous Region (2022A01002-2)

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

(1]
(2]

(3]
(4]
(5]
(6]
[7]
(8]
]
(10]
(1]

[12]

[13]

[14]
[15]
[16]
[17]
(18]

[19]

Y. R. Wang, Y. Yu and S. Y. Cao, “A review of applications of artificial intelligent algorithms in wind
farms,” Artificial Intelligence Review, vol. 53, no. 5, pp. 3447-3500, 2020.

D. Xu, H. Shao, H. X. Deng and X. Wang, “The hidden-layers topology analysis of deep learning models
in survey for forecasting and generation of the wind power and photovoltaic energy,” Computer Modeling
in Engineering & Sciences, vol. 131, no. 2, pp. 567-597, 2022.

D. Z. Li and Y. Y. Li, “Ultra-short-term wind power prediction based on deep learning with error
correction,” Journal of Solar Energy, vol. 42, no. 12, pp. 200-205. 2021.

Z. Tarek, M. Y. Shams and A. M. Elshewey, “Wind power prediction based on machine learning and deep
learning models,” Computers, Materials & Continua, vol. 74, no. 1, pp. 715-732, 2023.

X. Deng and H. Shao, “Deep learning approach with optimized hidden-layers topology for short-term
wind power forecasting,” Energy Engineering, vol. 117, no. 5, pp. 279-287, 2021.

R. Yu, Z. Liu, J. Wang, M. Zhao and J. Gao, “Analysis and application of the spatio-temporal feature in
wind power prediction,” Computer Systems Science and Engineering, vol. 33, no. 4, pp. 267-274, 2018.

Y. Zhang, H. X. Sun and Y. J. Guo, “Wind power prediction based on PSO-SVR and grey combination
model,” IEEE Access, vol. 7, pp. 136254-136267, 2019.

C. S. Li, G. Tang and X. M. Xue, “Short-term wind speed interval prediction based on ensemble GRU
model,” IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1370-1380, 2020.

Q. M. Feng and S. P. Qian, “Research on the prediction of short-term wind power based on wavelet neural
networks,” Energy Reports, vol. 8, pp. 553-559, 2022.

J. Q. An, F. Yin and M. Wu, “Multisource wind speed fusion method for short-term wind power prediction,”
IEEFE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 5927-5937, 2020.

X. Deng, H. Shao, C. Hu, D. Jiang and Y. Jiang, “Wind power forecasting methods based on deep learning:
A survey,” CMES-Computer Modeling in Engineering & Sciences, vol. 122, no. 1, pp. 273-301, 2020.

Y. S. Wang, J. Gao and Z. W. Xu, “A prediction model for Ultra-short-term output power of wind farms
based on deep learning, ” International Journal of Computers Communications & Control, vol. 15, no. 4, pp.
3901, 2020.

L. Yan and W. Hong, “Evaluation and forecasting of wind energy investment risk along the belt and road
based on a novel hybrid intelligent model,” Computer Modeling in Engineering & Sciences, vol. 128, no. 3,
pp. 1069-1102, 2021.

Y. R. Wang, D. C. Wang and Y. Tang, “Clustered hybrid wind power prediction model based on ARMA,
PSO-SVM, and clustering methods,” IEEE Access, vol. 8, pp. 17071-17079, 2020.

M. Zhang, H. Li and X. Deng, “Inferential statistics and machine learning models for short-term wind
power forecasting,” Energy Engineering, vol. 119, no. 1, pp. 237-252, 2022.

A. Kisvari, Z. Lin and X. L. Liu, “Wind power forecasting-A data-driven method along with gated
recurrent neural network,” Renewable Energy, vol. 163, pp. 1895-1909, 2021.

Y. H. Sun, P. Wang and S. W. Zhai, “Ultra short-term probability prediction of wind power based on LSTM
network and condition normal distribution,” Wind Energy, vol. 23, no. 1, pp. 63-76, 2019.

L. Huang, L. X. Liand X. Y. Wei, “Short-term prediction of wind power based on BILSTM-CNN-WGAN-
GP,” Soft Computing, vol. 26, no. 20, pp. 10607-10621, 2022.

J. X. Wang, B. Deng and J. Wang, “Short-term wind power prediction based on empirical modal
decomposition and RBF neural network,” Journal of Power Systems and Automation, vol. 32, no. 11, pp.
109-115, 2020.



TASC, 2023, vol.37, no.2

Z. X. Xing, B. Y. Qu and Y. Liu, “Comparative study of reformed neural network based short-term wind
power forecasting models,” IET Renewable Power Generation, vol. 16, no. 5, pp. 885-899, 2022.

X. B. Ma, “Short-term wind power prediction based on wavelet transform and BP neural network,” Journal
of Power Science and Technology, vol. 30, no. 2, pp. 92-97, 2015.

R. H. Cui, W. D. Hu and L. K. Geng, “Wavelet-based reconstruction of signal singularities for aerial fault
arc detection,” Electrical Drives, vol. 48, no. 6, pp. 69-72, 2018.

X. Y. Pu, G. H. Bi and K. Wang, “Ultra-short term forecast of wind power based on FEEMD-
PACF_AdaBoost model,” Computer Application and Software, vol. 38, no. 11, pp. 91-97, 2021.

X. Liu, Y. P. Han and Z. P. Liu, “Research on groundwater depth prediction method based on BiLSTM-
NFC,” Yellow River, vol. 43, no. 6, pp. 80-85, 2021.

H. Zhang, C. H. Hu and D. B. Du, “Remaining useful life prediction method of Lithium-Ion battery based
on Bi-LSTM network under Multi-State influence,” ACTA Electronica Sinica, vol. 50, no. 3, pp. 619-624,
2022.

Y. Huang, C. H. Chen and C. J. Huang, “Motor fault detection and feature extraction using RNN-based
variational auto-encoder,” IEEE Access, vol. 7, pp. 139086-139096, 2019.



	Short-Term Wind Power Prediction Based on Combinatorial Neural Networks
	1 Introduction
	2 Wind Power Data Processing and Mining
	3 Combined Neural Network-Based Wind Power Prediction Model
	4 Simulation Experiments
	5 Conclusion
	References


