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Abstract: Image dehazing is a rapidly progressing research concept to enhance
image contrast and resolution in computer vision applications. Owing to
severe air dispersion, fog, and haze over the environment, hazy images pose
specific challenges during information retrieval. With the advances in the
learning theory, most of the learning-based techniques, in particular, deep
neural networks are used for single-image dehazing. The existing approaches
are extremely computationally complex, and the dehazed images are suffered
from color distortion caused by the over-saturation and pseudo-shadow
phenomenon. However, the slow convergence rate during training and haze
residual is the two demerits in the conventional image dehazing networks.
This article proposes a new architecture “Atrous Convolution-based Residual
Deep Convolutional Neural Network (CNN)” method with hybrid Spider
Monkey-Particle Swarm Optimization for image dehazing. The large receptive
field of atrous convolution extracts the global contextual information. The
swarm based hybrid optimization is designed for tuning the neural network
parameters during training. The experiments over the standard synthetic
dataset images used in the proposed network recover clear output images free
from distortion and halo effects. It is observed from the statistical analysis that
Mean Square Error (MSE) decreases from 74.42 to 62.03 and Peak Signal to
Noise Ratio (PSNR) increases from 22.53 to 28.82. The proposed method with
hybrid optimization algorithm demonstrates a superior convergence rate and
is a more robust than the current state-of-the-art techniques.

Keywords: Image dehazing; computer vision; convolutional neural network;
color distortion; over-saturation; pseudo-shadow phenomenon; convergence
rate

1 Introduction

Haze is regarded as a phenomenon due to the atmosphere, in which the dry particles, dust, or
aerosols reduce the image scene quality. Haze generally makes specific degradation in the scene quality
of the image, capping the total color contrastand making occlusion of objects present in the scene due
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to ambient light [1]. The haze effect [2] causes low visual quality and diminished color contrast in real-
world images taken in cloudy weather conditions. Various computer vision tasks like autonomous
driving system and Land Use Land Cover (LULC) detection is performed by monitoring the real-
world images and scene evaluation with satellite images that rely on the clean images to obtain accurate
results. Therefore it is essential to reduce the haze effect over the captured images to enhance the images
visual quality and the process of object recognition and detection [3]. The image haze formation model
[4] is shown in Fig. 1.

Figure 1: Image haze formation

According to the theory of haze model [5,6], the influence of atmospheric light on natural images
can be described as in Eqs. (1) and (2) by

I(m,n) = J(m,n) · T(m,n) + A(1 − T(m,n)) (1)

T(m,n) = e−βd(m,n) (2)

Here, I and J are hazy and haze-free images, T is the transmission map connected with β

(atmospheric scattering coefficient), and d (depth between the camera and scene), A is the global
ambient light (atmospheric light) at pixel location (m, n). The haze-free image J is was obtained by
transforming Eq. (1) into the following Eq. (3).

J(m,n) = I(m,n)

T(m,n)

− A
(

1 − 1
T(m,n)

)
(3)

I(m,n) = J(m,n), when d(m,n) → 0, T(m,n) → 1 (4)

According to Eq. (4) the captured image will be the actual radiance from the scene. But, in the
case of terrestrial imaging, the scene depth is very high, and the influence of atmospheric light will be
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more as described by Eq. (5).

I(m,n) = A, when d(m,n) → ∞, T(m,n) → 0 (5)

Both the cases of Eqs. (4) and (5) are not possible in practical situations. The estimation of T(m,n)

and A are essential in obtaining the dehazed image. Accurate estimation of A obtains the detailed
dehazed image without losing the microscopic details from the high-intensity regions of the hazy input
image.

Many existing model-based dehazing methods [7–9] propose the complex prior regularizations
for the approximation of A and T(m,n) for extracting the spatial features from the hazy input, but the
approximate image will still be different from the haze-free image. These methods are time-consuming,
involve huge parameters, and need help in the optimization.

To overcome the dependence on approximated prior, the design of learning-driven methods using
deep learning techniques is promoted. The deep Convolutional Neural Network (CNN) model [10]
maps the atmospheric scattering parameters learned from the network training to recover the image
from haze effects. Furthermore, wavelet techniques are also used in image dehazing models, where
Discrete Wavelet Transform (DWT) [11] divides the images into patches using various wavelet sub-
bands or frequencies. To retain the high-frequency information and prevent the pseudo-shadow
phenomenon in the dehazed image, the SSIM loss of each image patch is calculated, and the weights
are updated.

The image dehazing aims to minimize the haze effect and enhance the contrast levels by
maintaining the very fine details at the edges, in this work a new deep learning method for image
dehazing using a hybrid swarm optimization algorithm is proposed. The structure of this article is as
follows. In Section 2, the existing works related to the image dehazing are introduced. The architectural
flow of the proposed image dehazing framework is described along with the appropriate datasets in
Section 3. Section 4 defines the wavelet image decomposition and hybrid Spider Monkey Particle
Swarm Optimization (SMPSO) algorithm. Section 5 discusses the image dehazing model using Atrous
Convolution-based Residual Deep CNN. Section 6 provides the experimental settings, results, and
ablation analysis. Section 7 outlines the conclusion and future scope of this work.

2 Related Works

The image dehazing problem is considered as the “No-Reference (NR) Image Quality Assessment
(IQA)” method. A superior way of performing image dehazing is to design specific quantitative
evaluation metrics. However, this is challenging due to the complications in the image dehazing process
as various dehazing algorithms (DHAs) have unique haze effects.

Most image restoration methods from haze rely on the air-light scattering model [12] due to the
performance attained in processing the hazy daytime images. These methods are classified into prior-
based computation models [5,13] and learning-based prediction models [14–16].

Based on the number of images used for dehazing process, the dehazing methods are classified into
multiple images and single image–based haze removal methods. Polarization-based methods [17] use
varying degrees of polarization of different images to restore the scene depth. Contrast enhancement
methods [18,19], and Multiscale fusion [20] algorithms require a single image which depends on the
distinctive traits of the ground truth image.

The application of deep CNN has been increased in the recent research works of image dehazing
and achieved a remarkable throughput. These methods result in better recovery of explicit scenes in
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the image from the haze effects by heuristically learning the complex relations from the haze data
observations.

Li et al. [21] proposed calculating the ratio of the foggy image to transmission map estimate with
residual-based deep CNN and avoiding estimating atmospheric light. Li et al. [22] present an accurate
estimation of atmospheric light and strive to remove the bright region’s effect on estimation using
quad-tree decomposition. Liu et al. [23] developed an agnostic CNN model to fully eliminate the
necessity for parameter estimation and require no insight into the atmospheric scattering model using
local and global residual learning stages. Ren et al. [24] method learn the relation amid the hazy input
and the corresponding scene depth using a multiscale deep neural network.

Gan et al. [25] propose to jointly estimate the air-light and transmission maps through a
Conditional Generative Adversarial Network (CGAN). Zhang et al. [26] recover the clear scene
through high-level features and the scene details from low-level feature maps using Deep Residual
Convolutional Dehazing Network (DRCDN). Wang et al. [27] designed an enhanced network based on
a CNN-based dehazing model with three different modules within the network. They jointly estimated
the air-light and feature map to enhance the ability of CNN. Dharejo et al. [28] proposed using
CNN with a wavelet hybrid network in the wavelet domain. The local features and global features
are achieved from the multi-level resolution of hazy images.

Yang et al. [29] developed a new deep-learning method combining haze-related prior information
and deep-learning architectures perspectives. Wang et al. [30] developed a module for feature extrac-
tion using the deep residual haze network and recovers the clear image by subtracting the trained
residual transmission map and the corresponding hazy input. Min et al. [31] proposed a DHA quality
evaluation method with the integration of haze-relevant features. The technique works better for aerial
image databases with image structure recovering and enhancing the low-contrast areas. Yu et al. [32]
use the concept of multi-resolution segmentation with an image fusion process for transmission
map estimation. Bilal et al. [33,34] reduces the degradation effects in the images using evolutionary
optimization algorithm and weighted filter with dilated convolution and watershed segmentation.

3 Proposed Methodology
3.1 Architectural Flow of the Proposed Framework

The combined effect of haze and reflected light from the scene object reduces the contrast,
makes the objects in the scene challenging to identify, and creates difficulty in further processing.
The learning-based methods utilize machine learning frameworks for apparentimage recovery. The
deep neural network is designed to learn the scene depth and haze-based features for the ground truth
image.

This article proposes a novel atrous convolution-based residual deep CNN using a hybrid SMPSO
algorithm to recover the clear image from hazy input. The proposed framework consists of three major
blocks viz., (1) forward wavelet transform, (2) residual deep CNN with atrous convolution using an
optimization algorithm, and (3) inverse wavelet transform for reconstructing the dehazed image.

The dataset images are collected and given to the wavelet transform block. It decomposes the
input images into four separate frequency-classified sub-bands. The low-frequency sub-image patch
contains very fine details and most of the details of the input image, and this image patch will be the
input to the deep CNN block.

The proposed network consists of fewer convolution layers, namely, convolution layers (vanilla
convolution) and atrous convolution layers (dilated convolution), at the offset of not compromising
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the performance with the other learning models. This type of filter used in network learning eliminates
the possibility of blur in the obtained residual image. The hybrid optimization algorithm optimizes
the batch size, epochs, and learning rate during the network training. The residual image was further
combined with high-frequency decomposed patches using IDWT to obtain the haze-free output.

Fig. 2 shows the architectural flow of the proposed atrous convolution-based residual deep CNN
framework using a hybrid SMPSO algorithm.

Figure 2: Architectural flow of the proposed image dehazing framework

3.2 Image Dehazing Dataset Collection
The above image dehazing framework is implemented on two different datasets: Synthetic

Objective Testing Set (SOTS) [RESIDE], and I-Haze of NTIRE 2018. The details of the datasets are
provided below.

SOTS [RESIDE]: The Synthetic Objective Testing Set (SOTS) RESIDE dataset consists of 500
hazy training images under indoor and outdoor subsets, and 50 indoor and 492 outdoor ground truth
images. The dataset is accessed from the link “https://www.kaggle.com/datasets/balraj98/synthetic-
objective-testing-set-sots-reside”, access date: 2022–05–24.

I-Haze Dataset: The I-Haze dataset is deployed in NTIRE 2018 CVPR dehazing challenge with 30
hazy and ground truth images respectively. The dataset is accessed from the link “https://data.vision.
ee.ethz.ch/cvl/ntire18//i-haze/”, access date: 2022–06–19.

4 Wavelet-Based Image Decomposition and Hybrid Swarm Optimization
4.1 DWT-Based Image Decomposition

In the proposed method, before dehazing, DHWT is used to decompose the original hazy input
image [35]. As a result, the four distinct sub-bands: approximation (LL), horizontal (LH), vertical
(HL), and diagonal (HH) corresponding to the respective wavelet sub-band coefficient extract the
information from the hazy input. The LL sub-band corresponds to the hazy input’s down-sampled
version (↓2). The LH and HL sub-bands tend to isolate the horizontal and vertical features, and the
HH sub-band preserves the corresponding localized high-frequency point features in hazy input. The
low-frequency sub-image is considered for dehazing using atrous convolution-based residual deep
CNN, and the high-frequency sub-images retain the high-frequency hazy input details. In the end,
the clear image was recovered by applying the IDWT for the combined residual image and the high-
frequency component of the wavelet transform.

https://www.kaggle.com/datasets/balraj98/synthetic-objective-testing-set-sots-reside
https://www.kaggle.com/datasets/balraj98/synthetic-objective-testing-set-sots-reside
https://data.vision.ee.ethz.ch/cvl/ntire18//i-haze/
https://data.vision.ee.ethz.ch/cvl/ntire18//i-haze/
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Corresponding to four wavelet sub-bands seen above, one scaling function φLL (cc, dd) and three
wavelet functions (ψLH (cc, dd), ψHL (cc, dd) and ψHH (cc, dd)) are shown in Eq. (6).

φLL (cc, dd) = φL (cc) φL (dd)

ψLH (cc, dd) = ψL (cc) ψH (dd)

ψHL (cc, dd) = ψH (cc) ψL (dd)

ψHH (cc, dd) = ψH (cc) ψH (dd)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (6)

The IDWT coefficients can be obtained through the Haar wavelet by using the Eq. (7).

A = A1 + B1 + C1 + D1

B = A1 − B1 + C1 − D1

C = A1 + B1 − C1 − D1

D = A1 − B1 − C1 − D1

⎫⎪⎪⎬⎪⎪⎭ (7)

here, A, B, C, and D are the input image pixel values and A1, B1, C1, and D1 are the corresponding
one-level wavelet decomposed image pixel values as shown in Fig. 3.

Figure 3: (a) Input image, (b) one-level decomposition of the input image, (c) two-level decomposition
of the same

4.2 Meta-Heuristic Swarm-Based Hybrid SMPSO Algorithm
A single optimization algorithm cannot address the full aspects of all search and optimization

issues. Because each optimization will have distinct merits and demerits, combining the features of
these optimizations enable to development of a hybrid algorithm for better robustness and more
flexibility to solve complicated issues [36]. The hybrid SMPSO algorithm combines the PSO and SMO
algorithms, is presented in this section.

4.2.1 Particle Swarm Optimization (PSO) Algorithm

The swarm intelligence-based algorithms have gained wide popularity and are addressed in many
engineering optimization issues. PSO is an adaptable and particle-based heuristic search optimization
for solving engineering optimization problems proposed by Eberhart, R. Kennedy, J and Shi [37,38].

According to PSO, any problem is computationally expensive and can be solved by finding the
best solution that fits into it using an exploration and exploitation strategy. The algorithm is broadly
accepted due to its superior and fast convergence to optimum, high accuracy, and low memory
requirements. The optimization randomly initializes a set of particles (candidate solutions) called a
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swarm flying in the search space of z-dimension. The vector form of velocity Vi is Vi = (vi1, . . . .viz)
and position Xi is Xi = (xi1, . . . .xiz) of each particle i and will update based on the particle’s individual
experience and that of its neighbors as in Eqs. (8.a) and (8.b).

V k+1
i = ωV k

i + c1r1

(
Pk

bi
− X k

i

)
+ c2r2

(
Gk

bi
− X k

i

)
(8.a)

X k+1
i = X k

i + V k+1
i (8.b)

where i = 0, 1, . . . N−1,Vi
k and Xi

k is the current velocity and position of the particle i at kth iteration,
Vi

k + 1 is updated velocity of particle i at (k + 1)
th iteration with inertia weight ω, acceleration coeffi-

cients (c1 and c2), and r1, r2 are evenly distributed arbitrary numbers between (0, 1) generated for each
iteration. The best possible position for particle i is Pbi

k and the best possible position among the
population until kth iteration is Gbi

k.

Every particle i will update using yi, the best solution for particle i in the local search space, and
y∗(k), the position that yields the best solution among all the yi’s in the global search space. The Pbi

and Gbi values will be updated at iteration k with a swarm of N particles using Eqs. (9) and (10).

yi (k + 1) =
{

xi (k + 1) , if f (yi (k)) > f (Pbi)

yi (k) , if f (yi (k)) ≤ f (Pbi)
(9)

y∗ (k) ∈ {y1 (k) , y2 (k) , . . . yN (k)},

f (y∗ (k)) = min{f (y1 (k)), f (y2 (k)), . . . f (yN (k))} (10)

The acceleration coefficients control the particle speed at each iteration. In Eq. (11) the time-
varying inertia weight ω controls the PSO algorithm’s convergence and linearly decreases over time.
The high value of inertia weight during the early stages of search facilitates the chance of global
exploration (visiting more positions in the search range) and low value in the later stages facilitates
local exploration (for local search ability).

inertia weight ω = (ω1 − ω2)

(
max.allowable iter. iter.current

iter.current

)
+ ω2 (11)

where ω1 and ω2 represent the inertia weight’s initial and final values respectively.

4.2.2 Spider Monkey Optimization (SMO) Algorithm

It is a swarm intelligence-based optimization influenced by the spider monkeys’ Fission-Fusion
Social (FFS) behavior during the foraging process. The characteristics of the SMO algorithm [39]
depend on the grouping of monkeys into groups from small to large and vice-versa. The SMO contains
four phases: Local Leader Phase (LLP), Global Leader Phase (GLP), Learning Phase, and Decision
phase.

Let Xi represents the ith individual in a k-dimension vector of the swarm population, each ith

individual is initialized as in Eq. (12):

X k
i = X k

min + U (0, 1) × (
X k

max − X k
min

)
(12)

where X kj
min and X k

max are the boundary values of the search space. U(0, 1) is an evenly distributed
arbitrary number between (0, 1).
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During LLP, the individuals adapt their positions using the group member’s and local leader
knowledge in their group. The updation in new position is based on the individual’s fitness and the
perturbation rate probability. The new position update Eq. (13) is:

X k+1
i = X k

i + U (0, 1) × (
LLk

m − X k
i

) + U (−1, 1) × (
X k

r − X k
i

)
(13)

where X k+1
i is the ith individual in kth dimension, LLk

m represents the local leader, and X k
r is the arbitrary

selected individual from the mth group so that r �= i in kth dimension of the search space, U(−1, 1) is
an evenly distributed arbitrary number in the range (−1, 1) and perturbation rate varies in between
[0.1, 0.8].

During the Global Leader phase, the individuals update their position using the global leader,
members’ knowledge in the group, and their own persistence. The new position update equation is
given in Eq. (14):

X k+1
i = X k

i + U (0, 1) × (
GLk

m − X k
i

) + U (−1, 1) × (
X k

r − X k
i

)
(14)

where the GLk
m represents the global leader of the mth group in kth dimension.

During the Learning Phase, the best individual is recognized as the swarms’ global leader, and the
individual with the best fitness is recognized as the local leader of the particular group. If the global
leader and local leader fail to update their position, then the global limit counter and the local limit
counter is incremented by one.

During the Decision phase, all the group members in the local group initialize randomly or update
their position employing global and local leader information as in Eq. (15):

X k+1
i = X k

i + U (0, 1) × (
GLk

m − X k
i

) + U (0, 1) × (
X k

r − LLk
m

)
(15)

The global leader decides on creating the smaller subgroups or fusing the small groups into a large
group based on a predefined maximum number of groups.

4.2.3 Hybrid Spider Monkey Particle Swarm Optimization (SMPSO) Algorithm

The primary objective of the hybrid Spider Monkey Particle Swarm Optimization (SMPSO) is to
increase the Spider Monkey Optimizer’s exploration with Particle Swarm Optimization’s exploitation
capabilities. It is a co-evolutionary technique since both techniques operate in parallel, not one after
another. The first step is initializing each of PSO’s original parameters. Further the position and
velocity of the population are randomly initialized within the predetermined ranges. The next step is
calculating each particle’s fitness function, global best (Gbi ) and local best (Pbi ). After that, the fitness
of the particle is evaluated with the current iteration to its previous iteration as per Eq. (16). If the
fitness value is improved, the SMO algorithm will take over the other. Otherwise, the PSO algorithm
continues following Eqs. (8.a) and (8.b) with the updated inertia weight ω in Eq. (17).

y (i, k + 1) =
{

true, if f (yi (k + 1)) > f (yi (k))

false, if f (yi (k + 1)) ≤ f (yi (k))
(16)

ω =
(

1.1 − Gbi

Pbi

)
(17)

If the SMO algorithm succeeds, the position and velocity of particle i is calculated with the local
leader, global leader, and its own conscience according to Eqs. (18) and (19). All of the particles’
position and velocity ranges are updated and the algorithm will terminate with the optimum fitness
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value, and the final result will be the output.

X k+1
i = X k

i + U (0, 1) × (
X k

i − GLk
m

) + U (0, 1) × (
X k

r − LLk
m

)
(18)

V k+1
i = X k+1

i − X k
i (19)

The proposed hybrid SMPSO algorithm pseudo-code is given below.

Algorithm Hybrid SMPSP Algorithm

5 Image Dehazing Model Using Atrous Convolution-Based Residual Deep CNN
5.1 Atrous Convolution-Residual Deep CNN

In general, activation functions employed in convolution operations are typically utilized to
extract the input data information by injecting a non-linearity into the network. The deep CNN
uses 2D convolutional kernels which spans along the input image’s rows and columns and extract
the features layer by layer. More feature maps will be extracted with the increase in layers, but at the
expense of network complexity and training time. The deep learning model of atrous convolution-
based residual deep CNN is shown in Fig. 4.

The typical network architecture consists of four convolution layers designed with vanilla convo-
lution, one max-pooling layer, four atrous convolution layers, concatenation of feature maps, residual
connections, and skip connection. The Parametric REctified Linear Unit (PReLU) [40] activation
function is used to combat the over-fitting and allow the network to learn more complex functions.
The gradient descent algorithm used for this research is Stochastic Gradient Descent (SGD). The
performance of the dehazing process is improved by maintaining the optimum batch size, epochs and
the learning rate for more iterations using the hybrid SMPSO algorithm.
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Figure 4: Deep learning model of atrous convolution-based residual deep CNN

The feature maps will succeed from one layer to the next layer and convolve with the filter banks
in the corresponding convolution layer. The response of each convolution layer is calculated using
Eq. (20).

V l+1
j = f

(∑
i
V l

i ∗ kl+1
i,j + bl+1

ij

)
(20)

here, V l+1
j and V l

i are the respective feature maps of the (l + 1)th layer and lth layer, k is the 2D
convolution kernel, ∗ denotes the convolution operator, i, j represents the current layer ith feature
map to the next layer jth feature, f is the activation function and bl+1

n is the offset. The first shallow
convolution layer (l = 1) learns the feature maps from the hazy input image.

The issue of overfitting occurs when there are fewer training samples than there are feature maps.
To overcome this, PReLU activation function is used because of its superior convergence functionality
than the Sigmoid and Tanh functions. The form of the PReLU activation function with learnable
parameter zi as in Eq. (21). Max-pooling operation [41] further reduces the features resolutionand
network parameters and maintains texture information of the image patch.

f (zi) = max (0, zi) + ai min(0, zi) (21)

The process of dehazing requires many feature maps to maintain the resolution. The latest U-Net
[42] and 3D-Unet [43] utilize the convolution layers between features of different resolutions. This
leads to a loss of feature representation which could not serve the purpose. A linear mapping using the
shortcut connection with a convolution layer of size 1 × 1 increases the network training speed and
combines features from different depths to communicate between the other resolutions. The features
from different depths are concatenated to the final residual output.

The shallow convolutional layers of the network use a small receptive field to learn the short-range
contextual information (local information). The deep atrous convolution layers use the larger receptive
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field to understand the long-range contextual information (global information). This enhances the
extraction of contextual information. The global features of deep layers from different depths are
propagated to the final output, resulting in a residual image. The atrous convolution kernel position
can be expressed as in Eq. (22).

y (i) =
∑

j
x (i + r · j) w [j] (22)

here, x and y is are the respective layer input and output with a kernel w, i is the kernel position, and
r is the dilation rate.

Every CNN model typically anticipates the normalized image before processing to reduce the
dimensions and computational complexity. The normalized input images are split into patches, pooled
in batches of size N, and sent to the CNN model. In the experiment, we chose the of 256 × 256 size
input image patch to the network, and N = 50 as the batch size for training.

The shallow two vanilla convolution layers of the model are made up of 16 filters with stride equal
to one with a kernel of 9 × 9. The max-pooling layer has a receptive field of 2 × 2. The second set of
vanilla convolution layers of the model consists of 32 filters with a stride equal to one with kernel size
7 × 7. The deep atrous convolution layers consist of 64 filters and 128 filters with kernel sizes of 3 × 3
with a rate of 2 and 3 respectively. The network learns about 375,785 parameters in total from training.

5.2 Optimized Atrous Convolution-Based Residual Deep CNN
To enhance the dehazing performance of the atrous convolution-based residual deep CNN

method, the hybrid SMPSO algorithm optimizes the batch size (B), epochs (E), and learning rate
(L) with the objective function of optimum MSE and PSNR as in Eq. (23).

Obj = argmin
B, E, L

(
1

PSNR

)
(23)

5.3 Loss Function
In recent image dehazing research, the different combinations of loss functions evolve endlessly

to increase the image details. This increases the risk of tuning the hyper-parameters. After extensive
testing, using a mean absolute error (MAE) function as in Eq. (24), as the loss function of our proposed
method can have an apparent dehazing effect, as this function is sensitive to sparse features of the input
image.

LossMAE = 1
CWH

∑
m

∑
n

∑
p
||Ẑm,n,p − Zm,n,p|| (24)

here, Ẑm,n,p represents the recovered haze-free image, and Zm,np represents the corresponding ground
truth training label, C,W,H denotes the channel count, width and height of the training image
respectively.

6 Results and Discussions
6.1 Experimental Setup

The proposed image dehazing framework requires TensorFlow deep learning framework. The
optimized batch size is 48 and 44; optimum number of epochs is 75 and 62; the optimum learning
rate is 0.84 and 0.76 for corresponding datasets. The network training and evaluation are performed
in a server with a personal computer, 16 GB RAM, Intel® Core i7-1280P Processor, and NVIDIA
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Graphical Processing Unit to speed up the network operation. The network is subjected to critical
training and reconstruction constraints.

6.2 Performance Metrics
The performance assessment metrics used for analysis in this research work are Mean Square

Error (MSE), Peak Signal to Noise Ratio (PSNR), Mean Absolute Error (MAE), Average Difference
(AD), and Maximum Difference (MD) and Structural Similarity Index (SSIM).

(a) Mean Square Error (MSE): It is a dispersion metric for measuring the efficiency of image
enhancement algorithms in the applications of real-world image processing. It is measured as
the difference among the recovered clear image and the corresponding ground truth image as
in Eq. (25).

(b) Peak Signal to Noise Ratio (PSNR): It is a higher order and correlative metric depending on
MSE used to measure the quality of the recovered clear image as in Eq. (26).

(c) Mean Absolute Error (MAE): It is a conventional metric to measure the amount of haze effect
present in an input image as in Eq. (27).

(d) Average Difference (AD): It is widely used in image processing applications including object
detection and recognition. It is the average concern pixel change in the recovered image and its
respective ground truth image as in Eq. (28).

(e) Maximum Difference (MD): It is the maximum of the absolute difference among the recovered
image and its respective ground truth image as in Eq. (29).

(f) Structural Similarity Index Metric (SSIM): It is a higher order metric used to assess the quality
of the dehazed image concerning ground truth image as in Eq. (30), typically its value lies from
0 to 1.

The expressions for the above metrics are provided below

MSE = 1
MN

∑M

m=1

∑N

n=1

(
D(m,n) − G(m,n)

)2
(25)

PSNR = 10 log10

Imax
2

MSE
(26)

MD = ∣∣D(m,n) − G(m,n)

∣∣ (27)

MAE = 1
MN

∑M

m=1

∑N

n=1

∣∣D(m,n) − G(m,n)

∣∣ (28)

AD = 1
MN

∑M

m=1

∑N

m=1

(
D(m,n) − G(m,n)

)
(29)

here, D and G are the dehazed and corresponding hazy input image at location m, n coordinates with
a pixel count of M × N along the horizontal and vertical directions respectively, Imax is the maximum
possible intensity, typically it is set to 255

SSIM = (2μmμn + C1) (σmn + C2)

(μm
2 + μn

2 + C1) (σm
2 + σn

2 + C2)
(30)

here, μm, μn is the average of m, n, σm, σn is the standard deviation of m, n, σmn is the covariance of m, n
and C1, C2 are set constants to avoid any possibility of the denominator being zero.
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6.3 Statistical Analysis of Atrous-Deep CNN with Optimization Algorithms
The recovered clear images obtained using CNN [21], MSCNN [24], Ranking CNN [44], Deep

CA learning [45], Autoencoder [46], and the proposed method with an optimization algorithm, are
depicted in Fig. 5 for respective datasets.

Figure 5: Dehazed images using (a) Haze input (b) CNN [21] (c) MSCNN [24] (d) Ranking CNN [44]
(e) DeepCA learning [45] (f) Autoencoder [46] (g) Proposed deep learning network

The statistical analysis of MSE, PSNR, SSIM, AD, MD, and MAE using proposed atrous
convolution-based deep CNN with Deer Hunting Optimization (DHO) [47], Whale Optimization
(WO) [48], SMO [39], PSO [38] and newly designed hybrid SMPSO algorithm on the respective datasets
is shown in Table 1.

The analysis of MSE and PSNR for existing methods and the proposed method with hybrid
SMPSO algorithm on the respective datasets are shown in Table 2 and the analysis of SSIM, MAE,
AD and MD is shown in Fig. 6. The optimized solutions of meta-heuristic algorithms on the proposed
method are shown in Table 3.

The statistical analysis in Tables 1 and 2 shows that the proposed atrous convolution-based
hybrid SMPSO algorithm performs better than other optimization algorithms and existing methods
respectively. Table 3 shows that the optimum values of no. of epochs, batch size and the learning rate
areobtained with a proposed method with a hybrid optimization algorithm.
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The proposed atrous convolution extracts the full range of contextual information from the
low-frequency wavelet decomposed images. These reduces the number of convolution layers during
network training and enhances the efficiency of the network in dehazing process. The results obtained
shows the qualitative and quantitative performance of the proposed method with the optimum batch
size, epochs and learning rate using hybrid optimization.

Table 1: Statistical analysis of MSE, PSNR, SSIM, AD, MD and MAE using the proposed method
with different optimization algorithms

Dataset Methods/Terms Avg. MSE Avg. PSNR Avg. SSIM Avg. AD Avg. MD Avg. MAE

Atrous-Deep
CNN-DHO

77.066 19.94 0.76 0.814 0.57 0.809

Atrous-Deep
CNN-WO

75.093 20.014 0.764 0.786 0.562 0.774

SOTS
[RESIDE]

Atrous-Deep
CNN-SMO

69.032 19.987 0.802 0.731 0.437 0.723

Atrous-Deep
CNN-PSO

62.081 19.602 0.878 0.692 0.429 0.701

Atrous-Deep
CNN-SMPSO

56.265 24.968 0.891 0.62 0.311 0.63

Atrous-Deep
CNN-DHO

82.817 24.136 0.769 0.69 0.583 0.67

Atrous-Deep
CNN-WO

79.932 23.359 0.776 0.65 0.549 0.63

I-Haze Atrous-Deep
CNN-SMO

75.834 26.947 0.791 0.53 0.516 0.54

Atrous-Deep
CNN-PSO

73.516 27.562 0.826 0.48 0.43 0.49

Atrous-Deep
CNN-SMPSO

67.79 31.745 0.912 0.41 0.326 0.43

Table 2: Statistical analysis of MSE and PSNR for respective datasets

Methods/Terms Dataset CNN [21] MSCNN [24] Ranking CNN
[44]

DeepCA
learning [45]

Autoencoder
[46]

Atrous-
Deep
CNN-
SMPSO

Avg. MSE SOTS
[RESIDE]

65.754 81.637 71.256 77.513 73.825 56.265

I-Haze 75.263 89.726 79.168 85.637 82.492 67.79
Avg. PSNR SOTS

[RESIDE]
22.672 19.512 21.796 19.168 20.714 24.968

I-Haze 26.814 21.538 25.162 22.723 24.352 31.745
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Figure 6: Statistical analysis of SSIM, MAE, AD and MD on existing methods and proposed method

Table 3: Optimized solutions of meta-heuristic algorithms for the proposed method

Optimized solutions Epochs Batch size Learning rate

SOTS [RESIDE]

Atrous-Deep CNN-SMO 96 45 0.3468
Atrous-Deep CNN-PSO 93 40 0.673204
Atrous-Deep CNN-SMPSO 75 48 0.84074

I-Haze

Atrous-Deep CNN-SMO 81 52 0.710147
Atrous-Deep CNN-PSO 74 50 0.923873
Atrous-Deep CNN-SMPSO 62 44 0.764504

7 Conclusion

In this article, we propose an optimized atrous convolution-based Deep CNN using a hybrid
SMPSO algorithm for image dehazing without relying on atmospheric scattering models. This method
generates a clean image free from halo artifacts and poor contrast. The wavelets provide extensive
features useful for deep learning models and have high-performance achieving capabilities. The
proposed Deep CNN model uses the wavelet multi-resolution features for training, to estimate the
extent of the haze effect and predict the clear image from the haze patches. The hybrid optimization
algorithm is designed to fine-tune the batch size, epochs, and learning rate required during the
data model training. The designed atrous-deep CNN network inherits the local and higher-order
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features using atrous convolution and residual connection. The experimental analysis has proven the
outstanding performance of the proposed method and quantitative metrics like MSE, PSNR, SSIM,
MAE, AD, and MD have been considerably improved with existing optimization algorithms and deep
learning methods. The method further can be extended to real-world aerial hazy datasets in change
detection, image segmentation tasks, hazy video surveillance tasks and the network model can be
strengthened by optimizing more parameters for accurate estimation of the image scenes.
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