
This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

echT PressScience

DOI: 10.32604/iasc.2023.039255
Article

A Novel Ensemble Learning System for Cyberattack Classification

Óscar Mogollón-Gutiérrez*, José Carlos Sancho Núñez, Mar Ávila Vegas and Andrés Caro Lindo

Department of Computer and Telematic Systems Engineering, Universidad de Extremadura, School of Technology,
Cáceres, 10005, Spain

*Corresponding Author: Óscar Mogollón-Gutiérrez. Email: oscarmg@unex.es
Received: 18 January 2023; Accepted: 13 April 2023; Published: 23 June 2023

Abstract: Nowadays, IT systems rely mainly on artificial intelligence (AI)
algorithms to process data. AI is generally used to extract knowledge from
stored information and, depending on the nature of data, it may be necessary
to apply different AI algorithms. In this article, a novel perspective on the
use of AI to ensure the cybersecurity through the study of network traffic is
presented. This is done through the construction of a two-stage cyberattack
classification ensemble model addressing class imbalance following a one-vs-
rest (OvR) approach. With the growing trend of cyberattacks, it is essential
to implement techniques that ensure legitimate access to information. To
address this issue, this work proposes a network traffic classification system
for different categories based on several AI techniques. In the first task, binary
models are generated to clearly differentiate each type of traffic from the rest.
With binary models generated, an ensemble model is developed in two phases,
which allows the separation of legitimate and illegitimate traffic (phase 1)
while also identifying the type of illegitimate traffic (phase 2). In this way,
the proposed system allows a complete multiclass classification of network
traffic. The estimation of global performance is done using a modern dataset
(UNSW-NB15), evaluated using two approaches and compared with other
state-of-art works. Our proposal, based on the construction of a two-step
model, reaches an F1 of 0.912 for the first level of binary classification and
0.7754 for the multiclass classification. These results show that the proposed
system outperforms other state-of-the-art approaches (+0.75% and +3.54%
for binary and multiclass classification, respectively) in terms of F1, as demon-
strated through comparison together with other relevant classification metrics.

Keywords: Intrusion detection; ensemble learning; two-phase model; UNSW-
NB15; cybersecurity

1 Introduction

The volume of data handled by information systems (IS) is growing exponentially every year [1].
There is an increasing amount of information collected by organizations, and each of them use it in
following their business plans. Generally, IS, depending on their main action line, may provide access

https://www.techscience.com/journal/iasc
https://www.techscience.com/
http://dx.doi.org/10.32604/iasc.2023.039255
https://www.techscience.com/doi/10.32604/iasc.2023.039255
mailto:oscarmg@unex.es


1692 IASC, 2023, vol.37, no.2

to stored data or enable them to improve their internal processes. For this reason, it is undeniable that
the nature of the data that can be managed by an IS is heterogeneous and depends on the sector where
it is implemented: education [2], financial [3], food [4], health [5] or computer vision [6].

Given the enormous amount of data handled by IS, it is necessary to use mechanisms for
processing large volumes of data [7]. Artificial Intelligence (AI) can play a key role in this process.
According to [8], AI is the ability given to a system to perform cognitive tasks, such as learning or
decision making. The use of these technologies on traditional IS makes it possible to provided them
with “intelligence” and offer new ways of interacting with users. AI applications in IS are vast [9–11].

Regardless of the nature of store data in IS, AI can also be applied to guarantee or increase
security by implementing intrusion detection systems (IDS). Intrusions into IS are aimed at exploiting
vulnerabilities to gain access to them and, subsequently, make fraudulent use of systems. These systems
help to identify malicious actions or variations through network traffic monitoring and classification
which is generated by clients attempting to access these systems.

In recent years, models that build IDS with different perspectives have emerged in the scientific
community. Intrusion tasks may be performed by profiling the system’s behaviour to be protected
and notifying detected outliers [12]. Another approach consists in analyzing incoming and outcoming
traffic through a network using AI (machine learning [13,14] or deep learning [15,16]). Depending on
the number of labeled network trace samples used to train an IDS, model generation can be carried
out in two different ways: supervised or unsupervised. Supervised learning consists of building models
from a labeled dataset. On the other hand, unsupervised learning can generate a behavioral pattern
from an unlabeled dataset. Federated learning applications are an emerging trend addressing security
from an unsupervised perspective [17]. By combining these two approaches, semi-supervised learning
can leverage the benefits of both and improve the accuracy and generalization of intrusion detection
models [18]. This approach is particularly relevant in security domains where labeled data is scarce.

Despite their technical differences, all approaches should deal appropriately with the inherent
complexity of network data. Class imbalance is a prevalent problem in the field of network traffic
intrusion detection, where one class of network traffic (normal traffic) is often much more prevalent
than the other class (intrusive traffic). This imbalance can result in a biased classifier that consistently
predicts normal traffic, even in the presence of intrusive traffic samples. This can lead to a high rate of
false negatives, which, in the context of cybersecurity, can be severe, as intrusions can stay undetected
for long periods and result in data theft, system compromise, and other security threats.

In terms of AI, a class imbalance issue arises when the classifier is trained on a dataset where
the majority class dominates, resulting in a biased classifier that often predicts the majority class. In
binary classification, the classifier is trained to distinguish between two classes, typically normal and
abnormal. In this scenario, the class imbalance can be addressed by oversampling the minority class,
undersampling the majority class, or combining both. However, in multiclass classification, where the
classifier is trained to distinguish between multiple classes, the class imbalance problem becomes more
complicated. If the majority class is oversampled or the minority class is undersampled, it could result
in a distorted distribution across all classes. Additionally, the imbalanced class distribution would
affect the model’s performance and accuracy in recognizing minority classes. Therefore, it is crucial to
address the class imbalance issue in multiclass intrusion detection, as it can significantly impact the
classifier’s performance on detecting intrusions correctly.

Considering the aforementioned issues, this paper proposes an intelligent system cyberattack
classification. It consists of a two-phase ensemble classification model using a variety of machine
learning techniques able to classify intrusions among preset categories [19–22]. Since the distribution of



IASC, 2023, vol.37, no.2 1693

different types of network traffic is uneven and the number of samples for some traffic is much greater
than for the rest (class imbalance), this solution is chosen. The implementation of a two-phase model
provides two main benefits: reducing the imbalance problem [23] and making intrusion detection easier
[24–26]. Thus, a first level of classification distinguishes only between legitimate and attack traffic. A
second classification process is responsible for classifying the type of attack detected, following an
ensemble scheme. The models that make up the final model are built from a balanced one-vs-rest
(OvR) strategy. Specifically, a separate binary classifier is trained for each class, with the class being
considered as the positive class and all the other classes combined as a single negative class. To carry
out the training of the proposed system, the labeled dataset UNSW-NB15 is used. This dataset is
widely known in the scientific literature [27–29] and includes 10 different categories of network traffic.
This paper demonstrates the effectiveness of this strategy which has not been implemented in modern
cybersecurity solutions for cyberattack detection and classification.

Thus, the novelty of this study lies in the construction of a two-stage cyberattack classification
ensemble model addressing class imbalance following an OvR approach. This is a new direction
among current approaches to network traffic analysis since, to the best of our knowledge, there
are no previous works that have considered this approach. This contribution seeks to mitigate the
imbalanced learning in network traffic analysis and classification, which is a significant issue in this
research field. Obtained results demonstrate the effectiveness of the proposal yielding the in following
improvements in binary classification: (+0.7%) accuracy, (+2.92%) recall, (+0.75%) F1 and (−2.12%)
FPR. In multiclass classification following improvements are achieved: (+0.22%) accuracy, (+7.04%)
recall, (+3.54 %) F1.

The main contributions of the proposed work are as follows:

• A balanced binary dataset generation using an OvR scheme using Synthetic Minority Over-
sampling Technique (SMOTE) and Random Undersampling algorithms.

• An implementation of a two-phase ensemble model for intrusion detection and classification is
proposed by combining outputs from multiple binary models.

• An evaluation of the proposed system is conducted using a modern dataset (UNSW-NB15).
Our proposal improves other state-of-art contributions and demonstrates its efficiency in terms
of model generation.

The remainder of the article is organized as follows: Section 2 describes related works in the field of
intrusion detection and datasets with greater impact in the scientific field. Section 3 describes UNSW-
NB15, hardware and software resources, machine and deep learning algorithms and a set of evaluation
metrics for estimating the performance of models. Section 4 details the methodology applied for
the construction of the model, and Section 5 shows and discusses the results obtained. Finally, the
conclusions of the research are presented together with possible lines of future research to improve the
performance of our solution.

2 Related Works

In recent years, the number of studies related to intrusion detection systems has grown consid-
erably. One of the main reasons for this increase in publications is directly related to the increase of
smart devices. Likewise, the variety of computer attacks is growing, and as a result, there is a need to
build effective intrusion detection systems. The scientific literature contains a wide variety of systems
according to the nature of the system to be protected.



1694 IASC, 2023, vol.37, no.2

Some authors have proposed systems based on classical classifiers to distinguish normal behavior
and attack behavior [30]. Other works perform multiclass classification, where samples that are not
considered legitimate behavior are classified as a specific attack type [31]. Khammasi et al. [32], after
feature selection based on genetic algorithms, applies decision trees for intrusion detection. On the
other hand, some research, such as Bagui et al. [33] focuses on applying deep learning models based
on artificial neural networks. A convolutional neural network is used by Al-Turaiki et al. [34] for the
implementation of both a binary and a multiclass intrusion classifier.

Other works are based on the construction of ensemble models. Specifically, in [35] a combined
voting model is used where the class prediction is obtained from the probabilities of each classifier.
Similarly, the paper by Maniriho et al. [36] applies a combined model. However, the ensemble strategy
applied in this research consists of randomly generated classifiers. In the results of their contribution,
the binary classifier presents high accuracy due to the selection of a limited dataset, using 34% of the
training set to test the system. Both studies show that, from the predictions obtained by the individual
models, a higher attack detection capability is generally achieved.

Other approaches perform two-stage classification, where, first, a binary classifier determines
whether a sample is an attack or not, and then a second process tries to identify the type of attack using
classical algorithms [37]. However, the results of this study do not consider all the categories present
in the original dataset when evaluating their proposal. Following a two-stage model, Khan et al. [38]
proposes a system applying deep learning at the second level. In this work, an oversampling of only
legitimate traffic is carried out assuming a considerable increase in the number of samples in this
category and influencing the results obtained.

Regarding the availability of datasets that allow easy comparison of the accuracy and precision of
the proposed algorithms, datasets that collect the behavior of simulated environments under different
attacks are used in the scientific literature, e.g., KDD99 [39], NSL-KDD [40] or UNSW-NB15 [19].
The datasets prior to UNSW-NB15 had several limitations that affected the effectiveness of an IDS in
a real environment, and they were not designed with an IOT perspective in mind. The KDD99 dataset,
developed in the late 1990s, lacks many of the attacks that are present today [41]. Another example of
a deficient set is NSL-KDD. It was released in 2009, and its main drawback is the presence of multiple
repeated packets that affect the performance of the algorithms [42].

The classification of attacks collected in the described datasets is handled differently depending on
the dataset used. For example, for KDD99, feature selection based on multidimensional feature fusion
together with stacking ensemble learning is applied in [43]. Alternatively, a logistic regression-based
model is built from a dataset with feature selection based on genetic algorithms, as in [27]. Another
research employs NSL-KDD [36]. In [44], the main contribution is a novel correlation analysis of the
dataset features for the selection of the most important features. Regarding the most recent ensemble,
UNSW-NB15, AI techniques applied are very varied, as demonstrated by Ponmalar’s study in [45]
where an SVM-based ensemble is combined with the Chaos Game Optimization algorithm.

Regarding the UNSW-NB15 dataset, it is worth mentioning that the authors have published a
reduced version of the original available in [46] and it is widely used in research [34,47], as it tries to
improve the balance between traffic categories, reducing the number of legitimate traffic samples.

As preliminary conclusions from the review of the state of the art, the UNSW-NB15 dataset can
be considered the most complete. Due to the wide variety of attacks collected, this dataset is highly
suitable. For the construction of an IDS capable of anticipating cyber threats in IS.



IASC, 2023, vol.37, no.2 1695

3 Materials

This paper proposes a system to identify and classify network traffic from the UNSW-NB15
dataset combining outputs from binary models trained with several well-known classification algo-
rithms. This section presents a description of the dataset, including classes distribution, classification
algorithms used in the experiments, and a set of evaluation metrics that enable to evaluating the
proposed system in the Experimental Design section.

3.1 Dataset
The UNSW-NB15 dataset was created by the Cyber Range Lab at the University of New South

Wales, Canberra (UNSW) with the goal of simulate a heterogeneous environment of legitimate and real
attack traffic [19]. The original dataset consists of 2540044 samples and exhibits a high-class imbalance.
One of the categories, Normal, represents more than 87% of the total samples. However, as previously
indicated, the authors have published a new dataset with fewer rows and columns while maintaining
the complexity [46]. This latter dataset is already split into training and testing sets. The experiments in
this research have been performed with the updated dataset. This version of the UNSW-NB15 contains
a total of 44 characteristics, 40 being numeric and 4 being categorical (proto, service, state, and attack
cat). Table 1 shows the distribution of classes for the training and test sets.

Table 1: Train and test sets distribution in UNSW-NB15

Train Train (%) Test Test (%)

Analysis 2000 1.14 677 0.82
Backdoor 1746 1.00 583 0.71
DoS 12264 6.99 4089 4.97
Exploits 33393 19.04 11132 13.52
Fuzzers 18184 10.37 6062 7.36
Generic 40000 22.81 18871 22.92
Normal 56000 31.94 37000 44.94
Reconnaissance 10491 5.98 3496 4.25
Shellcode 1133 0.65 378 0.46
Worms 130 0.07 44 0.05
TOTAL 175341 100% 82332 100%

3.2 Algorithms
For the construction of the ensemble classifier proposed in this paper, machine learning and deep

learning algorithms that obtain the best results both in our previous experiments and in the scientific
literature are combined [48,49].

• K Nearest Neighbors Classifier (KNN). KNN algorithm is an instance-based learning algo-
rithm. This means that the model classification process is based on knowledge gained during
the training phase [50]. The classification of a sample consists of applying an algorithm that
calculates the distance of that sample from the rest. The class to which it belongs is decided by
applying a majority voting algorithm between the nearest k observations.



1696 IASC, 2023, vol.37, no.2

• Support Vector Machine (SVM). The fundamental idea of the SVM algorithm is to find the
hyperplane that best divides the dataset into a given number of classes or categories [51].

• Decision Trees (DT). DT-based models are classifiers capable of predicting the category of a
sample by applying simple decision rules learned in the training phase [52].

• Multilayer Perceptron (MLP). MLP is a simple type of artificial neural network composed of
an input layer, an output layer, and multiple intermediate layers, all fully interconnected.

The experiments have been carried out with Python, version 3.8. Pandas, Numpy, Scikit-Learn
and Imbalanced-learn libraries were used; these libraries are frequently used in this field of research
[33,53]. The selection of the best value for the hyperparameters of each algorithm was carried out
using grid search and cross-validation techniques [28,54]. This hyperparameter tuning approach allows
testing multiple combinations of values after having previously defined a search space for each of them.
Regarding the hardware, a computer with an Intel Core i7-9750H @4.50 GHz with 16 GB of RAM
was used.

3.3 Evaluation Metrics
In this study, several metrics are chosen to evaluate the performance of intrusion detection models.

The metrics considered are accuracy, precision, recall/detection rate (DR), F1-score and false alarm
rate/false positive rate (FAR/FPR), which are calculated as a function of true positives (TPs), true
negatives (TNs), false positives (FPs) and false negatives (FNs). In addition, the confusion matrix is
also used. For each metric, Table 2 shows a concise definition and how it is calculated.

Table 2: Evaluation metrics

Metric Definition Calculation

Accuracy It is the ratio between the classification
hits and the total predictions.

TP + TN
TP + TN + FP + FN

Precision The proportion between the attacks
detected by the classifier that are attacks.

TP
TP + FP

Recall (or detection rate) The ratio of attack detection to all tested
attacks.

TP
TP + FN

F1-score Estimation of precision and recall using
harmonic mean.

2 ∗ Recall ∗ Precision
Recall + Precision

False positive rate Measure of the proportion of false
positives among all negative cases

FP/(FP + TN)

4 Experimental Design

Figs. 1, 2, and Algorithm 1 show the experimental design followed to define the proposed detection
and classification intelligent system. The design of the proposal consists of three stages, which are
described below.



IASC, 2023, vol.37, no.2 1697

Figure 1: Data flow for balanced binary datasets generation

Figure 2: Binary models generation

4.1 Phase 1: Cleaning, Preprocessing and Normalization
As usual, the data must be cleaned and normalized prior to the application of classification

algorithms. To this end, the numerical features have been normalized by calculating the standard
score so that each feature follows a Gaussian distribution (mean zero and unit variance). On the other
hand, categorical features have been encoded using numerical labels. As indicated in [20] there are no
redundant tuples.



1698 IASC, 2023, vol.37, no.2

4.2 Phase 2: Classifier Models Generation
The next step is a generation of ten binary specialized classification models because there are ten

different categories in the dataset, which are listed in Table 1. Therefore, each of the generated models
can distinguish between samples corresponding to one type of traffic and the rest of the samples.

Obtaining each classification model requires the creation of a specific dataset. This model
generation process is organized into several subphases to be carried out for each type of traffic collected
in UNSW-NB15 as shown in Fig. 2:

• Phase 2.1. Dataset selection for training and testing binary models.
• Phase 2.2. Hyperparameter configuration using grid search together with cross-validation for

the algorithms mentioned in the Algorithms subsection (KNN, SVM, DT and MLP).
• Phase 2.3. Model training and evaluation for each combination of hyperparameters.
• Phase 2.4. Best model selection based on the evaluation metrics.

In Phase 2.1, training and test sets are selected for each binary classification model. The training
sets used for the generation of binary models are generated in a balanced way, so half of each dataset
consists of samples belonging to one category, and the other half contains traffic for the rest of the
categories. The number of samples in the second half remains the same for each type of traffic. For
example, according to Table 1, the Analysis category consists of 2000 samples, so the resulting training
set consists of 3998 tuples: 2000 of type Analysis and 222 of the other 9 existing traffic types. Algorithm
1 generates balanced training sets following this approach. The result of this process for Analysis traffic
is shown in Fig. 3. The same procedure is applied to the remaining categories.

Figure 3: Detailed train dataset distribution for analysis model generation

In Algorithm 1, resampling techniques are applied when the number of samples in a category does
not reach or exceed a certain threshold (n_samples). This threshold varies according to the model to
be generated and allows training models using balanced datasets. On the one hand, SMOTE is an
oversampling algorithm that allows the generation of synthetic samples (without repetition) from
a dataset [55] and, thus, to reach the calculated number of samples. On the other hand, random
undersampling is used to select the number of samples to be removed from a class that exceeds the
threshold. Due to the random nature of the latter method, the evaluation of the binary models is
calculated as the average of the evaluation metrics obtained in 10 experiments to increase the variability
of the undersampled classes.

In Phase 2.2, for hyperparameter tuning, grid search and cross-validation parameters are con-
figured. Table 3 shows the hyperparameter search space for each of the applied algorithms. Next, in
Phase 2.3, a model is trained with each combination of parameters. Once the hyperparameters have
been tuned, each generated binary model is evaluated with a specific test set. It consists of samples of
the target traffic (positive class) and the rest (negative class) from the original test set listed in Table 1.



IASC, 2023, vol.37, no.2 1699

Note that the full original test set is later used to evaluate the proposed system. Both Phase 2.2. and
Phase 2.3. should be applied for each of the four algorithms studied.

Table 3: Hyperparameter search space per algorithm

Metric Hyperparameters

KNN n neighbors = {1 ...30}
weights = {uniform, distance}
algorithm = {auto, ball tree, kd tree}

SVM C = {1 ...1000}
gamma = {1x10−5 ...1}

DT criterion = {gini, entropy}
max depth = {1...35}

MLP activation = {relu, tanh}
learning rate init = {1x10−5 ...1}
max iter = {20, 40, 60, 80, 100, 120, 140, 160, 180, 200}
batch size = {32, 64, 128, 256, auto}

Once the four models have been generated (one for each algorithm) for each type of traffic
collected, in Phase 2.4, a criterion is established to select the binary model with the best performance,
considering the evaluation metrics obtained in the previous phase. In network traffic classification, a
model that simply predicts the majority class for all traffic samples will have a high accuracy, but it
may not be a good model if the minority class is of interest. To address this issue, F1-score is selected.
The rationale behind choosing this metric is that it balances the trade-off between precision and recall.
The selected model is used to build the final proposal.

Algorithm 1: Balanced train set generation for binary models
Input Preprocessed DATASET
Output Train sets for each category
1: categories ← list of categories from DATASET
2: n_categories ← number of categories from DATASET
3: rest_categories ← ∅
4: for category in categories do
5: // threshold of samples for the rest of categories
6: n_samples ← int (number of records from category / n_categories − 1)
7: rest_categories ← categories ∩ category
8: for other_category in rest_categories do
9: n_samples_c ← number samples from another category
10: if n_samples_c ≤ n_samples then
11: OVERSAMPLING
12: else
13: UNDERSAMPLING
14: end for
15: end for



1700 IASC, 2023, vol.37, no.2

4.3 Phase 3: Construction of the Final Model
In Phase 3, with the binary models already generated, and after evaluating the individual

performance through the evaluation metrics, two alternatives are proposed for the construction of
the final model.

The first approach consists of calculating the weighted average of the metrics calculated from the
binary models selected after Phase 2. This calculation causes the model performance to be influenced
by the initial distribution of the classes. Each weighted metric is calculated according to Eq. (1).

metricweighted =
∑

metric∗n_test_samplescategory

n_test_samplestotal

(1)

The results obtained with this approach should be interpreted as the average ability of the model to
determine whether a sample belongs to a class or not. However, in a real environment, the same sample
can be classified into different categories by different classifiers. For this reason, in the experimental
design, it is necessary to implement an alternative that allows measuring the degree of certainty of each
classifier.

In this sense, the second approach is based on the construction of a two-stage classification model,
organized into two phases, as shown in Fig. 4. The first one is responsible for identifying the behavior
as Normal or as an Attack, using the binary model trained for this purpose. In a second level of
detection, the possible threat is classified as one of the nine possible attacks collected in UNSW-NB15.

Figure 4: Two-stage classification ensemble

This classification task is performed using an ensemble model composed of the binary classifiers
of the nine attack types. Each classifier outputs the probability of belonging to its class and the rest.
Taking into consideration the former probability, the class with the highest value is taken as the final
prediction. Finally, a calculation of the evaluation metrics is made from the resulting confusion matrix.



IASC, 2023, vol.37, no.2 1701

5 Results and Discussion

This section presents the results obtained after the experiments performed for the traffic clas-
sification into different categories (normal or 9 different types of attacks) using the system based on
machine learning and deep learning proposed in this contribution. First, the evaluations of the first set
of experiments, based on the construction of multiple binary classifiers, are presented. After selecting
the best model for each category, configurations are provided. Second, the performance of the final
system for both approaches described in Phase 3 subsection is discussed and compared with some
relevant research works in this field. Finally, a study in terms of computation time is conducted. This
is an important aspect because it can help greatly in deciding which model to use depending on the
circumstances and usage needs.

Table 4 lists the accuracy, precision, recall and F1 metrics for the expert classifiers obtained at
the end of Phase 2. The traffic that is best detected from the rest is Generic, reaching a value higher
than 0.98 for all the calculated metrics. This remarkable performance may be influenced by the high
number of samples used to generate the model compared to the rest. The detection (or recall) capability
for Reconnaissance and Shellcode attacks exceeds 0.9. In the case of attack detection, regardless of
the category, the proposed classifier reaches a value slightly above 0.91. The attacks with the lowest
accuracy/F1 are DoS, Exploits and Fuzzers, with values of approximately 0.8. Nevertheless, the results
obtained by the system for traffic detection and classification have a good accuracy, above 0.85 in most
of the categories, reaching 0.9 and achieving very good values in some cases.

Table 4: Evaluation of binary models grouped by traffic and algorithm

Category Algorithm Accuracy Precision Recall F1

Analysis KNN 0.7918 0.7986 0.7918 0.7901
SVM 0.8017 0.8501 0.8017 0.7934
DT 0.8312 0.8388 0.8312 0.8298
MLP 0.8244 0.8330 0.8244 0.8228

Backdoor KNN 0.7925 0.8092 0.7925 0.7891
SVM 0.8047 0.8154 0.8047 0.8026
DT 0.8553 0.8747 0.8553 0.8530
MLP 0.7908 0.7927 0.7908 0.7902

DoS KNN 0.7015 0.7011 0.7015 0.7007
SVM 0.7740 0.7761 0.7740 0.7723
DT 0.7507 0.7602 0.7507 0.7457
MLP 0.7907 0.7936 0.7907 0.7909

Exploits KNN 0.7398 0.7464 0.7398 0.7414
SVM 0.7697 0.7702 0.7697 0.7699
DT 0.8041 0.8170 0.8041 0.7962
MLP 0.7983 0.7975 0.7983 0.7963

Fuzzers KNN 0.8000 0.8063 0.8000 0.8004
SVM 0.8127 0.8247 0.8127 0.8128
DT 0.7970 0.8133 0.7970 0.7967
MLP 0.8005 0.8002 0.8005 0.8002

(Continued)



1702 IASC, 2023, vol.37, no.2

Table 4: Continued
Category Algorithm Accuracy Precision Recall F1

Generic KNN 0.9780 0.9789 0.9780 0.9781
SVM 0.9791 0.9798 0.9791 0.9792
DT 0.9835 0.9839 0.9835 0.9835
MLP 0.9812 0.9817 0.9812 0.9813

Normal KNN 0.7964 0.8396 0.7964 0.7999
SVM 0.8276 0.8469 0.8276 0.8304
DT 0.9112 0.9112 0.9112 0.9112
MLP 0.8696 0.8825 0.8696 0.8714

Reconnaissance KNN 0.8378 0.8377 0.8378 0.8377
SVM 0.8844 0.8855 0.8844 0.8845
DT 0.9183 0.9255 0.9183 0.9183
MLP 0.9136 0.9206 0.9136 0.9136

Shellcode KNN 0.8955 0.9054 0.8955 0.8949
SVM 0.9299 0.9355 0.9299 0.9297
DT 0.9643 0.9644 0.9643 0.9643
MLP 0.9325 0.9355 0.9325 0.9324

Worms KNN 0.8764 0.8766 0.8764 0.8764
SVM 0.8764 0.8766 0.8764 0.8764
DT 0.8876 0.8885 0.8876 0.8876
MLP 0.8876 0.8884 0.8876 0.8876

Another aspect to consider, looking closely at Table 4, is that the algorithm that has shown the best
performance is the decision tree, in addition to always being the most efficient in terms of computation
time, as shown in Table 5.

Table 5: Selected model for each traffic category

Category Acc. Prec. Recall F1 FPR Train Time Parameters

Analysis 0.8312 0.8388 0.8312 0.8298 0.1723 105 ms criterion =
‘entropy’
max depth = 8

Backdoor 0.8553 0.8747 0.8553 0.8530 0.1502 98 ms criterion =
‘entropy’
max depth = 9

DoS 0.7907 0.7936 0.7907 0.7909 0.2076 10.6 s hidden layer sizes
= (12)
max iter = 190
activation = ‘relu’
solver = ‘adam’

Exploits 0.7983 0.7975 0.7983 0.7963 0.2157 692 ms criterion = ‘gini’
max depth = 10

(Continued)



IASC, 2023, vol.37, no.2 1703

Table 5: Continued
Category Acc. Prec. Recall F1 FPR Train Time Parameters

Fuzzers 0.8127 0.8247 0.8127 0.8128 0.1823 47.4 s C = 20
kernel = ‘rbf’
degree = 3
probability =
True

Generic 0.9835 0.9839 0.9835 0.9835 0.0144 2 s criterion = ‘gini’
max depth = 10

Normal 0.9112 0.9112 0.9112 0.9112 0.0952 2.4 s criterion =
‘entropy’
max depth = 4

Reconn. 0.9183 0.9255 0.9183 0.9183 0.0785 170 ms criterion = ‘gini’
max depth = 7

Shellcode 0.9643 0.9644 0.9643 0.9643 0.0357 88 ms criterion =
‘entropy’
max depth = 14

Worms 0.8876 0.8884 0.8876 0.8876 0.1126 58 m criterion = ‘gini’
max depth = 12

To ensure that any researcher can examine the values selected after the optimization of hyper-
parameters using grid search and cross-validation, Table 5 shows the best results obtained for each
classifier. The Scikit-Learn implementation of the decision tree and multilayer perceptron algorithms
includes a parameter, random state, which allows configuring the seed for the generation of pseudo-
random values and obtaining the same results in each execution. In all experiments, this parameter
has taken the value 42, a frequent value for the initialization of AI algorithms. In addition, the FPR
and the training time of each of them have been calculated since they are metrics of special interest in
the field of intrusion detection systems. It can be seen that the expert classifier aimed at detecting any
anomalous traffic (the row with the Normal category value) obtains an FPR close to 0.09.

Table 6 contains the confusion matrix obtained from the two-phase model of the binary classifiers.
Considering the main diagonal of the matrix, the model performs well for the categories Exploits,
Generic, Normal and Reconnaissance, with a high number of correctly classified samples. In an
intrusion detection system, locating an attack is fundamental. Therefore, it is important to highlight
the number of samples correctly classified as Normal, 34381, out of a total of 37000. Regarding the
second level of classification devoted to classifying threats, the matrix shows how a large part of the
traffic coming from attacks, such as DoS or Exploits, is classified as Analysis or Backdoor. This may
be because the environment where this traffic has been generated has experienced few changes during
the course of the attacks, and therefore, the samples used to generate the Analysis or Backdoor models
lack useful information to distinguish these attacks from the rest.

From the results previously discussed in Table 5, it is possible to calculate how proposed solution
behaves when detecting attacks, regardless of the category to which they belong. Table 7 shows the
results of this classifier under the proposal called Normal Classifier. After generating the binary models
in Phase 2, two approaches have been discussed to estimate the performance of the final proposed
system. The first consists of calculating the average capability of the model to decide whether a sample
belongs to a certain class and is shown in Table 7 as Weighted proposal. Since there are no works in the



1704 IASC, 2023, vol.37, no.2

literature that address the classification problem with this novel approach, the results are not amenable
to comparison with other proposals. Finally, the Ensemble row of Table 7 shows the results of the two-
step solution. These metrics can be compared with other studies, as they have been calculated from
the test set described in the Method section.

Table 6: Confusion matrix for ensemble approach

Analy. Back. DoS Exploits Fuzzers Generic Normal Reconn. Shell. Worms

Analysis 348 232 25 36 4 0 32 0 0 0
Backdoor 353 182 7 2 3 0 31 0 3 2
DoS 1531 1074 326 540 75 16 270 42 123 92
Exploits 2175 1275 301 5237 218 53 793 188 420 472
Fuzzers 854 438 29 191 1114 20 2694 4 659 59
Generic 82 26 25 224 61 18248 79 2 107 17
Normal 133 41 223 477 828 7 34381 8 809 93
Reconn. 234 121 33 43 10 0 96 2391 358 210
Shellcode 5 0 0 1 6 0 16 0 350 0
Worms 2 0 0 11 0 2 1 1 3 24

Table 7: Overall results for proposed methods

Approach Classification Accuracy Precision Recall (DR) F1-score FPR (FAR)

Expert Binary 0.9292 0.8955 0.9292 0.9120 0.0885
Weighted Multiclass 0.8966 0.8983 0.8966 0.8963 0.1070
Ensemble Multiclass 0.7605 0.8271 0.7604 0.7754 0.0456

Finally, it is interesting to compare the performance of the proposed system with other alternatives
proposed in the scientific literature, some of them previously discussed in the Related works section.
Table 8 shows the performance of the proposal compared with the other approaches, both the
Normal binary model, which distinguishes legitimate and attack traffic, and the proposed 10-class
classification model. In addition, it has also been verified that the exposed works use the same reduced
dataset in their experiments and a full set of features, which is a key aspect to be able to show a
comparison of results.

Comparing the results of the binary classifier with other related works, it can be seen that the
results obtained are slightly better in accuracy, detection, F1 and FPR. Al-Turaiki’s work employs
a two-stage approach for feature selection and applies convolutional neural networks for attack
classification. Their work improves in terms of accuracy but performs worse on the rest of the
calculated metrics. In addition, convolutional neural networks take considerable time to train, with
high energy and resource consumption. In the study addressed by Murovic, he seeks the creation
of deep learning models minimizing the use of FPGA resources, obtaining good results. In the
experiments carried out by Kasongo, the construction of a simple neural network is proposed in
combination with a wrapper-based feature extraction approach. Tian used the SVM algorithm and



IASC, 2023, vol.37, no.2 1705

performed a hyperparameter adjustment with an algorithm based on the swarm of bees, obtaining a
low FPR, close to the FPR proposed in this work.

Table 8: Comparison of performance with related works

Works Classification Year Accuracy Precision Recall F1 FPR

Proposed (Normal) Binary 2021 0.9292 0.8955 0.9292 0.9120 0.0885
Al-Turaiki et al. [34] Binary 2021 0.9025 0.9100 0.9000 0.9045 –
Murovic et al. [56] Binary 2021 0.9218 – – – 0.1097
Kasongo et al. [31] Binary 2020 0.8710 – – – –
Tian et al. [57] Binary 2019 0.8963 – – – 0.0916
Proposed (Ensemble) Multiclass 2021 0.7605 0.8271 0.7604 0.7754 0.0456
Al-Turaiki et al. [34] Multiclass 2021 0.6946 0.8400 0.6900 0.7400 –
Kasongo et al. [31] Multiclass 2020 0.7583 – – – –

Regarding the time complexity of the model, classification and training times have been consid-
ered. The average computation time required to classify a sample by our proposal is under 0.02 seconds.
Fig. 5 graphically displays the time taken to generate/train each model. Since all the experiments were
run on the same machine, the times are able to be compared. However, it should be noted that the time
taken to train and test a model is influenced by a) the number of samples used to train and test the
model and b) the algorithm used and its configuration. It can be seen that the Fuzzers class classifier
requires a large portion of the total time since the SVM algorithm with a computational complexity
of O(n3) is used [58]. The second most time-consuming algorithm to generate is the one for detecting
DoS attacks, and although it is generated with a contained number of samples, the best results are
obtained with a neural network. For the rest of the categories, the decision tree is the algorithm that
returns the best results with a time complexity of O(mnlog2n), where m is the dimensionality of the
data and n is the number of samples [59].

Figure 5: Model generation time per traffic

From the times obtained, it is observed that the binary model (Normal) is efficient. This aspect
is of special interest in a real environment where the model should be trained periodically to improve



1706 IASC, 2023, vol.37, no.2

the overall detection of the system. Regarding training times, it is observed that the Fuzzers category
requires time-consuming training in comparison to the other binary classifiers. This problem could
be addressed by choosing a more efficient but less accurate model. Thus, the overall system update
time (retraining of the models) would be considerably reduced when dealing with models of lower
complexity.

6 Conclusions and Future Works

This paper proposes a novel method of constructing an attack detection model on the UNSW-
NB15 dataset. The strength of this research lies in the development of a model for the cyber-protection
of the connected environments. Our approach, based on an ensemble of binary expert models, can
differentiate several types of network traffic. This approach has not been suggested by any previous
study.

In binary classification (distinction between attack and legitimate traffic), our proposal obtains
an accuracy, DR and F1 greater than 0.91 and an FPR of 0.085. This result exceeds several of the
proposals analyzed in the state of the art. With regard to multiclass classification, our proposal easily
classifies the Generic category, reaching a value above 0.98 in terms of the accuracy and F1 score, and
Reconnaissance and Shellcode both exceed 0.9 for accuracy and DR. Overall, the ensemble model
achieves 0.7605, 0.7604, and 0.7754 for Accuracy, DR and F1, respectively. Notably, a low FPR rate
is reached with this approach, achieving a value of 0.0456.

As a result, based on our model it is possible to determine the set of attacks that an organization
should be aware of in their information technology infrastructure. Analysis, Backdoor, DDoS and
Worms are identified as the most difficult attacks to identify. In particular, organizations should pay
attention to mitigating the effects of the first two types, as these are difficult to identify.

Finally, the proposed model generates good results even in unbalanced datasets, improving other
state-of-art contributions and demonstrating its efficiency in terms of model generation.

In future work, in-depth research will be conducted to improve the proposed model’s performance.
One limitation of the proposed system is that it requires training a separate classifier for each class,
which can be computationally expensive and time-consuming during hyperparameter tuning step,
especially for datasets with many categories. To address this issue, the identification of the most
difficult categories should be made prior to model generation. Another solution would be to identify
what features define these attacks. To accomplish this goal, an optimal selection of features for dataset
generation could be carried out. Another limitation found in the proposed two-stage model when
running experiments is that if the first step is not accurate, the entire model may perform poorly.
For this reason, the construction of a robust first-stage model is crucial. To accomplish this, the
implementation of a deep learning model is proposed in the first step.

Funding Statement: This work was supported by the Junta de Extremadura (European Regional
Development Fund), Consejería de Economía, Ciencia y Agenda Digital, under Project GR21099.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.



IASC, 2023, vol.37, no.2 1707

References
[1] S. Kemp, “Creative agency-we are social usa,” 2022. [Online]. Available: https://wearesocial.com/cn/

wpcontent/uploads/sites/8/2022/01DataReportal-GDR002-20220126-Digital-2022-Global-Overview-Rep-
ort-Essentials-vpdf

[2] S. N. Kew and Z. Tasir, “Developing a learning analytics intervention in e-learning to enhance students’
learning performance: A case study,” Education and Information Technologies, vol. 27, no. 5, pp. 7099–7134,
2022.

[3] X. Lei, U. H. Mohamad, A. Sarlan, M. Shutaywi, Y. I. Daradkeh et al., “Development of an intelligent
information system for financial analysis depend on supervised machine learning algorithms,” Information
Processing and Management, vol. 59, no. 5, pp. 103036, 2022.

[4] M. Avila, M. Durán, D. Caballero, T. Antequera, T. Palacios-Pérez et al., “Magnetic resonance imaging,
texture analysis and regression techniques to non-destructively predict the quality characteristics of meat
pieces,” Engineering Applications of Artificial Intelligence, vol. 82, no. 1, pp. 110–125, 2019.

[5] U. Chelladurai and S. Pandian, “A novel blockchain based electronic health record automation system for
healthcare,” Journal of Ambient Intelligence and Humanized Computing, vol. 13, no. 1, pp. 693–703, 2021.

[6] A. M. Roy, R. Bose and J. Bhaduri, “A fast accurate fine-grain object detection model based on YOLOv4
deep neural network,” Neural Computing and Applications, vol. 34, no. 5, pp. 3895–3921, 2022.

[7] B. Xue, M. Warkentin, L. A. Mutchler and P. Balozian, “Self-efficacy in information security: A replication
study,” Journal of Computer Information Systems, vol. 63, no. 1, pp. 1–10, 2023.

[8] P. McCorduck and C. Cfe, Machines Who Think: A Personal Inquiry into the History and Prospects of
Artificial Intelligence. USA: CRC Press, 2004.

[9] E. B. Pancar and M. V. Akpınar, “Information systems and artificial intelligence technology applied in
concrete road design,” Intelligent Computing and Applications, vol. 343, pp. 559–568, 2015.

[10] V. Tolubko, V. Vyshnivskyi, V. Mukhin, H. Haidur, N. Dovzhenko et al., “Method for determination
of cyber threats based on machine learning for real-time information system,” International Journal of
Intelligent Systems and Applications, vol. 10, no. 8, pp. 11–18, 2018.

[11] J. C. Sancho Núñez, A. Caro Lindo, M. Ávila and A. Bravo, “New approach for threat classification and
security risk estimations based on security event management,” Future Generation Computer Systems, vol.
113, pp. 488–505, 2020.

[12] T. Dbouk, A. Mourad, H. Otrok, H. Tout and C. Talhi, “A novel ad-hoc mobile edge cloud offering
security services through intelligent resource-aware offloading,” IEEE Transactions on Network and Service
Management, vol. 16, no. 4, pp. 1665–1680, 2019.

[13] P. Horchulhack, E. K. Viegas and A. O. Santin, “Toward feasible machine learning model updates in
network-based intrusion detection,” Computer Networks, vol. 202, no. 4, pp. 108618, 2022.

[14] M. Bagaa, T. Taleb, J. B. Bernabe and A. Skarmeta, “A machine learning security framework for IoT
systems,” IEEE Access, vol. 8, pp. 114066–114077, 2020.

[15] D. Li, L. Deng, M. Lee and H. Wang, “IoT data feature extraction and intrusion detection system for smart
cities based on deep migration learning,” International Journal of Information Management, vol. 49, no. 6,
pp. 533–545, 2019.

[16] S. Jeon and H. K. Kim, “AutoVAS: An automated vulnerability analysis system with a deep learning
approach,” Computers and Security, vol. 106, no. 4, pp. 102308, 2021.

[17] O. A. Wahab, A. Mourad, H. Otrok and T. Taleb, “Federated machine learning: Survey, multi-level
classification, desirable criteria and future directions in communication and networking systems,” IEEE
Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1342–1397, 2021.

[18] B. Jiang, S. Chen, B. Wang and B. Luo, “MGLNN: Semi-supervised learning via multiple graph cooperative
learning neural networks,” Neural Networks, vol. 153, no. 4, pp. 204–214, 2022.

[19] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set for network intrusion detection
systems (UNSW-NB15 network data set),” in Military Communications and Information Systems Conf.,
MilCIS2015, Canberra, Australia, 2015.

https://wearesocial.com/cn/wpcontent/uploads/sites/8/2022/01DataReportal-GDR002-20220126-Digital-2022-Global-Overview-Report-Essentials-vpdf


1708 IASC, 2023, vol.37, no.2

[20] N. Moustafa and J. Slay, “The evaluation of network anomaly detection systems: Statistical analysis of the
UNSW-NB15 data set and the comparison with the KDD99 data set,” Information Security Journal, vol.
25, no. 1–3, pp. 18–31, 2016.

[21] M. AL-Hawawreh, N. Moustafa and E. Sitnikova, “Identification of malicious activities in industrial
internet of things based on deep learning models,” Journal of Information Security and Applications, vol.
41, no. 5, pp. 1–11, 2018.

[22] N. Moustafa, B. Turnbull and K. K. R. Choo, “An ensemble intrusion detection technique based on
proposed statistical flow features for protecting network traffic of internet of things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4815–4830, 2019.

[23] M. Galar, A. Fernandez, E. Barrenechea, H. Bustince and F. Herrera, “A review on ensembles for the class
imbalance problem: Bagging-, boosting-, and hybrid-based approaches,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 42, no. 4, pp. 463–484, 2012.

[24] B. A. Tama, M. Comuzzi and K. H. Rhee, “TSE-IDS: A two-stage classifier ensemble for intelligent
anomaly-based intrusion detection system,” IEEE Access, vol. 7, pp. 94497–94507, 2019.

[25] F. A. Khan, A. Gumaei, A. Derhab and A. Hussain, “TSDL: A two-stage deep learning model for efficient
network intrusion detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.

[26] C. A. de Souza, C. B. Westphall, R. B. Machado, J. B. M. Sobral and G. dos Santos Vieira, “Hybrid
approach to intrusion detection in fog-based IoT environments,” Computer Networks, vol. 180, no. 7, pp.
107417, 2020.

[27] H. Zhang, L. Huang, C. Q. Wu and Z. Li, “An effective convolutional neural network based on SMOTE
and Gaussian mixture model for intrusion detection in imbalanced dataset,” Computer Networks, vol. 177,
no. April, pp. 107315, 2020.

[28] M. M. Baig, M. M. Awais and E. S. M. El-Alfy, “A multiclass cascade of artificial neural network for
network intrusion detection,” Journal of Intelligent and Fuzzy Systems, vol. 32, no. 4, pp. 2875–2883, 2017.

[29] A. Verma and V. Ranga, “Machine learning based intrusion detection systems for IoT applications,”
Wireless Personal Communications, vol. 111, no. 4, pp. 2287–2310, 2020.

[30] M. N. Aziz and T. Ahmad, “Clustering under-sampling data for improving the performance of intrusion
detection system,” Journal of Engineering Science and Technology, vol. 16, no. 2, pp. 1342–1355, 2021.

[31] S. M. Kasongo and Y. Sun, “A deep learning method with wrapper based feature extraction for wireless
intrusion detection system,” Computers and Security, vol. 92, no. 1, pp. 101752, 2020.

[32] C. Khammassi and S. Krichen, “A GA-LR wrapper approach for feature selection in network intrusion
detection,” Computers and Security, vol. 70, no. 2, pp. 255–277, 2017.

[33] S. Bagui and K. Li, “Resampling imbalanced data for network intrusion detection datasets,” Journal of Big
Data, vol. 8, no. 1, pp. 238, 2021.

[34] Al-Turaiki and N. Altwaijry, “A convolutional neural network for improved anomaly-based network
intrusion detection,” Big Data, vol. 9, no. 3, pp. 233–252, 2021.

[35] A. V. Elijah, A. Abdullah, N. Z. JhanJhi, M. Supramaniam and O. Balogun Abdullateef, “Ensemble and
deep-learning methods for two-class and multiattack anomaly intrusion detection: An empirical study,”
International Journal of Advanced Computer Science and Applications, vol. 10, no. 9, pp. 520–528, 2019.

[36] P. Maniriho, L. J. Mahoro, E. Niyigaba, Z. Bizimana and T. Ahmad, “Detecting intrusions in computer
network traffic with machine learning approaches,” International Journal of Intelligent Engineering and
Systems, vol. 13, no. 3, pp. 433–445, 2020.

[37] S. Meftah, T. Rachidi and N. Assem, “Network based intrusion detection using the UNSW-NB15 dataset,”
International Journal of Computing and Digital Systems, vol. 8, no. 5, pp. 477–487, 2019.

[38] F. A. Khan, A. Gumaei, A. Derhab and A. Hussain, “TSDL: A two-stage deep learning model for efficient
network intrusion detection,” IEEE Access, vol. 7, pp. 30373–30385, 2019.

[39] Defense Advanced Research Projects Agency (DARPA). Kdd cup 1999 (1999). [Online]. Available: http://
kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[40] S. Choudhary and N. Kesswani, “Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using
deep learning in IoT,” Procedia Computer Science, vol. 167, pp. 1561–1573, 2019.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


IASC, 2023, vol.37, no.2 1709

[41] A. Khraisat, I. Gondal, P. Vamplew and J. Kamruzzaman, “Survey of intrusion detection systems:
techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1, pp. 384, 2019.

[42] B. Khraisat and A. Alazab, “A critical review of intrusion detection systems in the internet of things:
techniques, deployment strategy, validation strategy, attacks, public datasets and challenges,”Cybersecurity,
vol. 4, no. 1, pp. 384, 2021.

[43] H. Zhang, J. L. Li, X. M. Liu and C. Dong, “Multi-dimensional feature fusion and stacking ensemble
mechanism for network intrusion detection,” Future Generation Computer Systems, vol. 122, no. Feburary,
pp. 130–143, 2021.

[44] F. Gottwalt, E. Chang and T. Dillon, “CorrCorr: A feature selection method for multivariate correlation
network anomaly detection techniques,” Computers and Security, vol. 83, no. 10, pp. 234–245, 2019.

[45] A. Ponmalar and V. Dhanakoti, “An intrusion detection approach using ensemble support vector machine
based chaos game optimization algorithm in big data platform,” Applied Soft Computing, vol. 116, no. 7,
pp. 108,295, 2021.

[46] N. Moustafa, “The UNSW-NB15 Dataset (Reduced),” 2015. [Online]. Available: https://cloudstor.aarnet.
edu.au/plus/index.php/s/2DhnLGDdEECo4ys

[47] Z. Halim, M. N. Yousaf, M. Waqas, M. Suleman, G. Abbas et al., “An effective genetic algorithm-based
feature selection method for intrusion detection systems,” Computers and Security, vol. 110, no. 34, pp.
102448, 2021.

[48] A. Thakkar and R. Lohiya, “A review on machine learning and deep learning perspectives of IDS for IoT:
Recent updates, security issues, and challenges,” Archives of Computational Methods in Engineering, vol.
28, no. 4, pp. 3211–3243, 2020.

[49] D. Azar, R. Moussa and G. Jreij, “A comparative study of nine machine learning techniques used for the
prediction of diseases,” International Journal of Artificial Intelligence, vol. 16, pp. 25–40, 2018.

[50] G. Guo, H. Wang, D. Bell, Y. Bi and K. Greer, “KNN model-based approach in classification,” Lecture
Notes in Computer Science, vol. 2888, pp. 986–996, 2003.

[51] M. A. Hearst, “SVMs – “A practical consequence of learning theory,” IEEE Intelligent Systems and Their
Applications, vol. 13, no. 4, pp. 18–21, 1998.

[52] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106, 1986.
[53] Y. Yang, K. Zheng, C. Wu and Y. Yang, “Improving the classification effectiveness of intrusion detection

by using improved conditional variational autoencoder and deep neural network,” Sensors, vol. 19, no. 11,
pp. 2528, 2019.

[54] X. Larriva-Novo, C. Sánchez-Zas, V. A. Villagra, M. Vega-Barbas and D. Rivera, “An approach for the
application of a dynamic multi-class classifier for network intrusion detection systems,” Electronics, vol. 9,
no. 11, pp. 1759, 2020.

[55] N. V. Chawla, K. W. Bowyer, L. O. Hall, W. P. Kegelmeyer et al., “SMOTE: Synthetic minority over-
sampling technique,” Journal of Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[56] T. Murovic and A. Trost, “Genetically optimized massively parallel binary neural networks for intrusion
detection systems,” Computer Communications, vol. 179, no. 11, pp. 1–10, 2021.

[57] Q. Tian, J. Li and H. Liu, “A method for guaranteeing wireless communication based on a combination of
deep and shallow learning,” IEEE Access, vol. 7, pp. 38688–38695, 2019.

[58] C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data Mining and Knowledge
Discovery, vol. 2, no. 2, pp. 121–167, 1998.

[59] M. Sani, C. Lei and D. Neagu, “Computational complexity analysis of decision tree algorithms,” in Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 11311 LNAI, pp. 191–197, 2018.

https://cloudstor.aarnet.edu.au/ plus/index.php/s/2DhnLGDdEECo4ys
https://cloudstor.aarnet.edu.au/ plus/index.php/s/2DhnLGDdEECo4ys

	A Novel Ensemble Learning System for Cyberattack Classification
	1 Introduction
	2 Related Works
	3 Materials
	4 Experimental Design
	5 Results and Discussion
	6 Conclusions and Future Works
	References


