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Abstract: Energy supply is one of the most critical challenges of wireless
sensor networks (WSNs) and industrial wireless sensor networks (IWSNs).
While research on coverage optimization problem (COP) centers on the
network’s monitoring coverage, this research focuses on the power banks’
energy supply coverage. The study of 2-D and 3-D spaces is typical in
IWSN, with the realistic environment being more complex with obstacles
(i.e., machines). A 3-D surface is the field of interest (FOI) in this work with
the established hybrid power bank deployment model for the energy supply
COP optimization of IWSN. The hybrid power bank deployment model is
highly adaptive and flexible for new or existing plants already using the IWSN
system. The model improves the power supply to a more considerable extent
with the least number of power bank deployments. The main innovation in this
work is the utilization of a more practical surface model with obstacles and
training while improving the convergence speed and quality of the heuristic
algorithm. An overall probabilistic coverage rate analysis of every point
on the FOI is provided, not limiting the scope to target points or areas.
Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the
probabilistic covering model for coverage measurement. A dynamic search
strategy (DSS) is proposed to modify the artificial bee colony (ABC) and
balance the exploration and exploitation ability for better convergence toward
eliminating NP-hard deployment problems. Further, the cellular automata
(CA) is utilized to enhance the convergence speed. The case study based on
two typical FOI in the IWSN shows that the CA scheme effectively speeds
up the optimization process. Comparative experiments are conducted on four
benchmark functions to validate the effectiveness of the proposed method.
The experimental results show that the proposed algorithm outperforms the
ABC and gbest-guided ABC (GABC) algorithms. The results show that the
proposed energy coverage optimization method based on the hybrid power
bank deployment model generates more accurate results than the results
obtained by similar algorithms (i.e., ABC, GABC). The proposed model is,
therefore, effective and efficient for optimization in the IWSN.
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1 Introduction

With the rapid development of modern manufacturing, there is a shift from simple production
to intelligent production. Since the factory has its complexity and needs to keep its originality of
guaranteeing the running of the production line, adding a traditional cable network is not advisable.
The wiring could interfere with the existing process and require the production line to be transformed
into a new factory. Thus, there is a high demand for IWSN-enabled intelligent production, which
helps monitor the manufacturing process and sets actual databases for future upgrades. Various
IWSN applications require deploying different sensor devices to monitor the production line for other
purposes. Since the sensor devices must operate and monitor continuously, the power supply becomes
a limitation; powering the sensor devices with batteries requires future replacement, recharging, and
maintenance, which is not convenient and may miss the detection of some typical parameters. With
the booming expansion of efficient printing circuits and the fabrication of highly-integrated devices,
the application of powering devices by radio-frequency (RF) is essential for inspiring the use of RF-
enabled sensor devices in industries.

Regarding energy harvesting, the sensor devices can only harvest energy within a certain distance
from the power banks. The power banks are equipped with grid power and can send RF signals
at a fixed capacity. The hybrid power bank operates on RF and uses it to propagate energy to the
devices in the deployment area. Many existing works in the literature assumed the range as a circle
with a fixed radius, ignoring the influence of the ambient environment and deviating from reality.
In contrast, we propose a probabilistic model which improves the accuracy of the harvest range,
taking into consideration the influence of obstacles in the environment. Particularly in terms of the
geometric plane distance, we focus on the interference of the RF signal from the three-dimensional
(3-D) surface. Generally, there exist machines, semi-finished products, carrier boxes, pieces of furniture,
and operators in the production line, and they all interfere with the RF signal to the degree that cannot
be ignored.

The topic of energy supply coverage has quickly become one of the most attractive variables
determining the quality of service in IWSNs. The power bank can serve the sensor devices within
their coverage range while all current sensor devices, FOI, and coverage areas are known. Due to
the dynamic nature of IWSN, and the sensor devices being self-configurable and able to be online
automatically and opportunistically, it is possible to target the overall energy supply coverage. Because
the power banks are always online and the interference of the RF signal is dynamic, the coverage
rate of a particular point is not deterministic but based on presumptions. However, once a sensor
device of the IWSN is deployed, the coverage probability can be determined according to its physical
location following the hybrid power bank deployment model. The purpose of studying the energy
supply coverage is to find the optimal least number of power banks which not only powers the current
sensor devices but also reserve redundancy for the future development of IWSN while guaranteeing
the operation of the IWSN.

In the IWSN, coverage, connectivity, and routing are the typical factors to be considered. We focus
on the power supply coverage of the IWSN in this research work. The minimum number of power
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banks and their deployment locations is determined before the deployment of the sensor devices and
running the IWSN. If any sensor device fails to be under the coverage area of the power banks, it
will not function properly and be disconnected from its application network. Thus the IWSN fails to
accomplish its task. In this research work, we first plot the 3-D surface of the application FOI, and
then deploy some of the power banks and check the power supply coverage rate of each point on the
FOI. Because there exist coverage cavities, there is a need to add more power banks to fill them and
calculate the power supply coverage of each point. The newly added power banks cover the coverage
cavities and enhance the coverage rate of the areas around the cavities.

With all the analyses above, two critical issues arise. 1) How to mimic the real FOI and compute
their coverage rate. 2) How to find the coverage cavities and fill them. First, we propose establishing a
3-D projecting model and the probabilistic model to better reflect RF signal status at the point on the
3-D surface. Second, the wavelet sub-band energy entropy is utilized with metaheuristics methods to
find the cavities and decide where to deploy the new power banks, thus improving the overall coverage.

This research work lies in artificial intelligence, modelling, and systems engineering, focusing on
the coverage rate of the specific targets or the target areas but expanding the scenarios in work to a
broader range. The presumable coverage rate of every point on the FOI and the coverage rate of the
targets or the target areas can be derived accordingly. While much of the existing research treats the
FOI as a 2-D plane or 3-D space, we draw from practice that it is a 3-D surface, the power banks
can only be deployed on the surface, and the RF signals cannot penetrate the surface. As illustrated
in Fig. 1, treating the FOI directly as a 2-D ideal plane will ignore the coverage cavities. Hence, the
proposed hybrid power bank deployment model is effective due to its flexibility for newly established
plants and plants already deployed with some IWSN systems.

Figure 1: A 2-D plane showing coverage cavities in a practical application

In Fig. 1, the coverage cavities are shown in real-life applications where the deployment is
implemented considering each power bank’s obstacles and coverage area.

The main contribution of this research work is given as follows:

• Design and implementation of a hybrid metaheuristics algorithm for coverage optimization.
• The FOI settings in the model are tunable, and the interferences are transferred to obstacles of

the 3-D surface, which fluctuate the terrain.
• The traditional 2-D Bresenham’s algorithm [1] was extended to 3-D for line-of-sight (LOS) or

non-line-of-sight (NLOS) determining of points on 3-D surfaces.
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• The traditional artificial bee colony (ABC) algorithm is employed with a dynamic search
strategy (DSS) for the NP-hard deployment problem. It balances the global and local search
ability and cellular automata to accelerate the convergence speed, thus resulting in a better and
quicker solution for power bank deployment locations.

• The comparative experiments on numerical benchmark function optimization are carried out
for the artificial bee colony with a dynamic search strategy (ABC-DSS) algorithm compared to
the ABC and GABC algorithms, verifying that the proposed algorithm is competitive.

The overall flow of the hybrid power bank deployment model is given in Fig. 2.

Figure 2: Overall flow of the hybrid power bank deployment model

Wireless sensor networks (WSN) are currently used in several applications, such as environmental
monitoring, military surveillance, and smart cities [2–4]. Researchers have studied the COP of WSN
for years w.r.t. 2-D plane [5–12], 3-D space [13–16], and 3-D terrain [17–19]. Since the sensing region
of the sensors on the 2-D plane can be simplified as a disk with the deployment location as the center,
the researchers used mathematical calculations to resolve the COP [7,8,12]. Note that the researchers
all consider the single sensor coverage region as omnidirectional in the 2-D plane, and the directional
type sensor was adopted in [13,14], a heuristic algorithm was utilized in [14], and a pyramid shape
sensing type was adopted in [13]. The sensor deployment method in 3-D terrain utilized the heuristic
algorithm to conquer the COP and adopted a cone-ball-shaped sensing model for precision [17,19].
There are other heuristic algorithms utilized for targeting COP issues in the literature, such as the
marine predator algorithm [11], the Yin-Yang pigeon-inspired optimization algorithm [20], and the
whale optimization algorithm [21].

In this paper, we study the COP of IWSN. Since the birth of the IWSNs, the network performance
has been tied closely to the ambient environment or the ambient wireless conditions, especially in
industrial applications. Precisely, we deploy the power banks on a 3-D surface, which not only takes
the shape of the geometry terrain but also appends the interference from the ambient environment to
the 3-D surface. Approximation algorithms are efficient algorithms that find approximate solutions
to optimization problems (in particular NP-hard problems) with provable guarantees on the distance
of the returned solution to the optimal one [22]. In setting the fundamentals of our future research, we
first need to guarantee the coverage of the power supply network to maintain the energy supplement.
The coverage issues can be classified roughly based on the type of solving methodology, utilizing
the scheme based on the classical methods and the scheme based on metaheuristic methods. While
the COP problem in the 2-D plane can be seen as a traditional art gallery problem, it becomes NP-
hard when extended to 3-D space, 3-D terrain, and 3-D surface. The art gallery problem originates
from a real-world problem of minimizing the number of guards guarding an art gallery, which can
be optimally resolved in polynomial time [20,23]. For NP-hard problems, while inspired by genetic
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and biological intelligence, most heuristic methods are advanced and optimized to accomplish a
particular task when the traditional mathematic methods are not appropriate. The original and
greedily mentioned heuristics methods include genetic algorithms (GA) by Holland in 1992 [24],
particle swarm optimization (PSO) by Eberhart and Kennedy in 1995 [25], artificial bee colony(ABC)
by Karaboga in 2005 [26], ant colony optimization (ACO) by Dorigo and Blum in 2005 [27], and
simulated annealing (SA) by Kirkpatrick et al. in 1983 [27,28], and differential evolution (DE) by
Price et al. in 2006 [29]. Other researchers also modified or extended the original type and derived
many new methods or solutions. Many comparative experiments on numerical benchmark function
optimization were conducted for ABC in [26,30–32], and the experimental results reveal that ABC is
competitive over some conventional heuristic optimization methods, such as GA [24,33], DE [29,34],
and PSO [25,35]. Thus, in this work, we utilize three ABCs, the traditional ABC algorithm, the GABC
algorithm [36], and the proposed ABC-DSS algorithm, which addresses the COP.

Several approximation algorithms and methods have been utilized in the literature for the covering
models. The sensing models can be either deterministic or probabilistic. We assume the average
covering range is rc while the uncertain range is re, the target point is L (x, y) and the corresponding
node is Si, and Pxy(Pxy = Pxy (Si, d (Si, L (x, y)))) denotes the covering probability of Si to L (x, y).
d (Si, L (x, y)) denotes the distance between the location of ith node Si and the target point L (x, y).
Thus, as the simplest case, the deterministic covering model—the boolean model, can be expressed as
shown in Eq. (1):

Pxy =
{

1, d (Si, L (x, y)) ≤ rc

0, otherwise (1)

Some other generally adopted probabilistic models are summarized in Table 1.

Table 1: Probabilistic models summary

Name Functions Descriptions

Elfes model [37] Pxy =
⎧⎨
⎩

1 d (Si, L (x, y)) ≤ rc

e−ι(d−rc)
κ

rc < d (Si, L (x, y)) ≤ rc + re
0 otherwise

ι and κ are parameters for
model adjustment.

Li model [38] Pxy =⎧⎨
⎩

1 d (Si, L (x, y)) ≤ rc

e−ι1(d−rc)
κ1 /(rc+re−d)κ2 +ι2 rc < d (Si, L (x, y)) ≤ rc + re

0 otherwise

ι1, κ1 and κ2 are parameters
for model adjustment while ι2
denotes the disturbing effect.

Ahmed multi-layer
model [39]

Pxy =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

p1 d (Si, L (x, y)) ≤ r1
p2 r1 < d (Si, L (x, y)) ≤ r2
p3 r2 < d (Si, L (x, y)) ≤ r3
p4 r3 < d (Si, L (x, y)) ≤ r4
p5 r4 < d (Si, L (x, y)) ≤ r5
p6 r5 < d (Si, L (x, y)) ≤ r6
0 otherwise

p1, p2, p3, p4, p5 and p6 are
the predefined covering
probabilities while r1, r2, r3,
r4, r5 and r6 are their
corresponding covering range
thresholds.

(Continued)
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Table 1: Continued
Name Functions Descriptions

Tsai shadow-fading
model [40]

Pxy = Q(10n lg(d/rs)/σ )

Q(x) � 1√
2π

∫ ∞
x e−s2/2ds

n (n ∈ [2, 4]) denotes the path
loss ratio, σ denotes the
fading ratio, and rs is a
parameter related to the
covering range.

Akbarzadeh sigmoid
model [17]

Pxy = 1 − 1/(1 + e−β(d−rs)) β is a parameter for sensor
simulation adjustment.

Finally, for the coverage issue, the power banks are omnidirectional to supply as many sensor
nodes as possible, and the FOI is established as a 3-D surface with considering obstacles making it
more adaptive for IWSN applications compared to other works in this field [12,41,42]. The problem
of NP-hardness in the power bank deployment optimization is overcome with heuristic methods like
ABC and its derivatives utilized in the paper, including the proposed approach. Thereafter, by adopting
the hybrid power bank deployment model, the optimized power bank deployment locations can be
determined and generated.

The rest of the research work is organized as follows; Section two illustrates the methodology
employed and discusses the proposed algorithm, general method, and other strategies employed. The
experiment conducted is further discussed in section three with comparison experiments, and section
four presents the results and analysis. Section five outlines the conclusion of the research work.

2 Methodology
2.1 Formulation of the Problem

The main objective of this research is to design and implement a hybrid power bank deploy-
ment model for energy supply coverage optimization in IWSN, which helps prepare the powering
supplement of incoming installation of RF-enabled sensor tags. To closely mimic the practical industry
environment, the 3-D surface with obstacles is addressed. Although the coverage rate of a particular
point is not deterministic once a sensor device of the IWSN is deployed, the coverage probability
can be determined according to its physical location and ambient environment. Thus, a combination
of the probabilistic coverage model and the line-of-sight algorithm is typically utilized to accurately
compute the covering probability of each point on the FOI, which is divided into the covered
and uncovered regions accordingly. The critical point is to achieve the optimum coverage of the
FOI with a minimum number of power banks, forming the NP-hard deployment problem. While
addressing the NP-hard COP, a dynamic search strategy is deployed to balance the ABC algorithm’s
exploration and exploitation ability, inspired by the differential evolution algorithm. The cellular
automata mechanism is further introduced to solve the drawbacks of the proposed heuristic algorithm,
simplify the convergence process and accelerate the convergence speed when generating the power
bank deployment locations. The research is conducted to achieve optimum coverage of the FOI with
a minimum number of power banks operating on RF technology, serving as the source of energy for
the installation in the deployment region and minimizing the chances of fires and power outages from
direct power sources. The limitation of this paper is that the RF signals are set to operate on the same
spectrum. This can be improved upon in future works by expanding the spectrum of propagation to
satisfy the various installations in the deployment area. The energy supplied by the RF is of the same
capacity, irrespective of the required capacity needed by the installed systems in the deployment area.
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Future works would look at satisfying the energy requirement of each installation in the deployment
area. The energy of the hybrid power banks can be in a given range from which each device can be
powered according to its corresponding capacity.

2.2 Deployment Area
Physical obstacles like machines and manufacturing materials in the deployment area all impact

electromagnetic waves’ propagation. Instead of ignoring this, we add their interference to the 3-D
surface as part of the ambient environment parameter. The 3-D surface model with fluctuation is
utilized to mimic the actual environment in the industry as close as possible, as shown in Fig. 2.
Due to the fading and shadowing effects of the electromagnetic waves caused by the surrounding
obstacles, and the covering range is thus affected. Nevertheless, the surface can be represented by
adopting the traditional Cartesian coordinate system for simplicity as z = f (x, y). The coordinates of
the nodes must fit the function to verify that it is on the surface and the system. A projecting method
to transfer characteristics from the 3-D space to the 2-D ideal plane was also employed to calculate
the correlation among them conveniently. The z-projection of a point in the cartesian coordinates at
the surface becomes the projection on the x0y plane.

2.3 Covering Model
Due to the existence of obstacles, such as machines and carrier boxes in the production line, the

RF energy sent by the power bank can be blocked. In the LOS method, either no obstacles reside
between the antenna and the system, or there is a partial obstruction. However, in NLOS, there is a
full obstruction between the antenna and the system. For indoor wireless network installations, it is
important to consider obstacles such as walls, ceilings, and furniture affecting LOS since these all play
a role in wireless signal reception. The utilization of the LOS method is illustrated in Fig. 3.

Figure 3: Illustration of LOS and NLOS

A point on the surface is covered only when it is within the range of one or more power banks’
coverage. To determine whether each point is on the surface, a probabilistic covering model is utilized to
form a mathematical formula considering the characterization of the point coverage rate as a function
of distance and other ambient environmental objects.

First, the average coverage range is defined as rc with an uncertain range re. It is natural to assume
that re < rc. For the point L (x, y) on the surface and its corresponding node Si, there is a line-of-sight
(LOS) when there are no points cut the virtual line draw from Ni to L (x, y). Otherwise, there’s no
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line-of-sight. Considering the LOS algorithm, the hybrid probabilistic covering model is composed as
shown in Eq. (2).

Pxy (Si, d (Si, L (x, y))) (2)

=

⎧⎪⎨
⎪⎩

1, rc − re ≥ d (Si, L (x, y)) &LOS

e−ητε , rc − re < d (Si, L (x, y)) < rc + re&LOS

0, rc + re ≤ d (Si, L (x, y)) &NLOS

, τ � d (Si, L (x, y)) − (rc − re)

2

where η and ε define the characteristics of the ambient environment inference on the surface, and
d (Si, L (x, y)) is the distance from the node Si to the point L (x, y).

Bresenham’s algorithm is extended from 2-D to 3-D to differentiate between the node Si and
the point L (x, y) in the model. The pseudocode is given in Algorithm 1. Thus by comparing the
corresponding points with the generated virtual line points, the LOS/NLOS issue can be solved. Given
that the two target points on the 3-D surface are specified for the power bank location and a checking
point. Then accordingly, without loss of generality, the following assumptions can be made:⎧⎪⎨
⎪⎩


x = xS−xL 
x > 0


y = yS−yL 
y > 0


z = zS−zL 
z > 0

, 
x = max {
x, 
y, 
z} (3)

Assuming the point at Njk

(
xj, yjk, zjk

)
is determined, the next point to be generated in the column

xj + 1 can be determined as:

yj+1, k =
{

yjk + 1 ε
(
yj+1

) ≥ 0

yjk ε
(
yj+1

)
< 0

, ε
(
yj+1

) = yj+1 − yjk − 0.5 (4)

zj+1, k =
{

zjk + 1 ε
(
zj+1

) ≥ 0

zjk ε
(
zj+1

)
< 0

, ε
(
zj+1

) = zj+1 − zjk − 0.5 (5)

Next, the optimal location choice for the point Nj+1,k

(
xj + 1, yj+1,k, zj+1,k

)
is among the

following 4 locations: N1
j+1,k

(
xj + 1, yj,k, zj,k

)
, N2

j+1,k

(
xj + 1, yj,k + 1, zj,k

)
, N3

j+1,k

(
xj + 1, yj,k, zj,k + 1

)
,

N1
j+1,k

(
xj + 1, yj,k + 1, zj,k + 1

)
. Then the parameter for determining the direction at step i + 1 can

be expressed as:

ε
(
yj+2

) = yj+2 − yj+1,k − 0.5 =
{

ε
(
yj+1

) + kyox − 1 ε
(
yj+1

) ≥ 0

ε
(
yj+2

) + kyox ε
(
yj+1

)
< 0

, kyox = yL − yS

xL − xS

(6)

ε
(
zj+2

) = zj+2 − zj+1,k − 0.5 =
{

ε
(
zj+1

) + kzox − 1 ε
(
zj+1

) ≥ 0

ε
(
zj+2

) + kzox ε
(
zj+1

)
< 0

, kzox = zL − zS

xL − xS

(7)

These calculations are conducted recursively for each x, starting from the power bank location
Ns (xs, ys, zs). The starting parameters ε (y1), and ε (z1)are evaluated by

ε (y1) = y1 − ys − 0.5 = kyox − 0.5 (8)

ε (z1) = z1 − zs − 0.5 = kzox − 0.5 (9)



IASC, 2023, vol.37, no.2 1539

As mentioned earlier, the above calculations assume that 
x it is the biggest; thus, Bresenham’s
algorithm is applied to the projections on the X0Y plane and X0Z plane. The cases for 
y and 
z are
likewise.

Algorithm 1: Extended 3-D Bresenham’s algorithm
Input power bank location Ns (xs, ys, zs) and ending edge location L (x, y)

Calculate 
x, 
y and 
z
Determine the driving axis by comparing the absolute value of 
x, 
y and 
z
Suppose 
x is the biggest, and X-axis is the driving axis,
ε (y0) =2
y − 
x and ε (z0) =2
z − 
x
Calculate constants 2
y, 2 (
y − 
x), 2
z, 2 (
z − 
x)

Initialize the interpolation’s location to Ns (xs, ys, zs)

Set cycle to 1
Repeat
At each xj along the line, start from j = 0, check the transfer conditions for the next point
If ε

(
yj

) ≥ 0, then
Plot

(
xj + 1, yj, zj

)
and Set ε

(
yj+1

) = ε
(
yj

) + 2 (
y − 
x)

Else
ε
(
yj+1

) = ε
(
yj

) + 2
y
Else if ε

(
zj

) ≥ 0, then
Plot

(
xj, yj, zj + 1

)
and Set ε

(
zj+1

) = ε
(
zj

) + 2 (
z − 
x)

Else

z = 2
z

ε
(
zj+1

) = ε
(
zj

) + 1
Assign cycle = cycle + 1
Until (The maximum cycle 
x − 1 is reached)

After all the above calculations, the FOI is divided into the covered and uncovered regions. The
covered area refers to the points covered by one or more power banks, while the uncovered area refers
to the points beyond all the power banks’ covering range. The uncovered can be visualized as the
cavities on the surface and in the quality of network coverage (QoNC) matrix. The DB6 wavelet is
adopted to decompose the separable into an approximation image and three detailed images in finding
the coverage cavities. Then, by taking the matrix’s discrete wavelet transform (DWT) iteratively, the
overall QoNC indicates the coverage probability provided by the corresponding power banks at each
point.

The QoNC for the FOI can be formulated as:

QoNC (i) = 1
m × n

∑N

i=1

(∑n

y=0

∑m

x=0
Pxy (Si, d (Si, L (x, y)))

)
(10)

where i is the number of net nodes on the surface, and Pxy (Si, d (Si, L (x, y))) is the covering probability
in terms of the distance from the node Ni to the point L (x, y) in the FOI.

Since many points may be under several nodes’ covering range, a scheme is defined when nodes
cover a point to modify the probabilistic covering model further to be more accurate. The modified
probabilistic covering model is given as:

P′
xy (Ni, d (Si, L (x, y))) = 1 −

∏N

i=1

(
1 − Pxy (Si, d (Si, L (x, y)))

)
(11)
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After all the computations, the probabilistic coverage index is formed for each point as a matrix.
For the QoNC matrix, the values of the element with an index (xm, yn) are the covering probability of
the point on the surface with the corresponding projecting index (xm, yn, 0).

2.4 The Heuristic Algorithms
2.4.1 Motivations for Adopting the Heuristic Algorithms

This research aims to optimize the energy supply coverage regarding the power bank deployment
strategy. After the first round of deployment of the power banks, some coverage cavities arise. The
problem relates to where the extra power banks can be deployed to fill the cavities while balancing the
number of power banks and the overall energy supply coverage rate. The NP-hard problem that forms
can be solved by the heuristic algorithm, simulating the natural swarm’s working mechanism.

Since we have the model for power net coverage, it is natural that some efforts are made to complete
the power net by implementing as few power banks as possible. To better determine the locations of
the power banks, the hybrid ABC-DSS with the CA method is adopted to perform the placement
optimization.

2.4.2 Overview of the ABC Algorithm

Illuminated by the natural bee swarm’s working flow, which mimics the honey bee swarm’s
forgetting mechanism, Karaboga formulated the ABC algorithm to optimize the numerical functions.
The ABC algorithm is a self-organized system with four outstanding characteristics: positive feed-
back, negative feedback, fluctuations, and multiple interactions, which makes it an attractive group
optimization algorithm. A general description of the ABC algorithm is given in Algorithm 2.

Algorithm 2: The artificial bee colony algorithm
Initialize the population xi and then
Evaluate them
Set cycle to 1
Repeat

For each employed bee
Produce a new solution vi

Compute the fitness
Utilize the greedy selection process

For each onlooker bee
Choose a solution xi with a probability ci

Produce a new solution vi

Compute the fitness
Utilize the greedy selection process

If there is an abandoned solution for the scout,
then update with the new solution generated by (12).

Update the best solution
Assign cycle = cycle + 1
Until (Conditions are met or the maximum cycle is reached)

For the ABC algorithm, there is only one employed bee for each food source. The starting point is
set as one-half employed bees and the other half onlookers. Each employed bee is randomly nominated
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to one source for the first solution. Then by selecting a new candidate solution for each employed
bee according to function (12), the employed bee updates its status or not by choosing better fitness
acquired from each iteration.

vij = xij + θij

(
xij − xkj

)
(12)

where j is a random parameter referring to a candidate solution vi, a current iteration xi, a neighbour
solution xk, and a random number θi (θi ∈ [−1, 1]). To ensure a better candidate with greater chance
of being selected, the roulette wheel selection method is adopted to lead the onlooker bee to assess the
solution quality while choosing one from them with probability ci. The definition of fiti is expressed
as shown in (13).

ci = fiti∑SN

n=1 fitn

(13)

When a solution cannot be further improved within a limit parameter, the scout comes out, and
a new key will be randomly generated.

xij = xjmin
+ rand (0, 1)

(
xjmax − xjmin

)
(14)

where xi is the solution to be abandoned and D is the dimension of the solution vector while j
(j ∈ {1, 2, · · · , D}) is an integer.

2.4.3 Overview of the Modified GABC Algorithm

For group optimization algorithms, the exploration and exploitation ability is vital to the quality
of the generated solutions. The former refers to finding the optimum solution in the unknown
areas in the solution domain. In contrast, the latter refers to utilizing the experiences gained from
previous reasonable solutions to investigate better solutions. However, the exploration ability and
the exploitation ability usually conflict with each other in practice. Balancing the two capabilities is
essential in achieving a reasonably good optimization.

In the ABC algorithm, as mentioned earlier, the parameter θi is a randomly selected number
between −1 and 1, which enhances the global search ability while involuntarily ignoring the local
search ability and slows the convergence speed. A solving method was proposed in [36] to ease the
tension by modifying the searching strategy.

vij = xij + φij

(
xij − xkj

) + ϕij

(
yj − xij

)
(15)

where k, and j are generated in the same manner as in (4), yj is the jth element of the global best solution,
φij is a random number while φij ∈ [−1, 1], and ϕij is a uniform random number while ϕij ∈ [0, C], C is
a nonnegative constant. Eq. (15) equals Eq. (12) when C equals 0. The ABC algorithm is a particular
case of the GABC algorithm. It is proven in [36] that when C equals 1.5, the GABC algorithm performs
best. Going over the algorithm, we see that it enhanced the local search ability (exploitation) while
protecting the global search ability to a degree. The difference between the ABC algorithm and the
GABC algorithm is that Eq. (12) is replaced with Eq. (15).

2.4.4 Overview of the Proposed Modified ABC-DSS Algorithms

Illuminated by the DE algorithm [29], Eq. (15) is rewritten as shown in Eq. (16).

vij = yj + θij

(
yj − xkj

)
(16)
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Analyzing the modified ABC algorithm with Eq. (16), the algorithm has the best solution yj to
guide the search and only yields new solutions around it. Thus, by adopting Eq. (16), the modified
ABC Algorithm shortens the computational time to reach convergence and proves its ability in local
search. Still, the algorithm easily gets trapped in the local optimum. Since a trade-off between the local
search and global search is found while maintaining the convergency time in an acceptable period, a
balancing strategy is proposed to perform a compromise between exploration ability and exploitation
ability. To combine the two alternatives, a linear parameter α is proposed and defined. From the
modality, the parameter will gradually decrease from one to zero along with the searching process,
aiming at increasing the weight of yj while reducing the weight of xij in the convergence process.

α = (Max_iteration − Current_iteration)/Max_iteration (17)

To form the dynamic balancing process during the iterations, a self-tuning factor β defined as:

β = 0.1 · rand (0.10) − 0.4 (18)

Then the balancing factor λ can be formed as:

λ = αβ + 0.4, λ ∈ [0, 1] (19)

To avoid premature while escalating the process of convergency, the ABC-DSS is proposed:

vij = λxij + (1 − λ) yj + θij

(
λxij + (1 − λ) yj − xkj

)
(20)

Note that when λ = 1, Eq. (20) equals Eq. (12); when λ = 0, Eq. (20) equals Eq. (12). The
global search ability and convergence efficiency are satisfied by modifying the updating function.
The difference between the proposed ABC-DSS algorithm and the ABC algorithm is that Eq. (12)
is replaced with Eq. (20).

However, the problem-solving process is not relatively smooth and quick, leading to finding high-
order solutions to resolve the problem further. Inspired by the mapping of cellular networks, the FOI
is cut into small cells allowing each cell to form the FOI solution accordingly.

The cellular automata (CA), a discrete problem-solving model, is capable of dealing with complex
problems while cutting extensive mathematic computations. Since the FOI is a continuous surface
in engineering, it is practical to approximate it with discrete space or discrete values. Typically, the
CA consists of a regular grid of cells, each assigned a finite number of states, and the grid can be
assigned any finite number of dimensions. The four fundamental elements of CA are lattice structure,
cell variables, the concept of neighbourhood, and updating rules. In this study, the cells are distributed
in each lattice structure, and the neighbouring cells are connected. Adding that the form of the cellular
space is the immediate reflection of the physical dimensions, and the rectangular lattice structure is
adopted rather than other commonly used triangular and hexagonal lattice structures as the edge shape
of the FOI is rectangular. Each cell of the lattice is a joint of parameters that will be updated over the
iteration process. The solving process is by defining a set of neighbourhood cells for the specific cell
and assigning a random state for each cell to set the initial state. Thus, a new generation is born with
the mathematical function that determines the latest state of each cell related to its current state and
the states of its neighbouring cells. The cell variables at the time tk+1 are:

ck+1
l = cl (tk+1) (21)

where cl (tk+1) is the lth cell variable at time tk+1.
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The neighbouring cells nc of the lth cell are the cell itself and a set of neighbouring cells in the
region of the radius r:

l − r ≤ nc ≤ l + r (22)

The configuration of neighbouring cells is a description of the nature of the application, which is
vital to the system. The traditional Moore neighbourhood structure [43], which comprises eight cells,
is adopted in this article; see Fig. 4.

Figure 4: The Moore neighbourhood comprising eight cells

Based on the values needed in the iterations for the updating rules, the updating strategy is:

ck+1
l = Ω

(
ck

l , ck
nc

) = Ω
(
ck

l−r, . . . , ck
l , . . . , ck

l+r

)
(23)

The primary purpose of the ABC-DSS is to seek optimized nectars by exchanging information
about the food source position and nectar amount. ABC-DSS-based CA model is introduced to
accelerate the convergence speed and derive optimized network topology for WSNs, thus determining
the locations of the power banks. In this article, CA is introduced to specify the neighbour solution xk.
The CA method and ABC-DSS method are combined to enhance the optimization search strategy. A
new term is added to Eq. (20) based on the CA mechanism to improve the trajectories of particles in
the design space. The performance metric of the ABC algorithm lies in the exploration ability, which
depends on the interaction between the bees. Utilizing the CA scheme in another way creates a more
robust and better interaction for the bees by providing an extra opportunity for the onlooker bees
to exchange information with their neighbours. Therefore, the state variables related to each cell are
simply the design variables of the optimization problem:

cl → X k
l = xkj (24)

The proposed cellular velocity update equation acts on the design variables and combines available
information at the central site; thus, for every discrete time step, the updating equation generates a new
design at each site using the related information as follows:

vij = λxij + (1 − λ) yj + θij

(
λxij + (1 − λ) yj − X k

l

)
(25)

The iteration process is repeated until a stopping criterion is met. The inner and outer loops are
regarded as convergent when the limited number of generations in each loop is satisfied.

With all the above modifications, the hybrid power bank deployment model for energy supply
coverage optimization is settled, and the optimum power bank deployment locations of a specific FOI
are generated.
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3 Experimental Studies
3.1 Benchmark Functions

To validate the proposed algorithm and model the COP, the performance of the three algorithms
is tested on numerical benchmark function optimizations as was performed in [36], targeting per-
formance evaluation for the heuristic algorithms. The three algorithms are named ABC algorithm,
GABC algorithm, and ABC-DSS algorithm, and the benchmark functions used in this research work
are shown in Table 2.

Table 2: Summary of the benchmark functions

Function name Functions Initial range

Sphere f1 (x) =
d∑

i=1

x2
i [−100, 100]d

Griewank f2 (x) =
d∑

i=1

x2
i

4000
−

d∏
i=1

cos
(

xi√
i

)
+ 1 [−600, 600]d

Rastrigin f3 (x) = 10d +
d∑

i=1

[
x2

i − 10 cos (2πxi)
]

[−5.12, 5.12]d

Ackley f4 (x) =
−a exp

(
−b

√
1
d

d∑
i=1

x2
i

)
− exp

(
1
d

d∑
i=1

cos (cxi)

)
+ a + exp (1)

a = 20, b = 0.2, and c = 2π

[−32.768, 32.768]d

Schwefel f5 (x) = 418.9829d −
d∑

i=1

xi

(√|xi|
)

[−500, 500]d

Rosenbrock f6 (x) =
d−1∑
i=1

[
100

(
xi+1 − x2

i

)2 + (xi − 1)
2
]

[−5, 10]d

A set of comparative experiments on the above numerical benchmark function optimizations was
conducted to compare the performances of the three algorithms. The dimensions of solution space
were set to 30 and 100 for the benchmark function to generate the statistical experiment’s means and
standard deviation parameters and repeated them 50 times. The population size was set to 80 for all
three algorithms, and the maximum generation times were set to 5000.

3.2 Performance Evaluations
The performance of the proposed hybrid power bank deployment model in the industrial

environment is evaluated, and the accessibility of powering the energy harvesting in IWSNs is verified
in comparative experiments performed on the semi-real 3-D surface. First, to generate the 3D surface
with as many features as the natural manufacturing environment, the surface-generate program is
coded in MATLAB to represent different environments by setting the parameters at different values.
In this paper, the surface models utilized are terrains with narrow and winding canyons, towering and
steep mountains named even and uneven plants, as shown in Fig. 5.

After the generation of the 3-D surfaces, the axis of the surface is extracted discretely as the 3D
surface is continuous. Bring our assumption to the semi-extreme situation, and the FOI is defined as
2560 meters long and 2560 meters wide, which is a super sizeable single plant according to industry
standards. The parameter values set in the simulation are shown in Table 3.
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Figure 5: The 3-D generated surfaces

Table 3: The parameter values set in the simulation

Parameter Quantity Unit

η 0.1
ε 2
m 2560 m
n 2560 m
rc 55 m
ru 10 m

4 Results and Analysis
4.1 Experimental Results

Simulation experiments were performed using MATLAB 2022B software to evaluate the proposed
algorithm’s performance. Six well-known benchmark functions were employed to compare the perfor-
mance of the ABC, GABC and the ABS-DSS algorithms. Since an absolute 0 may not be reported in
practice, and the results below e−20usually function as 0; the values below e−20 are treated as 0 in this
work. Table 4 shows the optimization values of the mean best fitness and the standard deviation of
the Sphere, Griewank, Rastrigin, Akley, Schwefel, and Rosenbrock functions [44–46], respectively. The
Sphere function is unimodal, and the others are complex nonlinear multimodal functions. The analysis
of variance ANOVA test was performed to evaluate the performance of the proposed algorithm, and
compare the results with the other algorithms.

Table 4: Benchmark functions optimized by the ABC, GABC, and ABC-DSS algorithms

Function name Dimension Algorithm Mean best fitness Standard deviation

Sphere 30 ABC 7.1935e−16 3.403e−16

GABC 4.7661e−16 1.802e−16

ABC-DSS 1.2338 e−19 1.532 e−19

100 ABC 2.9227e−9 3.128e−10

GABC 1.8921e−9 1.782e−10

ABC-DSS 2.1339e−18 3.957 e−19

Griewank 30 ABC 1.5230e−15 2.071e−15

GABC 2.9103e−18 5.220e−18

(Continued)
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Table 4: Continued
Function name Dimension Algorithm Mean best fitness Standard deviation

ABC-DSS 0 0
100 ABC 2.6538e−10 5.360e−10

GABC 3.9138e−16 2.993e−16

ABC-DSS 0 0
Rastrigin 30 ABC 1.4181e−14 7.731e−15

GABC 6.2551e−17 3.949e−17

ABC-DSS 2.1073e−19 2.268e−19

100 ABC 1.9422e−7 1.305e−6

GABC 3.3099e−11 1.257e−11

ABC-DSS 4.0285e−13 2.138e−13

Ackley 30 ABC 4.1664e−14 5.610e−15

GABC 3.0730e−14 2.951e−15

ABC-DSS 2.4857e−15 2.874e−16

100 ABC 3.4512e−12 1.031e−14

GABC 2.8841e−13 6.163e−15

ABC-DSS 1.0008e−13 9.131e−15

Schwefel 30 ABC 4.0112e−4 7.9893e−5

GABC 3.8730e−15 9.1651e−16

ABC-DSS 0 2.9878e−13

100 ABC 3.4512e−1 1.7905e−2

GABC 2.2463e−1 2.9121e−2

ABC-DSS 2.0114e−1 4.6071e−2

30 ABC 6.4079e−2 5.7493e−1

GABC 2.0761e−2 3.2097e−1

Rosenbrock ABC-DSS 1.1761e−3 0
100 ABC 2.1307e−1 8.6301e−2

GABC 3.9603e−2 3.0814e−2

ABC-DSS 1.8702e−2 2.2483e−2

From Table 4, the proposed ABC-DSS algorithm outperforms the GABC and ABC algorithms
for both the unimodal and the multimodal function optimization. More specifically, the ABC
algorithm tends to fall into a local optimum, causing convergence stagnation; thus, the convergence
accuracy of the algorithm is not ideal. The GABC algorithm strengthened the local search ability
with the guidance of the current optimal position of the population; thus, the convergence accuracy
of the algorithm improved to a certain extent. Compared with [36,47–49], the proposed ABC-DSS
algorithm, kept a good balance between the local and global search ability, is not easily trapped in the
numerous local optimal points, and thus has better convergence.

4.2 Performance Evaluation Results
Three strategies are utilized to derive the power bank deployment schemes to address the COP: the

ABC-DSS scheme with enabled CA, the ABC-DSS scheme, the GABC scheme, and the ABC scheme.
The number of sensors deployed utilizing each scheme is shown in Table 5.
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Table 5: The number of power banks deployed in each scheme

3-D surface Scheme The number of power banks

160 m × 160 m
grid size

320 m × 320 m
grid size

480 m × 480 m
grid size

I ABC-DSS scheme
with enabled CA

1082 916 909

ABC-DSS scheme 1060 918 913
GABC scheme 1071 920 914
ABC scheme 1059 921 917

II ABC-DSS scheme
with enabled CA

929 903 882

ABC-DSS scheme 926 910 894
GABC scheme 927 906 889
ABC scheme 922 911 901

The initial artificial bee number is set as the number of cell grids, and the required QoNC of each
cell grid is set to 0.9. The QoNC of each scheme is shown in Table 6.

Table 6: The QoNC of each scheme

3-D surface Scheme The number of power banks

160 m × 160 m
grid size

320 m × 320 m
grid size

480 m × 480 m
grid size

I ABC-DSS scheme
with enabled CA

0.913879399 0.897543949 0.887221532

ABC-DSS scheme 0.906251598 0.873535161 0.871670837
GABC scheme 0.904162738 0.872298720 0.866325168
ABC scheme 0.903991704 0.871887210 0.859026512

II ABC-DSS scheme
with enabled CA

0.974321732 0.941289353 0.909659437

ABC-DSS scheme 0.931759837 0.918976599 0.868093241
GABC scheme 0.930637629 0.917089427 0.867021317
ABC scheme 0.926214201 0.917056492 0.865903673

The grid size of cells was set at three different degrees to conduct the evaluations; one is 160 meters
long plus 160 meters wide, the second is 320 meters long plus 320 meters wide, and the third is 480
meters long plus 480 meters wide. The power bank deployment scheme generating consumption time
of each scheme is shown in Table 7.
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Table 7: The power bank deployment scheme generating consumption time of each scheme

3-D surface Scheme The number of power banks

160 m × 160 m
grid size

320 m × 320 m
grid size

480 m × 480 m
grid size

I ABC-DSS scheme
with enabled CA

7.3 min 77.4 min 104.7 min

ABC-DSS scheme 7.5 min 81 min 131.2 min
GABC scheme 7.7 min 86 min 142 min
ABC scheme 8.2 min 88.7 min 147.3 min

II ABC-DSS scheme
with enabled CA

6.4 min 67.3 min 97.6 min

ABC-DSS scheme 6.7 min 69.8 min 119 min
GABC scheme 7.5 min 71.9 min 128 min
ABC scheme 7.7 min 79.6 min 136.9 min

Comparing Tables 5 and 6, we notice that the 160 m × 160 m cell grid scheme results in higher
QoNC, although it consumes more power banks. For surface I, Twenty-three power banks are saved
between the best and worst schemes while improving the QoNC by 0.01. For surface II, although seven
more power banks are utilized between the best and worst scheme, the deployment scheme improved
the QoNC by 0.05 and resulted in an extremely high QoNC rate of 0.974. Also, Table 7 shows that the
160 m × 160 m cell grid size scheme consumes less time than the 320 m × 320 m and 480 m × 480 m
cell grid size schemes. The time consumed by the 320 m × 320 m cell grid scheme is ten times as long
as the 160 m × 160 m cell grid scheme. The reason behind the phenomenon is that the initial artificial
bee number was set as the number of cell grids; as a result, the quantity of neighbourhood xk

l was so
large, and the calculation complexity increased to the extent that the optimizing procedure expanded,
prolonging the convergence time.

Comparing the ABC-DSS scheme with enabled CA and the ABC-DSS scheme to the ABC scheme
in Tables 5 and 6, we can conclude the dynamic search strategy is well balanced in ABC’s local and
global search abilities to avoid the premature phenomenon. This provides better schemes with higher
QoNC. The proposed ABC-DSS scheme with enabled CA scheme outperformed the GABC by 0.01
and the ABC by 0.03 for surface I while surpassing the GABC by 0.04 and the ABC by 0.05 for surface
II under 160 m × 160 m cell grid size.

Comparing the ABC-DSS scheme with enabled CA and the ABC-DSS scheme or ABC scheme
from Table 7, we can conclude that the CA method helps lower the consumption time of the
optimization schemes efficiently. The reason behind the phenomenon is that the CA was utilized to
select neighbourhoods in the artificial algorithm other than randomly selecting them, which speeds
up the optimization process’s convergence.

Since the expected QoNC of the region is 0.9, which was reached by the schemes mentioned above
in most cases, the three schemes are verified. However, considering all factors, the ABC-DSS scheme
with enabled CA generates better results. Thus, the proposed hybrid power bank deployment model
for IWSN is effective and efficient. That is, the FOI is covered as expected, and the energy web can
support the operation of the function of the IWSN. The FOI is not defined as the whole area but as
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the specified targets or target areas in practice; thus, the QoNC is far beyond 0.9 and could power the
entire IWSN.

5 Conclusion

For the COP of WSN and IWSN, traditional research has mainly considered the monitoring
coverage of the network and treated the FOI as in a 2-D plane or 3-D space. However, with the booming
expansion of printing efficient circuits and fabrication of highly-integrated devices, the application
of powering devices by RF is enabled. RF-enabled sensor devices are generally used in industries.
Illuminated by the raised issue of widely spreading RF-enabled sensor devices, we focus on the power
banks’ energy supply coverage in this work. The FOI is not simplified but has considered the obstacles
for a more practical 3-D surface. In addressing the NP-hard and COP, modifications were made to the
ABC algorithm to generate better and quicker convergence results. A DSS was proposed to modify the
ABC and balance the exploration and exploitation ability for better convergence. Further, the CA was
utilized to enhance the convergence speed and establish the ABC-DSS with enabled CA. Comparative
experiments were carried out for benchmark functions and case studies. The results show that the
proposed hybrid power bank deployment model for energy supply coverage optimization in IWSN is
effective and efficient.

Based on the limitation of this paper, future works would require that the spectrum of propagation
by the RF be expanded to satisfy the various installations in the deployment area. The energy
distributed by the power banks can also be varied in the deployment area to satisfy the requirement
of each installation.
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