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Abstract: Spectral unmixing helps to identify different components present in
the spectral mixtures which occur in the uppermost layer of the area owing to
the low spatial resolution of hyperspectral images. Most spectral unmixing
methods are globally based and do not consider the spectral variability
among its endmembers that occur due to illumination, atmospheric, and
environmental conditions. Here, endmember bundle extraction plays a major
role in overcoming the above-mentioned limitations leading to more accurate
abundance fractions. Accordingly, a two-stage approach is proposed to extract
endmembers through endmember bundles in hyperspectral images. The divide
and conquer method is applied as the first step in subset images with only the
non-redundant bands to extract endmembers using the Vertex Component
Analysis (VCA) and N-FINDR algorithms. A fuzzy rule-based inference
system utilizing spectral matching parameters is proposed in the second step
to categorize endmembers. The endmember with the minimum error is chosen
as the final endmember in each specific category. The proposed method is
simple and automatically considers endmember variability in hyperspectral
images. The efficiency of the proposed method is evaluated using two real
hyperspectral datasets. The average spectral angle and abundance angle are
used to analyze the performance measures.

Keywords: Hyperspectral image; spectral unmixing; spectral matching;
endmember bundles; fuzzy inference system

1 Introduction

The spectral processing of images plays an extensive role in the field of image processing. The main
advantage of using spectral information is that it immensely facilitates auto-processing, as compared
to spatial processing. With the help of airborne or spaceborne sensor systems, spectrometers capture an
area as several planes and synthesize data cubes commonly known as hyperspectral images. The limited
spatial and spectral resolution inherent to sensors leads to the concept of spectral unmixing. The goal
of spectral unmixing is to find different materials present in the image known as endmembers, noting
that their occupied area is known as abundance fractions. Almost every field, including agriculture
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[1], mining and geology [2], environmental monitoring [3], chemical detection [4], and astronomy, uses
hyperspectral image analysis [5].

Several endmember extraction methods discussed in the literature [6] differ in their assumptions
concerning mixing between pixels. A few of these methods assume the existence of only pure pixels and
are known as Linear Mixing Models (LMM) [7]. Some methods assume pixels are highly mixed; these
are commonly known as Non-Linear Mixing Models (NLMM) [8]. LMM methods include the Pixel
Purity Index (PPI) [9], Vertex Component Analysis (VCA) [10], successive projection algorithms [11],
N-FINDR [12], and Orthogonal Subspace Projections (OSP) [12]. These methods assume that pixels
exist only in the vertex of the region and extract those pixels as endmembers [13]. When endmembers
are highly mixed, a statistical approach termed Minimum Volume Constraint-Nonnegative Matrix
Fraction (MVC-NMF) is one of the best iterative algorithms to extract endmembers [14,15]. Still,
the need for detailed prior knowledge about the materials mixed and the non-linear function of
the mixed environment makes non-linear unmixing a complicated algorithm; therefore, most of the
methods that have been proposed are linear spectral unmixing as opposed to non-linear spectral
unmixing [16]. All the methods discussed above assume the endmembers are pure pixels with unique
spectral signatures and fail to consider the variability among the endmembers. Theoretically, an ideal
spectral signature for any given material does not exist, and its portion of variability depends on
location, surrounding material, sensor noise material composition, and variations in atmospheric
factors [17]. Also, few endmembers have the same spectral reflectance and can be differentiated only
in a particular wavelength band. One way to overcome this problem, as addressed in the literature, is
to treat endmembers as sets or bundles and endmembers as statistical distributions [17]. The methods
which ignore such spectral variability have led to poor abundance estimates, as indicated in earlier
studies [18].

In the literature, methods such as Multiple Endmember Spectral Mixture Analysis (MESMA)
[19], Automated Monte Carlo Unmixing [20], and Automatic Endmember Extraction (AEE) [21]
addressed the endmember variability problem in hyperspectral images. The MESMA and Automated
Monte Carlo Unmixing methods require a large spectral library that contains all possible spectra
variations for endmembers. AEE overcomes this limitation, but the final decision is made with the
help of the Fully Least Square Constrained (FCLS) or MESMA methods. Many endmember bundle
extraction methods [22,23] have been discussed so far, but the experiments fail to work when the sub-
region contains no pure pixels. Furthermore, clustering algorithms are used to obtain endmember
bundles [24], such as K-means, which works better for interclass variability than intraclass variability.
Consequently, clustering performance on grouping endmembers will not be fair and also fails to
consider the spectral variability among endmembers [25].

In summary, most of the existing endmember extraction methods adopt the occurrence of a pure
pixel and extract endmember from single standard spectrum for a certain pixel as well as do not
consider the endmember variability in hyperspectral images. To overcome this concern, a new approach
is proposed to extract endmembers from endmember bundles using Fuzzy Inference System (FIS).
This process generates multiple spectra for a single endmember and also duly considers the endmember
variability in hyperspectral images. The main contributions of our work are as follows.

(1) Hyperspectral images are abundant in spectral information and are divided into image subsets
where only redundant bands are removed with dimension reduction.

(2) Endmembers are extracted from each set of images in a particular wavelength range, to improve
the accuracy of estimation of endmembers, since a few of the endmembers differ only in a
particular wavelength band. For example, endmembers of dirt and road have a similar spectral
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reflectance curve but differ only in the wavelength range of 100—150 nm [26]. This type of error
can be observed only in the end result. Extraction of spectral reflectance curves from multiple
sub-bands helps to minimize this type of errors in the divide and conquer method.

(3) The Fuzzy Inference System (FIS) processes the extracted endmembers to obtain endmember
bundles using spectral matching parameters.

(4) Spectral matching is adopted to identify spectral similarity measures between endmembers
which automatically account for the illumination change effects [27].

(5) Hyperspectral images are of high dimensionality, so implementing the algorithm in parallel
minimizes the memory requirement [28].

2 Proposed Work

The proposed method extracts endmember bundles by combining unmixing algorithms and
a rule-based fuzzy inference system by employing spectral matching parameters. The proposed
method consists of five stages: (1) Image subset generation; (2) Dimension reduction; (3) Endmember
extraction; (4) Fuzzy Inference System (FIS); (5) Final endmember selection.

The proposed method is illustrated in Fig. 1.
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Figure 1: Block diagram of the proposed methodology
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2.1 Image Subsets

The original hyperspectral image H is divided into image subsets {H,, H,H; ..., Hy}. In the
literature, image subsets are chosen randomly or based on sampling at different scales. As hyperspectral
images are rich in spectral information, and all the non-redundant bands are utilized in the proposed
method to extract endmembers. By trial and error, the number of image subsets is fixed as a subset
containing a minimum of 20 bands. If the number of bands is ‘B’, then the original hyperspectral image
H is divided into (B/20) number of image subsets. The remaining bands are added to the last image
subset.

2.2 Dimension Reduction

The huge dimensions and memory needed to process a hyperspectral image in any field increase
the complexity of the post-processing steps [29]. This problem is resolved in two ways in the proposed
methodology. In the first step, the original hyperspectral image is divided into an image subset of 20
bands. Second, dimension reduction is performed on image subsets to process only the informative
bands [30]. Therefore, bands with maximum non-redundant information are chosen using a Scale
Invariant Feature Transform (SIFT) [31]. The SIFT extracts highly distinct invariant keypoints for all
bands in hyperspectral images. A distinct invariant keypoints is obtained for each pixel in an image as a
feature vector which comprises of its location in original and scaled image using gaussian function, in
terms of gradient magnitude and orientation. This feature vector helps to find the candidate matching
using euclidean distance. Let A;, A, be any two band images in hyperspectral data. For a keypoint in an
image A,, its nearest neighbor pixels and their feature vector in the image A, are chosen as the keypoint
to be matched. The euclidean distance value is measured between the feature vectors of the keypoints
chosen. The histogram is plotted for the distance values measured and threshold value is obtained. A
match between 2 keypoints in A;, A; is accepted only if the distance of their feature vector is less than
the threshold. This results in a number of keypoint matches (K;, K;) between two images (A;, A;). Since
the number of matches is not same for (A;, A;) and (A;, A;) pairs, the matching is done in twofold for
both the pairs and the final maximum number of keypoint matches is chosen as matching value (M;).
Finally, the dissimilarity matrix D; is obtained which is a symmetric matrix and is given by

M;
D;=D;=100|1—- ——"—— (D
min(K;, K;)
The matrix D; indicates the dissimilarity between any 2 band images in hyperspectral data. High
D; means large dissimilarity between the two images. Hence, the first ‘e’ number of high dissimilar
values from D;; are identified and their corresponding bands are chosen as non-redundant bands.

2.3 Endmember Extraction

Endmember estimation is a challenging task since the spectral reflectance curves are strongly
correlated to each other, resulting in a highly mixed matrix of endmembers ‘¢’. Existing endmember
extraction algorithms assume the existence of at least one pure endmember in the hyperspectral data.
The estimation is based on an extreme pixel with: a high-score PPI [32], a set of pixels corresponding
to a large volume N-FINDR [33], Simplex Growing Algorithm (SGA), convex regions covering
the desired pixels Sequential Maximum Angle Convex Cone (SMACC) [34], and Minimum Volume
Enclosing Simplex (MVES) [35]. Most of these algorithms find the vertices as its endmember and fail
to determine if multiple endmembers exist in the vertex or identify an endmember if no endmember
exists in the vertex. Existing methods represent endmembers as a single point in a high-dimensional
space and fail to take into account the spectral variability of the endmember in a scene. The suggested
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approach to overcome this problem is to extract endmembers as sets and spectral endmembers as
statistical distributions. To extract endmembers as sets is to generate reflectance curves for a single
material. This paper extracts endmembers as sets with the aid of endmember extraction algorithms
and a fuzzy inference system. Endmembers are extracted using well-known algorithms, namely VCA
and N-FINDR. The choice of these algorithms is based on their performance and popularity. Thus,

a hyperspectral image is divided into *(B/20)’ sets of sub-bands and from each sub-bands ‘¢’ number
B
of endmembers extracted with the help of VCA and N-FINDR. In total, [(%) * e] numbers of

endmembers are extracted.

Basically, VCA is based on decreasing or increasing the volume of pixels to find the endmember.
N-FINDR is applied on non-redundant bands to extract endmembers. N-FINDR is evaluated on
each pixel to estimate endmembers. A pixel that contributes the maximum volume is chosen as an
endmember. The procedure is repeated for all pixels until there is no replacement that qualifies as
an endmember. The algorithm is applied to all image subsets, and endmembers are extracted. The
endmembers extracted from all image subsets are combined as a single spectral library of endmembers,
which consists of spectra of different endmember materials in hyperspectral images.

2.4 Fuzzy Inference System

The extracted endmembers need to be matched with ground truth to identify it in a particular cat-
egory of an endmember. This can be done automatically with the help of spectral matching algorithms.
Furthermore, the spectral similarity measures used for identifying an endmember, automatically
consider the illumination change effects.

In essence, fuzzy logic is an extension of multi-valued logic [36] and provides results better than
crisp classification methods in grouping endmembers. In this paper, two spectral matching parameters
are chosen, namely Spectral Information Divergence (SID) and combined Spectral Similarity Value
(SSV) to group endmembers with the help of the Fuzzy Inference System (FIS).

Let s, be the spectral signature of ground truth endmember and s, be the spectral signature of
extracted endmember. Then SID and SSV are defined as follows.

The spectral matching parameter SID is derived from divergence information theory [37]. Its
performance in discrimination is better than spectral angle and gives spectral discrimination values
based on the probability value between the target and reference spectral signatures. The parameter is
more effective in expressing the spectral variability between two spectral signatures [38]. SID can be
denoted mathematically as:

SID (s,.5.) = D (s,Is.) + D (s.]]s,) . )
where
n n n P
D (s,lls.) = D PD;(s,lls.) = D P (L (s;) — L (s)) = D Pilog, (al) ;
=1 =1 1=1 !
And

D(slls) = > aDi(slls) = > allis) —L(s)) = > qlog, (%) :
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Obtained from the probability vectors P = (P, P,,...P,) and q = (q;, Qs - . . q,)' for the spectral
and q, = St . The self-information provided by s, for band 1

Zl 1 Sql Zl 1 Set

is defined by I, (s,) = —log, (P,) and the same for s, is I; (s.) = — log, (q)).

signatures s,, s, where P, =

The next parameter chosen is the combined Spectral Similarity Value (SSV). The SSV parameter
gives a combined measure value of spectral correlation and euclidean distance [39]. Thus, SSV utilizes
shape and distance to measure the similarity between ground truth and the extracted spectra. SSV can
be denoted as:

SSV = \/EDSZ + 1 -, )
where EDS is the Euclidean distance similarity and is defined as:
EDS = lel (Sa — o) 4

The parameter p is the spectral correlation value and is calculated using Eq. (5):

1 |:Z:1=|(5gl - Mg)(scl - Mc)]

n—1 0,0,

where p, and . are the extracted mean spectra of ground truth. Similarly o, and o, are the standard
deviation of ground truth spectra and extracted spectra

These two parameters defined in Eqs. (2) and (3) are calculated and taken as input to the fuzzy
inference system. The Sugeno Fuzzy Inference system is used to group the endmembers with the help

of spectral matching parameters. There are two inputs; the output is the number of endmembers ‘e’
The number of endmembers is calculated using a virtual dimensionality algorithm [40], which is used
to fix the number of outputs of the fuzzy inference system. In total, nine rules are framed with the
help of inputs, as shown in Fig. 2. The rules are framed such that if any two of the input parameters
is a minimum, then that particular endmember is grouped in that category. The membership function
is commonly chosen as a gaussian membership function. A single endmember is compared with
ground truth spectra using FIS based on the input of spectral matching parameters and categorized.
The procedure is repeated until all endmembers are grouped in a particular category. Since spectral
matching methods and FIS are utilized to extract endmember bundles, this method will be more
efficient than existing clustering-based methods. The proposed method aims to identify endmembers
through endmember bundles as a good estimation helps to obtain accurate abundances.

2.5 Final Endmember Selection

The extracted endmembers are grouped with the help of the fuzzy inference system to obtain
endmember bundles. The endmember with the minimum SID and SSV is chosen as the final
endmember.

The steps to implement the proposed methodology are explained in detail below.

Step 1: The hyperspectral image (H) is divided into image subsets {H,, H,H; ... Hy} of size 20
bands. The extra bands after division are added to the last image subset.

Step 2: The Scale Invariant Feature Transform (SIFT) is used to select the non-redundant bands
from all image subsets.
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Step 3: Endmembers are extracted from the dimension-reduced image subsets with the help of
VCA and N-FINDR algorithms.

Step 4: The endmembers extracted in step 3 are collected as a single library of endmembers.

Step 5: All the endmembers are compared with ground truth endmembers and grouped in a
particular category using spectral matching parameters as inputs to the fuzzy inference system. The
output of the fuzzy inference system is the set of endmembers grouped in a particular category.

Step 6: An endmember from each category with a minimum or moderate value of two spectral
matching parameters is chosen as the final endmember of that category.

Step 7: Further, abundance maps are generated from the extracted endmembers using a Fully
Constrained Least Squares algorithm (FCLS) [41] to analyze the performance of the proposed
methodology.

| Rulel: JfSID is low and combined S5V is low then output is an
Endmember

Rule2: Jf STD is low and combined S5V is medthen oufput is an
| Endmember

Rule3: jf STD is low and combined S5V is high then output is not
an Endmember

Ruled: Jf SIDis med and combined S5Vis low then output is an Output

q Endmember
—
N Rulel: Jf §ID is med and combined SSVis med then output isan

Endmember
Rule 6: Jf $ID is med and combined S5V is high then output is not
an Endmember
Rule 7: If SID is high and combined S5V 1s low then output is an

Endmember

g Rule 8: If 51D is high and combined S5V is med then oufput is an
Endmember

Rule 9: jf SID is high and combined 55V is high then output is
nof an Endmember

Figure 2: The proposed fuzzy inference system to extract endmember bundles

3 Results

This section outlines the experiments performed on two real datasets. The performance of the
proposed method is justified by comparing the results with other typical methods. The performance
measures adopted to analyze the results are listed in Table 1.

Table 1: Performance metrics

Parameter Mathematical Formulae Definition
_ (e..¢!) _ .
Spectral angle distance (SAD) SAD = cos™ SAD gives the distance
(e -[let] between extracted spectral

signature and ground truth
spectral signature as an
angle.

(Continued)
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Table 1: Continued

Parameter Mathematical Formulae Definition
| L ()
Average spectral angle distance A —SAD = N €°s B s Measures the average SAD
(A-SAD) (e -[let] of all the endmembers.
a,.a;
Abundance angle distance AAD = cos™ (g—‘)t AAD gives the distance
(AAD) (lal - [a; between the extracted

abundance map and
ground truth abundance
map as an angle.

1 a,.al
Average abundance angle A—AAD = N cos™! (g—‘)t Same as A-SAD but
distance (A-AAD) (”ag ” ‘ a ” calculated for abundance
maps

The spectral angle distance is used to validate endmembers, and the abundance angle distance is
utilized to validate abundance maps. The details of real hyperspectral datasets used for experimenta-
tion are listed in Table 2.

Table 2: Hyperspectral datasets

Parameters Jasper Ridge Samson

Spatial Size 100 x100 95 x 95

Spatial resolution 9.46 nm per pixel  9.46 nm per pixel
Total bands 224 156

Wavelength range 380-2500 nm 401-889 nm

3.1 Jasper Ridge Dataset

Jasper Ridge is one of the most popular datasets used to evaluate unmixing results. Jasper Ridge
is an example of data with a complex distribution of several features. The endmembers in this dataset
are Tree, Water, Dirt, and Road. In the state of art methods, two of the most widely-used methods to
unmix the data that is also used for initialization of many complex algorithms are VCA and N-FINDR.
Therefore, the proposed method has been implemented using these two methods and abbreviated
as Fuzzy Vertex Component Analysis (FVCA) and Fuzzy N-FINDR (FNFINDR). Furthermore,
the proposed method is also compared with a recent method, Maximum Distance Analysis (MDA)
[42], and with traditional VCA. NFINDR methods are discussed in the literature. Fig. 3 displays the
comparative results of the Jasper Ridge image in terms of SAD and A-SAD.

Figs. 4 and 5 show the extracted endmembers and abundance maps generated for the Jasper
Ridge dataset. The performance of the proposed methods FVCA and FNFINDR, has been improved
compared with traditional VCA and NFINDR methods resulting in minimum error values. The
extracted endmembers of FVCA, FNFINDR are more similar to the ground truth endmember. In
the case of FVCA, the extracted endmembers, Water, Dirt, and Road, are consistent with ground
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truth endmembers. In the case of FNFINDR, the extracted endmembers, Tree, Dirt, and Road, are
consistent with the ground truth endmembers. The proposed method results are comparable with the
recent endmember extraction method, MDA. The minimum SAD values and their average are listed in
Table 3. The bold value indicated the best performance. The abundance map AAD values are tabulated
in Table 4, with the best performances highlighted in bold. The high accuracy of AAD values indicated
that abundance maps generated by the proposed method are the same as the reference abundance maps.
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P RS [ L
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= SAD Tree
02 A
ESAD Water 015 ]
015 ® SAD Dirt
mSADRoad O
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Figure 3: Performance comparison of SAD and A-SAD values for the Jasper Ridge dataset
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Figure 4: (Continued)
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Figure 4: Results of endmember extraction methods (X axis-Reflectance, Y axis-Wavelength). The
extracted spectra of the proposed FVCA method are more similar to ground truth spectra (Red-ground
truth, Blue-extracted)
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Figure 5: Results of abundance maps generated from the Jasper Ridge dataset. FVCA and FNFINDR
maps are more consistent with ground truth maps

Table 3: Jasper Ridge-SAD

Methods SAD A-SAD
Tree Water Dirt Road

VCA 0.1845 0.3187 0.1798 0.1628 0.2114

N-FINDR 0.1676 0.2514 0.2523 0.1022 0.1933

MDA 0.1601 0.2129 0.1941 0.1268 0.1735

FVCA 0.0324 0.1022 0.1112 0.0503 0.0740

FNFINDR 0.0556 0.0998 0.0912 0.1224 0.0923

Table 4: Jasper Ridge-AAD

Methods AAD A-AAD
Tree Water Dirt Road

VCA 0.1973 0.2285 0.1254 0.1698 0.1802

N-FINDR 0.2057 0.2419 0.1957 0.1254 0.1921

FVCA 0.183 0.0964 0.1866 0.1498 0.1539

FNFINDR 0.1112 0.1384 0.1108 0.1094 0.1174

Since the existing VCA and NFINDR algorithms extract endmembers globally, to justify the
performance of the proposed divide-and-conquer-based endmember extraction method using the
fuzzy inference system, abundance maps were generated, and the results were analyzed. The abundance
maps generated by the proposed method are better than existing methods, as shown in Fig. 5.

3.2 Samson Dataset

The second real dataset used is the Samson image. The Samson dataset contains three endmembers
Rock, Tree, and Water. The divide-and-conquer-based proposed methodology results are better than
traditional VCA and NFINDR. Also, the results from the proposed method are more comparable to
the recent endmember extraction method, MDA. Fig. 6 displays the comparative results of SAD and
A-SAD values for extracted endmembers in Samson image.
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Figure 6: Performance comparison of SAD and ASAD values using the samson dataset

The high accuracy of SAD values in Table 5 indicates that the best performance came from the
proposed method. The generated abundance maps agree well with reference abundance maps for the
proposed method. The MDA and the proposed method perform equally for the Samson image as
validated in Table 6.

Table 5: Samson SAD

Methods SAD A-SAD
Rock Tree Water

VCA 0.0445 0.1698 0.2165 0.1436

N-FINDR 0.0433 0.1545 0.3554 0.1844

MDA 0.0503 0.1228 0.1361 0.1030

FVCA 0.0173 0.1128 0.0335 0.0545

FNFINDR 0.1448 0.1009 0.0813 0.1090
Table 6: Samson-AAD

Methods AAD A-AAD
Rock Tree Water

VCA 0.265 0.2511 0.3935 0.3032

N-FINDR 0.2454 0.2491 0.3554 0.2833

FVCA 0.2329 0.1675 0.2409 0.2137

FNFINDR 0.1985 0.1595 0.2239 0.1939

Fig. 7 displays the accuracy of A-AAD values for the two real datasets under experimentation.
The minimum value was achieved for the proposed methods, FVCA and FNFINDR.
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Figs. 8 and 9 show the extracted endmembers and abundance maps generated for the Samson

dataset.
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Figure 8: Results of endmember extraction methods (X axis-Reflectance, Y axis-Wavelength). The
extracted spectra of the proposed FVCA method are more similar to ground truth spectra (Red-ground
truth, Blue-extracted)
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Figure 9: Results of abundance maps generated from the Samson dataset

4 Discussions

The above experiments on two real datasets show that the proposed method based on the
divide-and-conquer strategy has extracted endmembers more similar to ground truth endmembers.
This premise is further justified considering the lower SAD and A-SAD values for the extracted
endmembers. The library of endmembers, extracted before selecting the final endmember before
categorizing using FIS, is shown in Fig. 10. Also, the generated abundance maps generated are more
consistent with ground truth abundance maps, and these have been validated in terms of lower AAD
and A-AAD values. The performance of the proposed method has been analyzed with the help of two
different feature distributions from real datasets. Jasper Ridge is a scene with a complex distribution of
features, whereas Samson is a scene with a less complex distribution of features. Still, the performance
of the proposed method is good for both datasets.

There are still some unresolved issues in the proposed method. First, considering that the original
hyperspectral data is divided into image subsets of 20 bands, the dividing stage is still a complicated
problem, as indicated in the literature, and a stable algorithm will need to be devised for similar
efforts in the future. Second, additional spectral matching parameters need to be included in the fuzzy
inference system to generate endmember bundles. In the future, the proposed method needs to be tested
on data with variable noise levels, and its performance subsequently analyzed.
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Figure 10: Library of extracted endmembers for the jasper ridge and Samson datasets
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5 Conclusion and Future Work

Although many spectral unmixing techniques are available to analyze remote sensing hyperspec-
tral data, most methods assume endmembers as pure pixels and fail to consider endmember variability
and generate spectra from a single point. The proposed method considers these factors and extracts
endmember bundles, thereby improving the estimation of abundance maps. In the first stage, the full
hyperspectral data is divided into image subsets, and then extracts the endmembers using an existing
algorithm. The extracted endmembers from different image subsets are conquered using a library of
spectra. The fuzzy inference system using spectral parameters is applied to extract endmember bundles
by comparing a single spectrum with all ground truth spectra. The proposed method is simple and
automatically considers the endmember variability in the hyperspectral image. The proposed method
aims to extract endmember bundles, and their abundance fractions are obtained using FCLS. The
proposed method has been tested on datasets with different complexities and feature distributions,
and the results are promising for both datasets. In terms of quality measures, the proposed method
has achieved minimum SAD and AAD values compared with the state-of-the-art methods. Future
work includes generating abundance maps from endmembers of multi-temporal images to detect and
analyze changes in mangrove forests caused by natural disasters and anthropogenic disturbances.
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