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Abstract: In recent years, as intelligent transportation systems (ITS) such
as autonomous driving and advanced driver-assistance systems have become
more popular, there has been a rise in the need for different sources of
traffic situation data. The classification of the road surface type, also known
as the RST, is among the most essential of these situational data and can
be utilized across the entirety of the ITS domain. Recently, the benefits of
deep learning (DL) approaches for sensor-based RST classification have been
demonstrated by automatic feature extraction without manual methods. The
ability to extract important features is vital in making RST classification more
accurate. This work investigates the most recent advances in DL algorithms for
sensor-based RST classification and explores appropriate feature extraction
models. We used different convolutional neural networks to understand the
functional architecture better; we constructed an enhanced DL model called
SE-ResNet, which uses residual connections and squeeze-and-excitation mod-
ules to improve the classification performance. Comparative experiments with
a publicly available benchmark dataset, the passive vehicular sensors dataset,
have shown that SE-ResNet outperforms other state-of-the-art models. The
proposed model achieved the highest accuracy of 98.41% and the highest F1-
score of 98.19% when classifying surfaces into segments of dirt, cobblestone,
or asphalt roads. Moreover, the proposed model significantly outperforms
DL networks (CNN, LSTM, and CNN-LSTM). The proposed RE-ResNet
achieved the classification accuracies of asphalt roads at 98.98, cobblestone
roads at 97.02, and dirt roads at 99.56%, respectively.
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1 Introduction

The type of road surface is crucial information for intelligent transport systems (ITS), as it affects
driver comfort and safety. For example, potholes or other damage, a sudden change to a more slippery
surface, and other factors can make vehicle control difficult and lead to accidents. Classification of
road surface types and their quality is essential for autonomous driving and advanced driver-assistance
systems (ADAS) and road infrastructure departments for inspections. Regarding ADAS in self-driving
navigation systems, surface type and quality classification can show how to drive more safely and
comfortably. Regarding road infrastructure departments, the process of finding critical points can
be sped up and made better if sections that need more attention and maintenance can be found
automatically.

Accurate classification of a road surface is fundamental to improving vehicle dynamics. Numerous
technologies, including anti-lock braking systems (ABS), traction control systems (TCS), connected
vehicles (V2V), and vehicle-road infrastructure (V2I), can be fed with this information. Each to
reach its full potential, the most exact surface properties are needed. With the development of these
technologies, it will be possible to enhance performance, comfort, safety, and traffic management,
among other things.

There are a variety of solutions proposed for this RST classification challenge. Based on a
systematic literature review [1], RST classification can be divided into three main categories: three-
dimensional (3D)-reconstruction-based, vision-based and sensor-based RST classification. The 3D
reconstruction approaches rely on 3D laser scans to make accurate models of surfaces. Then,
anomalies in the road surface are found by comparing these models to a baseline model. In this
method, a 3D laser scanner uses reflected laser pulses to produce precise 3D digital representations
of natural objects, including irregularities in the road’s surface. The distress features are then retrieved
from the generated point clouds (i.e., a collection of points representing the three-dimensional form
of road surface distress). This approach has been studied in detail by [2,3]. Nevertheless, the above
methods necessitate expensive laser scanners [4] and are very expensive when keeping track of large
road networks. Vision-based methods are based on the image processing analysis of captured images
of damaged pavements. The fundamental idea behind this method is to make use of images that have
been geotagged and were taken by a camera or video system that was installed on a moving vehicle
with its downward-facing lens pointed toward the road surface. Using a method such as a Canny
edge detection algorithm [5], it is possible to automatically detect any suspicious road surface distress
features from the gathered geotagged video images, such as potholes and cracks. By [6,7], vision-
based techniques were widely investigated. Even though these methods are less expensive than 3D
reconstruction methods, they depend on ambient circumstances, such as lighting and shadow effects,
among others [8]. In sensor-based techniques, road surface irregularities are recognized based on the
vibration rate of driving cars, as measured by motion sensors (i.e., gyroscopes or accelerometers).
Theoretically, when a vehicle goes over uneven road surfaces, such as potholes, cracks, manholes, or
expansion joints, it is shaken more than it would be when driving over smooth road surfaces. The
sensor-based approach is a viable, simple, low-cost solution [9]. Given these advantages of sensor
technology, this work focuses on sensor-based RST classification.

Deep neural networks (DNNs) have recently progressed significantly in various sensor-based
RST classification problems. A hierarchy of features, from low-level to high-level abstractions, can be
automatically extracted and represent features to ones that have demonstrated their viability. DNNs
circumvent the heuristic parameters of traditional hand-designed features and scale more effectively
for more complicated behavior recognition tasks. Recent studies on deep learning (DL) methods have
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shown that DL methods are superior in classifying time series compared to hand-picked feature-based
methods [10]. Convolutional Neural Networks (CNNs) is a DL technique frequently applied to sensor-
based Human activity recognition (HAR). Even though sensor-based RST classification has been
intensively researched, an effective feature-learning strategy must be exhaustively analyzed.

One downside to the DL paradigm, especially when using advanced DL architectures, is the
increased cost of processing the vast datasets available. However, this cost is worth it because an RST
classification system requires accurate results from the DL models.

In this study, researchers thoroughly analyze numerous state-of-the-art time-series classification
models for RST using a CNN-based feature extractor that serves as the “backbone”of the formulation.
Moreover, we developed an advanced DL model called SE-ResNet by embedding squeeze-and-
excitation (SE) modules and residual connections to improve classification performances. Inspired by
previous works, we take advantage of a residual network (ResNet) to extract more spatially abstract
features of CNN. SE components were also integrated into the one-dimensional ResNet to enhance
identification performance.

The critical contribution that makes our proposed technique outperform state-of-the-art tech-
niques in the classification of RST can be summarized as follows:

• A deep residual network (called SE-ResNet) is introduced for RST classification based on
motion sensors (e.g., accelerometer, gyroscope, and magnetometer). The presented SE-ResNet
works as a mixture of residual connections and channel attention mechanism of squeeze-and-
excitation modules to improve classification performances.

• We test our proposed model on a benchmark passive vehicular sensors (PVS) dataset that
collected motion signals of vehicles while they were driven on three different road surface types.
Experimental results show that our proposed SE-ResNet outperforms existing state-of-the-art
models.

• Based on experiments with different DL architectures, we found that the ResNet backbone is
suitable for classifying RST using sensor data.

The rest of this study is broken into six sections: Section 2 reviews related works and the scientific
background of RST classification. Section 3 describes the proposed methodology comprised of a
sensor-based RST framework and a proposed deep residual model. Following that, Section 4 presents
experimental studies using a benchmark dataset and compares the results of various DL models,
including the proposed model. In Section 5, we examine the effect of sensor signals on the effectiveness
of the RST classification system. Finally, Section 6 summarizes our results and possible future works.

2 Related Studies

This section summarizes previous research on RST classification based on sensor data. In
addition, we provide brief reviews on state-of-the-art DL networks of time-series classification that
are applicable for RST classification.

2.1 Sensor-Based Road Surface Type Classification
Few studies have been conducted during the past decade on the classification of road surface

types using data from inertial sensors [11,12]. Two different vehicle types were used in the discovered
experiments: ground robots on wheels [13,14] and cars [15–17]. Due to the significant structural
differences between the two categories of vehicles and the fact that there is a dependence on the type
of vehicle, we limited our review of the research to those that used sensors built into cars.
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In [18,19], an accelerometer was attached to the suspension of the vehicle near the wheel on the
right side of the vehicle. The acceleration and speed data collected by the global positioning system
(GPS) were used to develop the machine learning (ML) models. The road was classified into four
classes (asphalt, concrete, grass, and gravel) with an average accuracy of 69.4% using sensor data
trained with a support vector machine.

The smartphone equipped with sensors was fastened to the area of the vehicle’s dashboard using
a flexible suction mount, as described in [15]. The model used accelerometers and speed data from
GPS. According to the study’s results, the model combining the complexity invariant distance and
the longest common subsequence similarity yielded the best results. The road surface classification
as asphalt/flexible pavement 98.28%, cobblestone streets 84.41%, and dirt roads 78.64% obtained an
average accuracy of 87.68%.

After reviewing the related studies, we found that the studies use only acceleration and speed data,
and ML models. These methods were limited by a feature extraction process that requires hand-crafted
approaches to select appropriate features to construct efficient classification models.

2.2 State-of-the-Art DL Networks
In light of the importance of effectively classifying time series data, such as sensor data, we have

proposed hundreds of learning-based algorithms as potential solutions to this problem [20]. This
section examines the success of DL [21] on various classification problems, leading to the recent
adoption of DL models for TSC [22]. The field of computer vision has changed radically with the
introduction of deep CNNs [23]. As a result of the success of DNNs in computer vision, several
DNN designs have been developed to address natural language processing (NLP) tasks such as
word embedding learning, machine translation, and document classification. DNNs have also had
a significant impact on the speech recognition community. Remarkably, the sequential nature of the
data is the reason for the similarities between NLP and speech recognition tasks. Moreover, this is one
of the essential characteristics of time series data [24].

Recently, we have gained attention for employing successful DL networks from the image domain
to investigate their performance in the TSC domain. Fawaz et al. [25] developed an InceptionTime
model based on the University of California–Riverside (UCR) time series archive to solve general TSC
problems. They used the 85 datasets in the archive to compare and modify what the Hierarchical Vote
Collective of Transformation-based Ensembles (HIVE-COTE) algorithm has been able to achieve with
the same datasets. Ronald et al. [26] proposed the iSPLInception model, which builds on the Inception
and ResNet backbones and employs a multichannel-residual composite architecture for sensor-based
HAR research.

Analyzing related studies on DL approaches for TSC, we found that these models use CNN for
automatic feature extraction. A CNN feature extractor is frequently referred to as the “backbone”
when it comes to object identification. This is because the model architecture of the feature extractor
and the overall model structure are evaluated in different ways. In this study, we comprehensively
investigated other CNN backbone models and employed VGG16 [27], ResNet18 [28], PyramidNet18
[29], Inception-V3 [30], Xception [31], and EfficientNet B0. These models were proposed to solve the
image recognition problem, so we rebuilt the architecture of the models for RST classification.

3 Proposed Methodology

In this section, we describe the process used to employ a DL model and classify road surface
types using sensor data. The classification process is shown in Fig. 1. It comprises four stages:
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data acquisition, pre-processing, data generation, and training model and classification. Each step
is described in detail below.
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Figure 1: The methodology of RST classification based on sensor data

3.1 Data Acquisition
This study used a public benchmark called PVS dataset [32]. The vehicle was equipped with all

sensors. The camera was mounted outside of the vehicle’s roof and set to record the environment at
30 Hz. The receiver GPS was installed internally within the dashboard and recorded data at 1 Hz. To
accommodate data from points with different effects on the vehicle dependence attribute, six MPU-
9250 modules were installed throughout the vehicle. Three MPU-9250s were placed at the right and
left ends of the vehicle’s front axle: one module was placed on the vehicle’s handlebars, which were
placed below and near the vehicle’s suspension; the second module was placed on the body directly
above the tire and near the suspension; and a third module was placed on the vehicle’s dashboard in the
passenger compartment. The controlled positioning method was applied to the MPU-9250 module’s
sampling reference frame. The modules were placed so that the three axes of the sensor coordinate
system were parallel to the vehicle’s axes.

Consequently, the vehicle became the reference frame for sampling and analysis. To prevent signal
saturation, the accelerometer was calibrated to a full-scale value of 8 g, while the gyroscope was
adjusted to 1,000 deg/s. Both instruments were recorded at 100 Hz. The PVS dataset was used to
collect data from various contexts to obtain a variety of scenarios for the validation of the model. The
previously described sensor network was utilized in three different vehicles, three different drivers with
speeds ranging from 0 to 91.98 km/h, and three different scenarios in three other geographic locations,
with each scenario having three different surface types, including unpaved and paved road sections.
Details of the PVS dataset are shown in Table 1.

To fulfill the requirements of the PVS dataset, the inputs to the system consist of the sensor
signals derived from the gyroscope, accelerometer, and magnetometer. To facilitate synchronization, all
accelerometer, gyroscope, and magnetometer sensors on the MPU-9250 have been tuned to a sampling
frequency of 100 Hz. Some raw sensor data recorded by the MPU-9250 are shown in Fig. 2.
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Table 1: Details of the PVS dataset

Vehicle Driver No. of samples

(Scenario) Dirt road Cobblestone Asphalt road Total

Volkswagen
Saveiro

Driver 1
(Scenario 1)

25,868 61,659 56,509 144,036

Volkswagen
Saveiro

Driver 1
(Scenario 2)

44,618 20,737 59,330 124,684

Volkswagen
Saveiro

Driver 1
(Scenario 3)

28,659 26,143 51,014 105,816

Fiat Bravo Driver 2
(Scenario 1)

23,903 57,670 50,919 132,492

Fiat Bravo Driver 2
(Scenario 2)

60,539 18,143 55,195 133,877

Fiat Bravo Driver 2
(Scenario 3)

23,888 31,641 40,750 96,279

Fiat Palio Driver 3
(Scenario 1)

23,778 54,224 50,546 128,548

Fiat Palio Driver 3
(Scenario 2)

44,939 18,825 59,854 123,618

Fiat Palio Driver 3
(Scenario 3)

23,153 25,182 43,220 91,555

Figure 2: Some raw sensor data collected in the PVS dataset
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3.2 Pre-processing Process
Before proceeding with the analysis, it is necessary first to perform the data preprocessing step,

which entails converting the raw data obtained from motion sensors into a clean and well-organized
dataset. The raw data collected by the motion sensors typically contain measurement noise and other
unanticipated noise. The signal noise obliterates relevant signal information. Therefore, it was critical
to reduce the effects of noise on a motion to collect pertinent data for subsequent processing. The
most commonly used filtering techniques are mean, low-pass, and Wavelet filtering. In our study, we
applied a 3rd order low-pass Butterworth filter with a cutoff frequency of 20 Hz to the accelerometer
and gyroscope sensors in all multiple dimensions to denoise the signals.

After analyzing each of the features evaluated, a separate normalization between [−1,1] was
performed for each. Each chosen parameter’s various scales and units could have negatively impacted
the model fit. This normalization minimized the above effect and ensured that the information for
each variable was as representative as possible.

For data segmentation, the normalized data from all sensors are segmented into equally sized
segments for further model training using a fixed-sized sliding window. In this study, a sliding window
of two seconds with an overlapping proportion of 50% was used to generate sequences of sensor data
with a length. Fig. 3 shows the data segmentation process used in this study.
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Actual Class

t t + 1
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Step Size
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Figure 3: The data segmentation process used in this work

3.3 The Proposed SE-ResNet
This work proposed a deep residual network called SE-ResNet, as shown in Fig. 4, to classify road

surface types based on vehicle motion sensors efficiently. The architecture of the proposed SE-ResNet
model consists of a global average-pooling layer, a fully connected layer, one convolution block, and
eight residual blocks.

Numerous convolutional architectures are influenced by the discipline of image classification,
where DL made its first and most significant advancements [33]. A highly effective method for dealing
effectively with deeper networks is the utilization of what is known as skip connections, also known
as residual connections. These connections traverse deeper neural networks while skipping numerous
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layers [34]. Furthermore, this neural network design has been modified for time series classification
[35] and has shown comparably strong performance in various applications [36]. The number of
residual modules is a hyperparameter of the ResNet architecture. An example of such a module is
two convolutional layers and a jump link connecting the two layers (see Fig. 4).

Figure 4: The architecture of the proposed SE-ResNet model

CNNs are used to extract features by combining inputs in both spatial and channel-wise dimen-
sions [37]. The representational power of a model can be increased by using a SE block, which was
developed to factor in channel relationships. Fig. 5 shows the structure of the SE block. After the
convolution operation, several feature maps are acquired. However, some feature maps may contain
redundant information. The SE block performs feature recalibration to enhance the informative
features and disable the less valuable ones. First, in the squeeze operation, global pooling is performed
for each feature map, and a weight vector is determined. Then, in the excitation operation, fully
connected layers and a sigmoid activation function are used to redistribute the feature weights. A
gradient descent algorithm controls the redistribution. These weights are then used to reweight the
feature maps. In this study, the SE block was moved behind the BN block in each residual block to
recalibrate the feature maps generated from the stacked layers.
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Figure 5: Structure of a squeeze-and-excitation module

3.4 Performance Evaluation
In the context of our studies, accuracy, and F1-score serve as evaluation criteria [38]. As we all

know, most classification algorithms aim to minimize the overall error and maximize classification
accuracy. However, for an imbalanced dataset, classification accuracy tells us relatively little about
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the minority class. Ironically, minority class members are often considered more exciting and vital.
The classifier’s performance may be inaccurate and misleadingly evaluated if only accuracy is used to
classify imbalanced classes. Therefore, we choose both accuracy and F1-score as evaluation measures
to provide a more thorough evaluation of the classifier. The F1-score is an appropriate metric for
evaluating classification performance for an imbalanced dataset. Since the F1-score shows how
accuracy and recall affect each other, it shows whether a classifier achieves high recall by sacrificing
accuracy or vice versa [39].

This study computed four evaluation metrics (accuracy, precision, recall, and F1-score) using a
5-fold cross-validation protocol to evaluate the performance of the proposed SE-ResNet model. The
mathematical formula for these four performance criteria is as follows:

Accuracy = TP + TN
TP + TN + FP + FN

(1)

Precision = TP
TP + FP

(2)

Recall = TP
TP + FN

(3)

F1-score = 2 × Precision × Recall
Precision + Recall

(4)

These four evaluation metrics are the most commonly used in RST classification to evaluate
overall success. The recognition is characterized as true positive (TP) classification for the category
under consideration and true negative (TN) identification for all other types evaluated. Passive
vehicular sensor data from one class can also be misclassified as belonging to another category,
resulting in a false positive (FP) classification for that category. Conversely, passive vehicular sensor
data from another type can also be misclassified as belonging to that category, resulting in a false
negative (FP) classification.

4 Experiments and Results

This section contains the results of all experimental studies conducted to determine the most
efficient DL models for RST classification and the experiments’ results. Our experiments were
performed using a benchmark dataset called PVS, which collected motion signals recorded while
vehicles were driving on three different road surface types (dirt road, cobblestone road, and asphalt
road). To evaluate the state-of-the-art models and our proposed SE-ResNet model, we conducted two
experiments with 5-fold cross-validation. We used different sensor data from the dataset as follows:

• Experiment I: we use motion signals from sensors located above and below the suspension on
the left side of the vehicles.

• Experiment II: we use motion signal data from sensors located above and below the suspension
on the right side of the vehicles.

4.1 Environmental Configuration
The Google Collab Pro+ platform [40] was used for the experiments. The results of accelerating

the training of DL models using the Tesla V100-SXM2 with a 16 GB graphics processor (GPU) module
were impressive. The Python library was used to implement the proposed SE-ResNet and advanced



1284 IASC, 2023, vol.37, no.2

DL models using the Tensorflow backend (version 3.9.1) [41] and CUDA (version 8.0.6) [42] graphics
cards. This study focused on the following Python libraries, which are listed below:

• The sensor data was processed using Numpy and Pandas, which comprised reading, processing,
and analyzing the data.

• The results of the data acquisition and model evaluation procedures were plotted and displayed
using Matplotlib and Seaborn.

• Sklearn is a library used in research as a sampling and data generation tool.
• TensorFlow, Keras, and TensorBoard were used to develop and train the DL models, among

others.

4.2 Hyperparameter Setting
Hyperparameter values are used to regulate the learning process in DL. The following hyperpa-

rameters are used in the proposed SE-ResNet model: (i) the number of epochs, (ii) the batch size, (iii)
the learning rate α, (iv) the optimization and (v) the loss function. The values of these hyperparameters
were determined by setting the number of epochs to 200 and the batch size to 128. If there was no
improvement in the validation loss after 20 epochs, the training process was terminated by an early-
stop callback. The initial conditions for the learning rate are α = 0.001. If the validation accuracy
of the proposed model had not improved after six consecutive epochs, we changed it to 75% of the
previous value. To minimize the error, we used the Adam optimizer [43] with parameters β1 = 0.9, β2

= 0.999, and ε = 1×10−8. The categorical cross-entropy function is used to determine the optimizer’s
error. Recently, the cross-entropy technique was outperformed other methods (i.e., classification and
mean square errors) [44]. We set the weights in the SE-ResNet to prepare the model using Xavier
initialization. Then we iteratively trained the model for 200 epochs.

4.3 Experimental Results of Experiment I
The results of Experiment I used an accelerometer, gyroscope, and magnetometer, and data was

recorded from three MPU-9250s placed on the left side of the vehicles. The results of the SE-ResNet
and state-of-the-art models are summarized in Table 2.

Table 2: Experimental results of DL models using sensor data recorded from the left side of vehicles

Recognition performance

Model Accuracy Loss F1-score

Inception-ResNet 95.32% (+/− 0.49%) 0.31 (+/− 0.05) 94.67% (+/− 0.57%)
Inception 95.53% (+/− 0.39%) 0.25 (+/− 0.01) 94.89% (+/− 0.46%)
Xception 94.80% (+/− 0.65%) 0.26 (+/− 0.03) 94.07% (+/− 0.78%)
VGG 92.19% (+/− 1.18%) 0.79 (+/− 0.11) 91.13% (+/− 1.33%)
ResNet 96.72% (+/− 2.43%) 0.12 (+/− 0.05) 96.29% (+/− 2.73%)
PyramidNet 95.64% (+/− 3.76%) 0.22 (+/− 0.25) 95.09% (+/− 4.17%)
SE-ResNet 98.37% (+/− 0.36%) 0.06 (+/− 0.01) 98.15% (+/− 0.42%)

From the comparative results in Table 2, it can be seen that our proposed SE-ResNet model
outperformed the other DL models in this experiment with the highest accuracy of 98.37% and the
highest F1-score of 98.15%. Comparing the backbone architecture of the state-of-the-art models, we
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observe that the ResNet backbone has higher accuracy than other models. This is because ResNets
use the residual structure while strengthening the feature at each convolution stage.

Fig. 6 shows the process of learning raw sensor data from the left side of vehicles with the proposed
SE-ResNet. With the epoch at 50, the loss rate decreased significantly, and the accuracy stabilized
significantly. Finally, the accuracy was 98.37% in the testing set. After that, the loss rate decreased
gradually, and the accuracy rate increased slowly without any appearance of dilemma. This indicates
that the network learns appropriately without overfitting problems.

Figure 6: Accuracy and loss rate of the training process of the proposed SE-ResNet from experiment I

4.4 Experimental Results of Experiment II
The results from Table 3 indicate that our SE-ResNet model achieved the best results in this

experiment. The proposed model achieved the highest accuracy of 98.41% and the highest F1-score of
98.19% in this experiment which outperforms other state-of-the-art models.

Table 3: Experimental results of DL models using sensor data recorded from the right side of vehicles

Recognition performance

Model Accuracy Loss F1-score

Inception-ResNet 95.74% (+/− 0.72%) 0.25 (+/− 0.06) 95.15% (+/− 0.80%)
Inception 94.67% (+/− 1.46%) 0.28 (+/− 0.11) 93.98% (+/− 1.64%)
Xception 94.83% (+/− 0.58%) 0.28 (+/− 0.03) 94.10% (+/− 0.67%)
VGG 92.69% (+/− 1.15) 0.74 (+/− 0.14) 91.72% (+/− 1.24%)
ResNet 96.86% (+/− 2.10%) 0.14 (+/− 0.08) 96.41% (+/− 2.41%)
PyramidNet 96.81% (+/− 1.11%) 0.17 (+/− 0.06) 96.41% (+/− 1.23%)
SE-ResNet 98.41% (+/− 0.30%) 0.06% (+/− 0.02) 98.19% (+/− 0.34%)

Fig. 7 shows a satisfactory learning process of learning raw sensor data from the right side of
vehicles with the proposed SE-ResNet. The accuracy quickly stabilized, which achieved 98.41% in
the testing set. The loss rate decreased gradually, and the accuracy rate increased slowly without
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any appearance of dilemma. This indicates that the network learns appropriately without overfitting
problems.

Figure 7: Accuracy and loss rate of the training process of the proposed SE-ResNet from experiment II

5 Discussion
5.1 Effects of Placement

To illustrate the impact of the MPU-9250 modules on the performance of the proposed SE-ResNet
model, the comparative results are shown in Table 4. These results indicate that the model has good
learning and generalization capabilities in all placement experiments.

Table 4: Comparative results of the SE-ResNet using different MPU-9250 modules to classify three
different surface types

Placement Performance (Mean +/− Std.)

Accuracy Loss F1-score

Left side 98.37% (+/− 0.36%) 0.06 (+/− 0.01) 98.15% (+/− 0.42%)
Right side 98.41% (+/− 0.30%) 0.06% (+/− 0.02) 98.19% (+/− 0.34%)

To discover details of the classification performance, we examine the confusion matrices for all, as
shown in Fig. 8. These results show that the different placements do not affect the RST classification.

5.2 Effects of Squeeze-and-Excitation Mechanism
For most learning-based applications, the capacity to learn an interpretable representation is

essential. The advantage of DL approaches is that they can extract features from raw data. Still, it can
be challenging to understand how much each input dataset contributed relative to the others. Previous
research [37] has developed the concept of a squeeze-and-excitation mechanism to overcome this
problem. In this investigation, a SE mechanism designed for neural networks for machine translation
tasks was integrated into our classification system. This work assisted in creating an understandable
representation that highlights the most critical points of each input data segment of the model. The
results showed that the SE mechanism improved the classification performance in each case, as shown
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in Tables 5 and 6. In particular, our SE-ResNet model showed significantly better performance in
Experiments I and II.

(a) (b)

Figure 8: Comparison of the model performance between confusion matrices: (a) results of the
Experiment I (b) results of experiment II

Table 5: Improved performance of SE-ResNet using SE mechanism using sensor data from
experiment I

Model Performance (Mean +/− Std.)

SenPyramidNet Accuracy Loss F1-score

Without SE 97.92% (+/− 0.50%) 0.08 (+/− 0.02) 97.65% (+/− 0.58%)
With SE 98.37% (+/− 0.36%) 0.06 (+/− 0.01) 98.15% (+/− 0.42%)

Table 6: Improved performance of SE-ResNet using SE mechanism using sensor data from
experiment II

Model Performance (Mean +/− Std.)

Accuracy Loss F1-score

Without SE 98.13% (+/− 0.52%) 0.07 (+/− 0.02) 97.89% (+/− 0.60%)
With SE 98.41% (+/− 0.30%) 0.06% (+/− 0.02) 98.19% (+/− 0.34%)

5.3 Comparative Analysis
A comparison between the proposed RE-ResNet and other DL networks (CNN, LSTM, and

CNN-LSTM) studied in previous works is shown in Table 7. The SE-ResNet network outperformed
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the other networks. This is because the spatial feature extraction performed by the SE-ResNet
improved the overall performance.

Table 7: Comparative results of the SE-ResNet and previous works

Class F1-score (%)

CNN [45] LSTM [45] CNN-LSTM [45] SE-ResNet

Asphalt road 98.96 98.52 98.62 98.98
Cobblestone road 85.84 85.46 85.56 97.02
Dirt road 90.85 90.49 90.22 99.56

6 Conclusion and Future Works

In this work, we implemented state-of-the-art DL models for sensor-based RST classification.
The models aimed to classify three different road types. We also developed a DL called SE-ResNet to
improve the classification performance. The proposed SE-ResNet is a new DL model that combines
the benefits of connection modules with squeeze-and-excitation modules to improve RST classification
accuracy. The performance of all DL models was evaluated against a publicly available benchmark
dataset called PVS. The dataset collected large numbers of motion data from sensors placed at different
positions of vehicles. The conducted experiments and comparative analysis show that the proposed
SE-PyramidNet outperforms the other state-of-the-art models. The SE-ResNet achieved the highest
accuracy of 98.41% and the F1-score of 98.19%. Moreover, the proposed RE-ResNet outperformed
the other DL networks (CNN, LSTM, and CNN-LSTM). The proposed RE-ResNet achieved the
classification accuracies of asphalt roads at 98.98, cobblestone roads at 97.02, and dirt roads at 99.56%,
respectively.

We extensively analyzed the experimental results and found that the PyramidNet backbone is
suitable for RST classification. In addition, we developed the SE-ResNet, which is based on a ResNet
backbone and squeeze-and-excitation modules. Our results show that channel attention can improve
RST classification performances. As a module in autonomous vehicles, the proposed SE-ResNet can
classify RST and adapt the driving mode to such situations. Situational data can support various
applications. Since the surface type affects fuel consumption, travel duration, and vehicle damage,
production flow and logistics systems can use this data to develop cost-effective routes.

In the future, we will work to overcome one of the drawbacks of the original study: the requirement
for sensor data with a predetermined size with adaptive data segmentation. In addition, we intend to
develop a hierarchical learning approach to improve RST classification.
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